A structure–function analysis of the left ventricle

1Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, Gauteng 2193, South Africa;
2School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia;
3School of Mathematical Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia;
4Department of Paraclinical Sciences, University of Pretoria, Pretoria, Gauteng 0110, South Africa;
5School of Anatomy, Physiology and Human Biology, University of Western Australia, Crawley, Western Australia 6009, Australia;
6Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada;
7Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada;
8Central Animal Service, University of the Witwatersrand, Johannesburg, Gauteng 2193, South Africa; and
Running head: Structure–function of the left ventricle

Key words: capillary, heart, work, mitochondria, myofibril

Author for correspondence:
Edward P. Snelling

Brain Function Research Group, School of Physiology,
7M18, 7th Floor, Medical Building,
7 York Road, Parktown Medical Campus,
University of the Witwatersrand, Johannesburg, South Africa 2193

Phone: +27 11 717 2152
Facsimile: +27 11 643 2765
Email: edward.snelling@wits.ac.za
ORCID: EPS, 0000-0002-8985-8737
Abstract
This study presents a structure–function analysis of the left ventricle and examines the performance of the cardiac capillary network, mitochondria and myofibrils at rest and during simulated heavy exercise. Left ventricular external mechanical work rate was calculated from cardiac output and systemic mean arterial blood pressure in resting sheep (*Ovis aries*; *N* = 4) and goats (*Capra hircus*; *N* = 4) under mild sedation, followed by perfusion-fixation of the left ventricle, and quantification of the cardiac capillary-tissue geometry and cardiomyocyte ultrastructure. The investigation was then extended to heavy exercise by increasing cardiac work according to published hemodynamics during sustained treadmill exercise. Left ventricular work rate averaged 0.017 W cm\(^{-3}\) of tissue at rest, and was estimated to increase to ~0.060 W cm\(^{-3}\) during heavy exercise, which equates to an oxygen demand rate of 195 and 670 nmol O\(_2\) s\(^{-1}\) cm\(^{-3}\), respectively (RQ = 0.76). By applying these oxygen demand rates and capillary-tissue geometry to an oxygen transport model, we predicted that oxygen consumption increases from 195 nmol O\(_2\) s\(^{-1}\) cm\(^{-3}\) at rest, to ~600 nmol O\(_2\) s\(^{-1}\) cm\(^{-3}\) during heavy exercise, which is within 90% of the demand rate and consistent with work remaining predominantly aerobic. Mitochondria represent 21 – 22% of cardiomyocyte volume and consume oxygen at a rate of 1150 nmol O\(_2\) s\(^{-1}\) cm\(^{-3}\) of mitochondria at rest, and ~3600 nmol O\(_2\) s\(^{-1}\) cm\(^{-3}\) during heavy exercise, which is within 80% of maximum *in vitro* rates and consistent with mitochondria operating near their functional limits. Myofibrils represent 65 – 66% of cardiomyocyte volume, and according to a Laplacian model of the left ventricular chamber, generate peak fiber tensions between ~54 and 62 kPa at rest and during heavy exercise, which is less than maximum tension of isolated cardiac tissue (120 – 140 kPa), and is explained by an apparent reserve capacity for tension development built into the left ventricle.
Our model of oxygen transport through left ventricular cardiac tissue shows that oxygen demands are easily satisfied at rest, but only just satisfied during simulated heavy exercise. We also find that mitochondria likely operate close to their functional limits during heavy exercise. However, the myofibrils retain a reserve capacity for tension development, which possibly protects the left ventricle from excessive force-loads during health and compensates for impaired function during disease.
Introduction

This study presents a structure–function analysis of the left ventricle and examines the relationships that exist between the left ventricle’s capillary network, mitochondria and myofibrils, and the extent to which these cardiac components perform under the contrasting conditions experienced at rest compared to simulated heavy exercise. The mean external mechanical work rate of the left ventricle (W = J s⁻¹) can be estimated from the product of cardiac output (L s⁻¹) and systemic mean arterial blood pressure (kPa = J L⁻¹), plus the rate at which kinetic energy (W) is imparted to the blood (18, 51). Left ventricular work rate increases with exercise intensity because each of the factors that contribute to cardiac work increase with the metabolic and perfusion requirements of the body. For instance, heavy exercise elicits a 2- to 6-fold increase in cardiac output and a 1.2- to 1.7-fold increase in systemic mean arterial blood pressure in dogs, goats, ponies and calves (70), sheep (32), cattle and horses (31), and humans (68). In addition, the kinetic energy associated with accelerating the blood increases from negligible levels at rest, to as high as 10 – 25% of total left ventricular work during heavy exercise (11, 18).

Examination of the structure–function relationships that exist between the left ventricle’s capillary network, mitochondria and myofibrils advance our understanding of the mechanisms that support the increase in left ventricular work from rest to heavy exercise. Similar structure–function analyses on skeletal muscle show that oxygen supply satisfies oxygen demand during low-intensity exercise, but that oxygen demand exceeds its supply and diffusion across the capillary network during high-intensity exercise, such that aerobic metabolism is supplemented by anaerobic metabolism and lactate production (12, 27, 33, 70). Apparently, the volume-density of capillaries and mitochondria in skeletal muscle reflect the muscle’s aerobic metabolic capacity, not the muscle’s total metabolic capacity (74). Structure–function analyses have also shown that as skeletal muscle work increases to its...
aerobic metabolic limits, mitochondrial respiration rates in vivo approach maximum rates measured in vitro, indicating that skeletal muscle mitochondria operate close to their functional capacity during maximum aerobic metabolic work (63). Structure–function analyses have also shown that locomotory exercise at preferred speeds in small mammals impose peak stresses on the ankle extensors that are approximately one-third of the maximum isometric stress recorded in situ during artificial stimulation, but that this reserve capacity for myofibril tension development is likely reduced during locomotion at maximum speeds (53). Application of similar structure–function analyses on the capillary network, mitochondria and myofibrils of cardiac tissue, will help identify key design features that allow the left ventricle to operate continuously and over the wide range of work rates experienced under normal operation.

Seeking to identify those key design features, we present a structure–function analysis of the left ventricular cardiac tissue system of sheep and goats. We took measurements of stroke volume, heart rate, cardiac output, and systemic arterial blood pressure in animals under mild sedation to estimate the left ventricular work rate at rest. Using the hearts on which the resting hemodynamic measures were made, we then perfused-fixed the left ventricle, imaged the cardiac tissue with transmission electron microscopy, and undertook a stereological quantification of the left ventricle’s capillary-tissue geometry and cardiomyocyte ultrastructure. We then extended the investigation to include an analysis of the left ventricle during simulated heavy exercise by applying our structural data, and increasing left ventricular work according to published hemodynamic data of sheep and goats performing sustained treadmill exercise.
Materials and Methods

Animals

All procedures were approved by the Animal Ethics Committees of the University of the Witwatersrand (2013/25/2B) and the University of Western Australia (RA/3/100/1241). Adult sheep *Ovis aries* (three males, one female) and adult goats *Capra hircus* (two males, two females), purchased from farm stock, were housed in large indoor enclosures, under a controlled temperature (23 ± 1°C) and lighting regime (12D:12N) at the Central Animal Service of the University of the Witwatersrand, South Africa (~1750 m elevation). Animals were transferred to the facility eight weeks before experimentation and trained to sit quietly in sternal recumbency while being handled by technicians. Animals were fed daily on a mix of cereals, vegetables and commercial pellet, and water was provided *ad libitum*. Animal health was assessed daily and body mass recorded weekly to the nearest 0.05 kg (YH-T3, Associated Scale Corporation, Johannesburg, South Africa). All animals were fasted 12 – 24 h prior to measurements.

Hemodynamics and work of the left ventricle

Physiological measurements were conducted under a controlled environment (23 ± 1°C) in a dedicated large animal procedure room. To determine the left ventricular work rate at rest, each animal was mildly sedated with midazolam (0.3 mg kg\(^{-1}\) i.m. (67); Dormicium, Roche Products, Johannesburg, South Africa) and were in a state that in human medicine would be called *conscious sedation*. Individuals exhibited intact corneal reflex, partial loss of muscle tone, and were non-responsive to innocuous stimuli. The skin and underlying tissue of the left mid-neck region was locally anaesthetized with lidocaine (5 mL s.c.; Lignocaine Hydrochloride Fresenius 2%, Fresenius Kabi, Midrand, South Africa) before a fluid-filled, cardiac output Swan-Ganz thermodilution catheter (2.3 mm outside diameter; 139HF75P,
Edwards Lifesciences, Centurion, South Africa) was introduced into the left jugular vein. The port at the distal tip of the Swan-Ganz catheter was connected via a fluid-filled line to a pre-calibrated pressure transducer (Deltran II DPT-200, Utah Medical Products, Midvale, UT, USA), which allowed real-time monitoring of blood pressure waveforms at the catheter tip. The Swan-Ganz catheter was advanced from the jugular vein through the cranial vena cava, right atrium, right ventricle and into the pulmonary artery. We also catheterized an auricular artery in each animal with an intravenous catheter (0.7 mm outside diameter; Introcan, B. Braun, Melsungen, Germany) connected via a fluid-filled line to another pre-calibrated pressure transducer (Deltran II DPT-200), which provided continuous measurement of systemic arterial blood pressure. The pressure transducers were placed at the level of the scapulohumeral joint (level with the base of the heart), and connected via blood pressure amplifiers (FE117, ADInstruments, Sydney, NSW, Australia) to a data acquisition system (PowerLab, ADInstruments), which captured and displayed real-time hemodynamic information through data analysis software (LabChart 5, ADInstruments). The Swan-Ganz catheter’s heating coil lay in the right ventricle and a thermistor at the catheter tip lay in the pulmonary artery, allowing measurement of cardiac output through thermodilution principles. Once all equipment was in place, the animal was given 30 – 60 min to acclimate and for the cardiovascular system to stabilize, after which we measured cardiac output (L s⁻¹), systemic arterial blood pressure (kPa = J L⁻¹), heart rate (beats s⁻¹) and stroke volume (L) for approximately 30 min.

The mean external mechanical work rate of the left ventricle ($E_{lv}; W = J s^{-1}$) at rest was calculated according to the equation, $E_{lv} = \dot{Q} \bar{P}_b + \dot{E}_k$, where \dot{Q} is cardiac output (L s⁻¹), \bar{P}_b is systemic mean arterial blood pressure (kPa), and \dot{E}_k is the rate at which kinetic energy (W) is transferred to the blood. Kinetic energy was quantified according to the equation, $\dot{E}_k = \frac{1}{2} m_b \bar{v}_{b(a)}^2$, where m_b is blood mass pumped over time (kg s⁻¹) and $\bar{v}_{b(a)}$ is mean aortic blood
velocity (m s\(^{-1}\)). In this equation, \(m_b\) is the product of cardiac output (L s\(^{-1}\)) and blood density (1.06 kg L\(^{-1}\)), and \(\bar{\nu}_{b(a)}\) is the quotient of cardiac output and aorta luminal cross-sectional area (cm\(^2\)) (measured post-mortem), divided by a factor of 10 for unit conversion. Absolute work rate was divided by body mass (kg) to obtain the body mass-specific left ventricular work rate (W kg\(^{-1}\) body mass). Absolute work rate was also divided by left ventricular tissue volume (cm\(^3\)) (measured post-mortem) to obtain the volume-specific left ventricular work rate (W cm\(^3\) of tissue), which was then used to calculate volume-specific oxygen demand rate (nmol O\(_2\) s\(^{-1}\) cm\(^{-3}\) of tissue), assuming 4.50 \times 10^{-4} J per nmol O\(_2\) (RQ = 0.76 (66)) and a 20% external mechanical efficiency (37, 61, 76). To supplement our measurements on resting animals, we simulated heavy exercise by increasing the work rate and oxygen demand rate of the left ventricle by a factor of 3.5-fold, which we calculated from the factorial increase in cardiac output and systemic mean arterial blood pressure of sheep (adults, 28 kg mean body mass) and goats (adults, 30 kg mean body mass) obtained at rest and during sustained treadmill exercise (32, 33). This approach is supported by the reasonable agreement (16%) between the resting left ventricular work rates measured in the present study compared to the treadmill studies. Lastly, we consider the effect of a 15 to 25% range in external mechanical efficiency, and the effect of a 2.5- to 4.5-fold increase in the oxygen demand rate of the left ventricle.

Chemical fixation of the left ventricle

Once the physiological measurements were complete, each animal was given a lethal dose of pentobarbital (200 mg kg\(^{-1}\) i.v.; Euthapent, Kyron Laboratories, Johannesburg, South Africa). The thoracic cavity was opened and the ascending aorta cannulated in a retrograde direction so that the cannula tip lay immediately above the entrance to the coronary arteries. The coronary vascular system first was perfused with Ringer’s solution containing lidocaine (0.5...
mg mL\(^{-1}\) and heparin (20 I.U. mL\(^{-1}\)) to clear blood from the vessels, followed by a fixative solution of 2.5\% glutaraldehyde and 1.5\% paraformaldehyde in 0.13M phosphate + 0.02M sucrose buffer (320 mOsmol, pH 7.4). Physiological perfusion pressures were generated by elevating the perfusate 1.5 m above the level of the heart and an incision through the right atrial wall allowed perfusate to drain. A fine transmural strip of cardiac tissue was excised from two random locations through the left ventricular wall, and while immersed under a shallow layer of the fixative solution, each strip was cut into numerous ~1 mm\(^3\) tissue blocks. One tissue block was sampled randomly from each of the two strips and processed through the remainder of the protocol. We made no attempt to fix the heart in a particular state of contraction nor did we avoid sampling any particular region of the left ventricular wall. Each sample was immersed in the fixative solution for 12 – 36 h, and then given buffer rinses (6×10 min) followed by secondary fixation in a 2\% solution of osmium tetroxide (3 h). Each sample was rinsed with distilled water (3×10 min) and dehydrated progressively in 50, 60, 70, and 80\% ethanol (10 min each) followed by immersions in 90\% ethanol, 100\% ethanol, and propylene oxide (2×10 min each). Samples then were infiltrated incrementally with an embedding resin (Araldite-Embed kit, Electron Microscopy Sciences, Hatfield, PA, USA) at ratios of 3:1, 2:2, 1:3 (propylene oxide:resin) and then left overnight in pure resin. The following day, each sample was submerged with random orientation into individual embedding molds pre-filled with pure resin and left to polymerize for 48 h in a 70°C oven.

Morphometry of the left ventricle

Hearts were trimmed of fat and major vessels, rinsed with an isotonic saline solution (0.90\% w/v NaCl), and weighed to 1 g. The left ventricle, comprising free wall plus septum (35), was dissected free and also weighed to 1 g. Left ventricular tissue volume (\(V_{lv}\); cm\(^3\)) was calculated as, \(V_{lv} = M_{lv} \rho^{-1}\), where \(M_{lv}\) is left ventricular mass (g) and \(\rho\) is the mass-density.
of cardiac tissue (~1.06 g cm\(^{-3}\)) (73)). Unbiased estimates of the left ventricle’s capillary-
tissue geometry and cardiomyocyte ultrastructure were obtained from the fixed samples of
cardiac tissue by generating isotropic uniform random images for stereological analysis (29,
48). A 70-nm ultrathin section was cut at a random distance and orientation into each sample
using an 8 mm glass knife, a 2.4 mm diamond knife (Ultra 45°, Diatome, Nidau, Switzerland)
and an ultramicrotome (EM UC6, Leica Microsystems, Wetzlar, Germany). Ultrathin
sections were placed onto 3 mm copper mesh grids, stained with uranyl acetate (15 min) and
lead citrate (10 min), and viewed with a 100 kV transmission electron microscope (Tecnai
G2, FEI, Hillsboro, OR, USA) coupled to an in-column CCD digital camera (Veleta,
Olympus, Tokyo, Japan). Moving systematically along the length and breadth of each
section, ten random images were captured of left ventricular tissue (×1700), cardiomyocyte
ultrastructure (×11,500), capillaries (×4200) and mitochondria (×60,000) (Figure 1).

Each image was imported into a computer graphics program (CorelDRAW 15, Corel
Corporation, Ottawa, ON, Canada), where the images of left ventricular tissue were analyzed
with a point-grid test system superimposed randomly, and the relative number of points
falling on cardiomyocytes, fibroblast cells, pericytes, collagen, capillary lumen and
endothelium, and other larger non-capillary vessels were counted. The total volume of each
structure in the left ventricle (\(V_{str} \); cm\(^3\)) was calculated as, \(V_{str} = V_{str,lv} V_{lv}\), where \(V_{str,lv}\)
is the fraction of left ventricular tissue occupied by the structure determined from the point grid
counts (13, 46). Images of cardiomyocyte ultrastructure also were analyzed with a point-grid
test system superimposed randomly, and the relative number of points hitting myofibrils,
mitochondria, sarcoplasmic reticuli, t-tubules, nuclei, and other components (cytosol, lipid,
sarcolemma, intercalated disc) were counted. Their respective volumes in the left ventricle
\(V_{org} \); cm\(^3\)) were calculated as, \(V_{org} = V_{org,card} V_{card}\), where \(V_{org,card}\) is the fraction of
cardiomyocyte occupied by the organelle determined from the point grid counts, and \(V_{card}\) is
total left ventricular cardiomyocyte volume (cm3). Images of mitochondria were analyzed with an isotropic Merz line test system superimposed randomly, and the surface area-to-volume ratio of the inner mitochondrial membrane ($S_{V_{im,mito}}$; cm$^{-1}$) was calculated as,

$$S_{V_{im,mito}} = 2l \cdot l^{-1},$$

where l is the number of intersections of the test lines with the inner mitochondrial membrane surface, and l is the total length (cm) of test lines falling over the mitochondrion (13, 46). The total surface area of inner mitochondrial membrane (S_{im}; cm2) within the left ventricle was calculated as, $S_{im} = S_{V_{im,mito}} \cdot V_{mito}$, where V_{mito} is mitochondrial volume (cm3). Lastly, we analyzed the capillary-tissue geometry (16, 44).

Images of capillaries were used to directly measure the cross-sectional luminal radius (R_c; cm). The mean radius of the tissue surrounding and serviced by each capillary (R_t; cm) could then be calculated as, $R_t = R_c \cdot (V_{lv}/V_c)^{0.5}$, where V_{lv}/V_c is the left ventricle’s tissue-to-capillary volume ratio. Next, the mean number of capillary profiles per unit cross-sectional area of left ventricular tissue ($N_{A,lv}$; cm$^{-2}$) was calculated as, $N_{A,lv} = \pi^{-1} \cdot R_t^{-2}$. The mean number of capillary profiles per unit cross-sectional area of left ventricular fiber ($N_{A,card}$; cm$^{-2}$) was also calculated, $N_{A,card} = \pi^{-1} \cdot R_c^{-2} \cdot (V_{card}/V_c)^{-1}$.

Three-dimensional model for oxygen transport through the tissue of the left ventricle

Under resting conditions, oxygen demand by the left ventricular cardiac tissue is equal to consumption, since supply is normally not limiting. To explore the possibility that oxygen supply could limit consumption when demand by the cardiac tissue is augmented during heavy exercise, we applied the dimensions of the left ventricle’s capillary-tissue network and the oxygen demand rate of the left ventricular tissue during simulated heavy exercising, to a three-dimensional model for oxygen transport through the capillaries and surrounding tissue. We considered a cylindrical capillary, surrounded by a cylindrical region of tissue. Our
model is essentially a progression of the well-known Krogh cylinder model and Krogh-
Erlang solution (39), which we adapted from McGuire and Secomb (47), incorporating the
following features: decline in oxygen content of blood along the capillary path; intravascular
resistance to oxygen transfer; myoglobin facilitated diffusion; and Michaelis-Menten
consumption kinetics. Failing to incorporate these features into the Krogh cylinder model has
previously been discussed (38) and analyzed (19). Nonetheless, our model requires a number
of simplifying assumptions, including: capillaries are straight and parallel, constant radius
and length, and homogeneously distributed; capillary blood flow is unidirectional, constant,
and its velocity across the capillary cross section is invariant; oxygen content of blood
entering the capillary is invariant; oxygen content of blood across the capillary cross section
is also invariant, and oxygen and hemoglobin are in chemical equilibrium; oxygen flux into
the tissue occurs only via the capillaries, where it is cylindrically symmetrical, and does not
proceed beyond the outer limit of the tissue cylinder; oxygen diffusion occurs only in the
radial direction; oxygen transport does not occur due to convective mixing; oxygen
consumption rate is homogeneous in the tissue; and the system is in steady state (17, 19, 38).

The input parameters for the oxygen transport model were averaged for sheep and
goats, and values of constants were obtained from the literature (Table 1). Axial distance
along the capillary path was denoted \(z \) (cm) and radial distance from the center of the
capillary was denoted \(r \) (cm). Capillary path length was denoted \(L \) (cm) and was defined as
the mean minimum path length from arteriole to venule. The oxygen partial pressure \((P_{O_2}) \) of
the blood was denoted \(p_b \) (kPa). Non-capillary tissue occupies the region, \(R_c < r < R_t \), and
the \(P_{O_2} \) in that tissue was denoted \(p_t \) (kPa). Diffusion of oxygen through the tissue is assumed
to occur predominantly in the radial direction and is facilitated by myoglobin, which we
accounted for by defining \(p_t^* \) (kPa), the myoglobin-facilitated \(P_{O_2} \), to be

\[
(1.1) \quad p_t^* = p_t + \frac{D_{mb} c_{mb} v_{mb}}{K_t} \left(\frac{p_t}{p_{SO_{2}} + p_t} \right),
\]
where \(D_{mb} \) is the myoglobin diffusion coefficient (cm\(^2\) s\(^{-1}\)), \(C_{mb} \) is the concentration of myoglobin (nmol cm\(^{-3}\)), \(V_{mb} \) is the molar volume of myoglobin (cm\(^3\) nmol\(^{-1}\)), and \(p_{50_{mb}} \) is the \(PO_2 \) at which myoglobin is half-saturated (kPa). We assumed that oxygen diffuses within the tissue with a Krogh diffusion constant \(K_t \) (cm\(^2\) s\(^{-1}\) kPa\(^{-1}\)), and is used at a rate \(\dot{V}_{O_2} (p_t^*) \) (nmol O\(_2\) s\(^{-1}\) cm\(^{-3}\)), and hence varies with position in the tissue dependent upon \(p_t^* \). The governing equation for oxygen transport in the tissue is thus

\[
\frac{K_t}{r} \frac{\partial}{\partial r} \left(r \frac{\partial p_t^*}{\partial r} \right) = \dot{V}_{O_2} (p_t^*) = \frac{\dot{V}_{O_2(dem)} p_t^*}{p_{50_{cyt}} + p_t^*} H(p_t^*),
\]

where \(\dot{V}_{O_2(dem)} \) is the oxygen demand rate of cardiac tissue during heavy exercise (nmol O\(_2\) s\(^{-1}\) cm\(^{-3}\)), and \(p_{50_{cyt}} \) is the \(PO_2 \) at which oxygen consumption is half the maximal value (kPa).

The Heaviside function, \(H(p_t^*) \) (where \(H(p_t^*) = 1 \) if \(p_t^* > 0 \), and zero otherwise), is included to permit oxygen consumption only when there is a positive \(PO_2 \). This equation was solved subject to two boundary conditions: one at the capillary wall, \(r = R_c \), and the other at the outer limit of the tissue cylinder, \(r = R_t \). At the capillary wall, the flux of oxygen into the tissue is assumed to be proportional to the difference in \(PO_2 \) across the wall – i.e.,

\[
2\pi R_c K_t \frac{\partial p_t^*}{\partial r} = -T_c (p_b - p_t) \quad \text{on} \quad r = R_c,
\]

where \(T_c \) is the capillary mass transfer coefficient (cm\(^2\) s\(^{-1}\) kPa\(^{-1}\)), which is equal to \(\pi K_{pl} S h_c \), where \(K_{pl} \) is the Krogh diffusion constant for plasma (cm\(^2\) s\(^{-1}\) kPa\(^{-1}\)), and \(S h_c \) is the Sherwood number. By the symmetry of the assumed geometry, there is no oxygen flux out of the tissue cylinder at \(r = R_t \), and we thus imposed

\[
\left(\frac{\partial p_t^*}{\partial r} \right) = 0 \quad \text{on} \quad r = R_t.
\]

We also required an equation to describe the \(PO_2 \) of the blood flowing down the capillary. As oxygen is consumed by the surrounding tissue, so \(p_b \) will decrease with distance
along the capillary. We assumed the oxygen content of the blood, C (nmol cm$^{-3}$), is related to p_b by

$$C = C_b S_{hb}(p_b) = C_b \left(\frac{p_b}{p_{50_{hb}}}\right)^n,$$

where C_b is the oxygen carrying capacity of the blood (nmol cm$^{-3}$), $p_{50_{hb}}$ is the P_{O_2} at which hemoglobin is half-saturated (kPa), and Hill’s n value defines the degree of cooperativity. We further assumed that p_b is independent of r, and that blood flow occurs with a velocity $\bar{v}_{b(c)}$ (cm s$^{-1}$) that is constant across the capillary. Assuming a steady state has been reached, conservation of mass implies

$$\left(1.4a\right) \quad \dot{V}_{b(c)} \left(\frac{\partial C}{\partial z}\right) = -T_c (p_b - p_t),$$

where $\dot{V}_{b(c)}$ represents blood flux down the capillary (cm3 s$^{-1}$), and is equal to $\pi R_c^2 \bar{v}_{b(c)}$ and $\pi R_c^2 L (\dot{V}_{b(t)}/V_{clv})$, where $\dot{V}_{b(t)}$ is cardiac tissue perfusion rate (cm3 s$^{-1}$ cm$^{-3}$), and V_{clv} is capillary volume-density expressed as a fraction. Equation (1.4a) was solved subject to the boundary condition

$$\left(1.4b\right) \quad C = C(p_{b(i)}) \text{ at } z = 0,$$

where $p_{b(i)}$ (kPa) is the initial value of p_b at $z = 0$ – i.e., the P_{O_2} of blood as it enters the capillary.

We also calculated the oxygen consumption rate of cardiac tissue during heavy exercise, $\dot{V}_{O_2\text{(con)}}$ (nmol O_2 s$^{-1}$ cm$^{-3}$). At steady state, the total oxygen consumed by the tissue per unit time must equal the oxygen flux into it. Thus, using (1.2b), we have

$$\left(1.5\right) \quad \dot{V}_{O_2\text{(con)}} = \frac{1}{\pi (R_c^2 - R_i^2) L} \int_0^L T_c (p_b(z) - p_t(R_c, z)) \, dz.$$
All mean values are presented with 95% confidence intervals (CI) unless stated otherwise.

Statistical significance between means was set at 0.05 *a priori* and tested using paired or unpaired two-tailed t-tests, for equal or unequal variance, as appropriate (78). Statistical tests were performed with data analysis software (Prism 6, GraphPad Software, La Jolla, CA, USA). Simulations of the oxygen transport model were run with mathematical software (MATLAB R2013a, MathWorks, Natick, MA, USA). Solutions for the governing equations, (1.2) – (1.4), were computed using an $N_z \times N_r$ grid (120×80).
Results

Hemodynamics and work of the left ventricle

Body mass, heart mass and left ventricular mass were all significantly larger in sheep compared to goats (t-test, P < 0.05; Table 2). However, body mass-specific left ventricular mass was not significantly different between sheep and goats (P > 0.05), averaging 1.8 g kg\(^{-1}\) across all animals, which equates to 0.18% of body mass.

At rest, body mass-specific stroke volume was statistically indistinguishable between sheep and goats (P > 0.05; Table 3), averaging 0.0012 L kg\(^{-1}\) across all animals. Likewise, resting heart rate was not significantly different between sheep and goats (P > 0.05), with an overall mean of 1.7 beats s\(^{-1}\). Resting cardiac output was also statistically indistinguishable between sheep and goats (P > 0.05), averaging 0.076 L s\(^{-1}\) across all animals. And resting systemic mean arterial blood pressure was statistically indistinguishable between sheep and goats (P > 0.05), with an overall mean of 14.5 kPa (= 109 mm Hg).

At rest, the body mass-specific left ventricular work rate of the sheep and goats averaged 0.029 W kg\(^{-1}\), and the volume-specific left ventricular work rate averaged 0.017 W cm\(^{-3}\) of tissue, which corresponds to a mean oxygen demand rate of 195 nmol O\(_2\) s\(^{-1}\) cm\(^{-3}\) (Table 3). During simulated heavy exercise, we calculate that the volume-specific left ventricular work rate would increase by approximately 3.5-fold to ~0.060 W cm\(^{-3}\), with a mean oxygen demand rate of ~670 nmol O\(_2\) s\(^{-1}\) cm\(^{-3}\).

Morphometry of the left ventricle

Per unit of body mass, the volumes of the various components of the left ventricular tissue do not differ significantly between sheep and goats (t-test, P > 0.05; Table 4). Of the left ventricular tissue volume of sheep and goats, cardiomyocytes occupied 76 – 78%, the collagen framework occupied 6 – 7%, and the small fibroblast cells occupied 1%. The
capillaries (lumen + endothelium) occupied most of the remainder of the tissue volume, 11 –
13%, with the lumen representing approximately 9.5%. Averaged across all animals, there
were 239,600 capillaries per cm² of left ventricular tissue (= 2396 mm²) or 315,100
capillaries per cm² of left ventricular fiber (= 3151 mm²), the capillary lumen radius was
0.00036 cm (= 3.6 µm), and each capillary serviced a surrounding tissue cylinder with an
average radius of 0.0012 cm (= 12 µm) (Table 5).

Per unit of body mass, the volumes of the various organelles contained within the left
ventricular cardiomyocytes also do not differ significantly between sheep and goats (t-test, P
> 0.05; Table 6). Of the left ventricular cardiomyocyte volume of sheep and goats, myofibrils
took up most of the space, occupying 65 – 66% of cardiomyocyte volume, followed by
mitochondria which occupied 21 – 22%. The sarcoplasmic reticulum network occupied 2.1 –
2.3% of cardiomyocyte volume and the t-tubule system occupied 1.6 – 2.1%.

The inner mitochondrial membrane architecture does not differ significantly between
sheep and goats (t-test, P > 0.05; Table 7). Averaged across all animals, the inner
mitochondrial membrane surface density was 370,000 cm² cm⁻³ of mitochondria (= 37 m²
cm⁻³), and the total body mass-specific inner mitochondrial membrane surface area was
104,000 cm² kg⁻¹.

Three-dimensional model for oxygen transport through the tissue of the left ventricle

The oxygen transport model that we applied to the left ventricular tissue of sheep and goats
predicted that during heavy exercise, the average blood P_{O_2} would decrease along the length
of the cardiac capillary, from 16.6 kPa at the arteriolar end, to 0.6 kPa at the venular end. The
P_{O_2} would also decrease radially through the tissue at all positions along the capillary-tissue
cylinder. Nonetheless, almost all regions of the tissue would remain oxygenated, with just 9%
of the tissue operating at a $P_{O_2} < 0.05$ kPa, and only 1.8% at a $P_{O_2} < 0.01$ kPa (Figure 2A).
These percentages would of course vary over the probable range of the left ventricle’s oxygen demand rate (Figure 2B) and external mechanical efficiency (Figure 2C). Assuming an intermediate efficiency of 20%, as the demand for oxygen increases to its calculated rate of ~670 nmol O$_2$ s$^{-1}$ cm$^{-3}$ during heavy exercise, the consumption of oxygen increases in near-unison, until it reaches a value of ~600 nmol O$_2$ s$^{-1}$ cm$^{-3}$, which is just short of the estimated rate at which oxygen is delivered convectively in the blood, ~645 nmol O$_2$ s$^{-1}$ cm$^{-3}$ (Figure 3).
Discussion

Our measurements of the body mass-specific left ventricular work rate of resting sheep and goats under mild sedation (0.029 W kg\(^{-1}\)) are comparable to previous estimates in these animals (~0.035 W kg\(^{-1}\)), calculated from published hemodynamic data (32, 33). The overall volume-specific left ventricular work rate of resting sheep and goats of 0.017 W cm\(^{-3}\) of tissue, equates to an oxygen demand rate of 195 nmol O\(_2\) s\(^{-1}\) cm\(^{-3}\), and since oxygen supply is not limiting under resting conditions, oxygen consumption is predicted to match oxygen demand. However, during heavy exercise, oxygen demand by the left ventricular tissue is projected to increase by approximately 3.5-fold to ~670 nmol O\(_2\) s\(^{-1}\) cm\(^{-3}\). To test whether oxygen supply can satisfy demand during heavy exercise, we applied this augmented level of oxygen demand together with the left ventricle’s capillary-tissue network dimensions, to a three-dimensional oxygen transport model. The results of this model suggest that when oxygen demand is increased during heavy exercise, oxygen supply is just adequate to maintain \(P_{O_2}\) levels along the length of the cardiac capillary to drive oxygen into the surrounding tissue. At an oxygen demand rate of 670 nmol O\(_2\) s\(^{-1}\) cm\(^{-3}\) and an external mechanical efficiency of 20%, almost all cardiac tissue remains oxygenated, with only 9% of tissue operating at a \(P_{O_2}\) below the estimated \(p_{50_{cyt}}\) of 0.05 kPa, and only 1.8% operating below 0.01 kPa (Figure 2A). A sensitivity test on the effect of varying the left ventricle’s oxygen demand rate during heavy exercise shows that no tissue would have a \(P_{O_2} < 0.01\) kPa at oxygen demand rates less than 610 nmol O\(_2\) s\(^{-1}\) cm\(^{-3}\), but that approximately one-tenth of tissue would have a \(P_{O_2} < 0.01\) kPa at an oxygen demand rate of 810 nmol O\(_2\) s\(^{-1}\) cm\(^{-3}\) (Figure 2B). A second sensitivity test, run over the typically reported range of external mechanical efficiencies of 15 to 25% (37, 61, 76), showed that no tissue would have a \(P_{O_2} < 0.01\) kPa at an efficiency above 22%, but that approximately one-tenth of tissue would have a \(P_{O_2} < 0.01\) kPa at an efficiency of 16% (Figure 2C). To some extent, this small region of hypoxia is
likely reduced by the longitudinal diffusion of oxygen in the tissue and by the convective mixing of oxygen in the tissue (19). Application of oxygen transport models incorporating time-dependent blood supply (e.g. 40, 54, 62) should also help deduce the extent and temporal variation of this small region of hypoxia, and should be especially useful in the present context where more blood flow occurs during diastole than during systole (57).

Another important finding of the oxygen transport model is that during heavy exercise, oxygen supply rate, 645 nmol O₂ s⁻¹ cm⁻³, appears to be well-matched to oxygen demand rate, 670 nmol O₂ s⁻¹ cm⁻³, which allows oxygen consumption by the cardiac tissue to reach at least ~600 nmol O₂ s⁻¹ cm⁻³ or 90% of demand. This balance is in contrast to the situation in skeletal muscle, in which oxygen supply cannot keep pace with demand as it increases to its maximum rate during exercise (Figure 3, (47)). The stark difference in the oxygen supply capacity of cardiac tissue compared to skeletal muscle can be traced to the approximate five-fold difference in the number of capillaries per cross-sectional area of fiber, which we found to be 3151 mm⁻² for the left ventricle versus 400 – 800 mm⁻² for skeletal muscle (30). This high cardiac capillary density facilitates oxygen supply by providing a larger endothelial surface area for oxygen transfer to the surrounding cardiomyocytes, and by reducing the Krogh tissue cylinder radius (Rₜ), which reduces both the oxygen diffusion resistance and the mean volume of tissue serviced by each capillary. It is this capillary morphology that allows cardiac tissue metabolism to remain nearly entirely aerobic even during periods of heavy exercise, whereas skeletal muscle supports 50% of its maximum work anaerobically (64).

Having established that the demand for oxygen by the left ventricular tissue is met under both resting conditions and during heavy exercise, we examined the mitochondria, which consume the oxygen in the process of generating ATP via oxidative phosphorylation. The enzymes involved in aerobic ATP synthesis are embedded in the inner mitochondrial membrane, and so the surface-density of this membrane provides an index of the
mitochondria’s oxidative capacity (28). The inner mitochondrial membrane surface-density averaged across our sheep and goats was 37 m² cm⁻³ of mitochondria, which falls well-within the range of 31 – 46 m² cm⁻³ reported for mitochondria in the left ventricle of mouse, cat and cattle (25), and also aligns well with values of ~35 m² cm⁻³ reported for skeletal muscle in cat (63), dik-dik and wildebeest (26). Because the inner mitochondrial membrane surface-density of cardiac tissue is similar to that found in different skeletal muscle types (28, 75), the mitochondrial volume-density can be used to infer the tissue’s relative aerobic capacity. The volume-density of mitochondria in the left ventricular cardiomyocytes of sheep and goats is 21 – 22%, which is at the lower end of the range (21 – 38%) previously reported for mammalian cardiac tissue (Figure 4A). Nonetheless, the mitochondrial volume-density of cardiac tissue is consistently greater than that reported for skeletal muscle, which typically falls within the range of 4 – 10% (23, 45). Prompted by this difference, we calculated the average oxygen consumption rate per unit volume of mitochondria in the cardiac tissue of sheep and goats under resting conditions, and found it to be 1150 nmol O₂ s⁻¹ cm⁻³ of mitochondria. Under conditions of heavy exercise the value increases to ~3600 nmol O₂ s⁻¹ cm⁻³, which is close to the maximum value calculated for skeletal muscle mitochondria of 3700 nmol O₂ s⁻¹ cm⁻³ (24). Thus, cardiac and skeletal muscle mitochondria have similar in vivo functional capacities. Furthermore, our in vivo respiration rate for cardiac mitochondria during heavy exercise is within 80% of the maximum in vitro estimate of 4300 nmol O₂ s⁻¹ cm⁻³ of mitochondria (63), which suggests that cardiac mitochondria operate close to their functional limits during heavy exercise.

The majority of ATP generated by the mitochondria is ultimately used by the myofibril contractile apparatus in the process of developing tension (= stress; force/area). Tension development is the defining role of muscle systems, and maximum tension is proportional to the fraction of tissue occupied by the myofibrils (43). The volume-density of myofibrils in
the left ventricular cardiomyocytes of sheep and goats is 65 – 66%, which is at the upper end of the range (51 – 66%) calculated for a variety of mammalian species (Figure 4B). The generation of tension by the myofibrils of the left ventricle is critical to cardiac function because it pressurizes the blood, allowing it to eject against the resistance of the systemic vascular circuit. According to the principle of Laplace, the pressure imparted to the blood also depends on left ventricular wall thickness and radius of curvature, which is expressed by the wall-to-lumen volume ratio. Tension acting in the direction of the fiber (\(\sigma_f\); kPa) thus can be calculated according to the volume-averaged fiber stress model, \(\sigma_f = P_b \cdot \left(\frac{1}{3} \ln \left[1 + \frac{V_{lw}/V_l}{1} \right]^{-1}\right)\), where \(P_b\) is the systemic arterial blood pressure (kPa), and \(V_{lw}\) and \(V_l\) is the left ventricular wall and lumen volume (cm\(^3\)), respectively (2). By applying sheep and goat systemic arterial diastolic blood pressure, left ventricular wall volume, and left ventricular end-diastolic lumen volume, as estimated from stroke volume and a 75% ejection fraction (21), we find that peak fiber tension averaged 54 kPa in our resting animals, and we predict it to increase to ~62 kPa during heavy exercise. These levels of peak fiber tension in the end-diastolic left ventricular wall are lower than active isometric tension (120 – 140 kPa) generated by isolated cardiac tissue (4, 55, 71) at realistic end-diastolic sarcomere lengths between 2.2 and 2.3 \(\mu\)m (65). This reserve capacity for tension development is evidently recruited by the left ventricle during isovolumetric contraction under an aortic clamp, which although is not a natural condition, does demonstrate an approximate two-fold increase in peak blood pressure and fiber tension compared to isovolumetric contraction by the unclamped left ventricle at the same end-diastolic dimensions (1, 3). Thus, as shown for skeletal muscle (53), the left ventricle normally operates with some reserve capacity (c.a. two-fold) for tension development, possibly providing a safety factor to protect cardiac tissue from high force-loads during health while allowing for compensation of cardiac output and blood pressure during disease.
In summary, we undertook a structure–function analysis of the left ventricle at rest and during simulated heavy exercise, using sheep and goats as experimental models. Oxygen demand by the left ventricular cardiac tissue is modest in our resting animals, and so we calculated a 3.5-fold increase in demand to simulate heavy exercise, and found that under these conditions, oxygen supply across the cardiac capillary network is just sufficient to maintain tissue P_{O_2} above that required to support aerobic metabolism. Thus, oxygen consumption by the left ventricular mitochondria increase by approximately 3-fold from rest to heavy exercise, reaching within 80% of maximum in vitro rates, suggesting that cardiac mitochondria function close to their limits during heavy exercise. Finally, peak fiber tension generated by the myofibrils in the wall of the left ventricle is approximately 50% of maximum tensions recorded from isolated cardiac tissue, and is explained by an apparent reserve capacity for tension development built into the left ventricle. With cardiovascular disease remaining the leading cause of death worldwide, structure–function analyses of the healthy and pathological state should complement our future research efforts.
Acknowledgments
The authors acknowledge the expertise and contribution made by the academics, technicians, and volunteers of the School of Physiology, and the Central Animal Service, at the University of the Witwatersrand. We especially thank Zipho Zwane, Robyn Hetem, Benjamin Rey, Nico Douths, Peter Kamerman, Richard McFarland, Hilary Lease, Peter Buss, Michelle Miller, Tapiwa Chinaka and W. Maartin Strauss.

Grants
This research was supported by an Australian Research Council Discovery Project Award to RSS, SKM and APF [DP-120102081]. EPS holds a South African Claude Leon Foundation Postdoctoral Fellowship. JEFG is supported by an Australian Research Council Discovery Early Career Researcher Award [DE-130100031]. APF holds a Canada Research Chair and is supported by a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada.

Disclosures
No conflicts of interest, financial or otherwise, are declared by the author(s).

Author Contributions
SKM, LCRM, RSS, AF, EPS, APF and DM designed the physiological component of the research. EPS designed the morphometric component of the research. SKM, LCRM, AH, AF, EPS, DM, MAC and MB performed the research. JEFG and EPS adapted the oxygen transport model. EPS, SKM and AI analyzed the data. EPS, RSS and SKM interpreted the data and wrote the manuscript with significant input from all co-authors.
References

39. Krogh A. The number and distribution of capillaries in muscles with calculations of the oxygen pressure head necessary for supplying the tissue. *J Physiol (Lond)* 52: 409-415, 1919.

Table 1. Values used to model oxygen transport and PO$_2$ profiles through the capillaries and tissue of the left ventricle during simulated heavy exercise. Averaged sheep and goat values unless stated otherwise.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Units</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N_{A_{clv}}$</td>
<td>239,600</td>
<td>cm$^{-2}$</td>
<td>this study</td>
</tr>
<tr>
<td>R_c</td>
<td>0.00036</td>
<td>cm</td>
<td>this study</td>
</tr>
<tr>
<td>R_t</td>
<td>0.0012</td>
<td>cm</td>
<td>this study</td>
</tr>
<tr>
<td>L</td>
<td>0.060</td>
<td>cm</td>
<td>6,7,8,9,34</td>
</tr>
<tr>
<td>$V_{V_{clv}}$</td>
<td>9.5</td>
<td>%</td>
<td>this study</td>
</tr>
<tr>
<td>$\dot{V}_{bt(t)}$</td>
<td>0.088</td>
<td>cm3 s$^{-1}$ cm$^{-3}$</td>
<td>15</td>
</tr>
<tr>
<td>$\bar{v}_{b(c)}$</td>
<td>0.056</td>
<td>cm s$^{-1}$</td>
<td>this study,15</td>
</tr>
<tr>
<td>$\bar{V}_{O_2(dem)}$</td>
<td>635</td>
<td>nmol s$^{-1}$ cm$^{-3}$</td>
<td>this study,32,33</td>
</tr>
<tr>
<td>$P_{50_{hb}}$</td>
<td>4.1</td>
<td>kPa</td>
<td>41</td>
</tr>
<tr>
<td>$P_{50_{mb}}$</td>
<td>0.34</td>
<td>kPa</td>
<td>59,60</td>
</tr>
<tr>
<td>$P_{50_{cyc}}$</td>
<td>0.050</td>
<td>kPa</td>
<td>58,77</td>
</tr>
<tr>
<td>$P_{b(i)}$</td>
<td>16.6</td>
<td>kPa</td>
<td>10,70</td>
</tr>
<tr>
<td>C_b</td>
<td>7170</td>
<td>nmol cm$^{-3}$</td>
<td>14,33,49</td>
</tr>
<tr>
<td>K_t</td>
<td>3.8×10$^{-9}$</td>
<td>cm2 s$^{-1}$ kPa$^{-1}$</td>
<td>72</td>
</tr>
<tr>
<td>K_{pl}</td>
<td>5.2×10$^{-9}$</td>
<td>cm2 s$^{-1}$ kPa$^{-1}$</td>
<td>69</td>
</tr>
<tr>
<td>D_{mb}</td>
<td>5.0×10$^{-7}$</td>
<td>cm2 s$^{-1}$</td>
<td>20,42,52</td>
</tr>
<tr>
<td>C_{mb}</td>
<td>219</td>
<td>nmol cm$^{-3}$</td>
<td>50</td>
</tr>
<tr>
<td>V_{mb}</td>
<td>2.2×10$^{-5}$</td>
<td>cm3 nmol$^{-1}$</td>
<td>47</td>
</tr>
<tr>
<td>S_{hc}</td>
<td>2.5</td>
<td>---</td>
<td>22</td>
</tr>
<tr>
<td>n</td>
<td>2.7</td>
<td>---</td>
<td>56</td>
</tr>
</tbody>
</table>

Symbols: aMean minimum path length from arteriole to venule, averaged from cardiac tissue across various mammal species; bAveraged cardiac tissue perfusion rates across various mammal species during heavy exercise; cCalculated from the left ventricular hemodynamic scope of sheep and goats during heavy exercise, see Materials and Methods; dMean value of arterial blood in sheep and goats during heavy exercise, assuming negligible pre-capillary oxygen losses under conditions of high oxygen use; eCalculated according to the blood hemoglobin concentration of sheep and goats during heavy exercise, and a functional oxygen-hemoglobin binding capacity of 60,290 nmol O$_2$ g$^{-1}$; fDerived from rat cardiac tissue; gMean value across various mammal species; h37°C; ipH 7.4. Abbreviations: Hb = hemoglobin; Mb = myoglobin.
Table 2. Body mass (kg), heart mass (g), left ventricular mass (g) and body mass-specific left ventricular mass (g kg\(^{-1}\)) of sheep (\(N = 4\)) and goats (\(N = 4\)). Body mass is mean (± standard deviation). Heart and left ventricular masses are mean ± 95% CI.

<table>
<thead>
<tr>
<th></th>
<th>Sheep</th>
<th>Goat</th>
<th>t-test</th>
</tr>
</thead>
<tbody>
<tr>
<td>body mass</td>
<td>48 (±13)</td>
<td>28 (±6)</td>
<td>(t_6 = 2.9, P = 0.03)</td>
</tr>
<tr>
<td>heart mass</td>
<td>139 ±53</td>
<td>69 ±7</td>
<td>(t_6 = 2.6, P = 0.04)</td>
</tr>
<tr>
<td>left ventricular mass(^*)</td>
<td>90 ±30</td>
<td>46 ±4</td>
<td>(t_6 = 2.9, P = 0.03)</td>
</tr>
<tr>
<td>body mass-specific left ventricular mass(^*)</td>
<td>1.8 ±0.2</td>
<td>1.7 ±0.2</td>
<td>(t_6 = 0.93, P = 0.39)</td>
</tr>
</tbody>
</table>

Symbol: \(^*\) Left ventricle defined as free wall plus septum.
Table 3. Left ventricular stroke volume (L), body mass-specific stroke volume (L kg⁻¹), heart rate (beats s⁻¹), cardiac output (L s⁻¹), systemic mean arterial blood pressure (kPa), volume-specific external mechanical work rate (W cm⁻³ of tissue) and volume-specific oxygen demand rate (nmol O₂ s⁻¹ cm⁻³) of sheep (N = 4) and goats (N = 4) under resting conditions elicited by mild sedation. Values are mean ± 95% CI.

<table>
<thead>
<tr>
<th></th>
<th>Sheep</th>
<th>Goat</th>
<th>t-test</th>
</tr>
</thead>
<tbody>
<tr>
<td>stroke volume</td>
<td>0.053 ± 0.010</td>
<td>0.035 ± 0.003</td>
<td>t₆ = 3.3, P = 0.02</td>
</tr>
<tr>
<td>body mass-specific stroke volume</td>
<td>0.0011 ± 0.0003</td>
<td>0.0013 ± 0.0002</td>
<td>t₆ = 0.91, P = 0.40</td>
</tr>
<tr>
<td>heart rate</td>
<td>1.9 ± 0.6</td>
<td>1.4 ± 0.2</td>
<td>t₆ = 1.6, P = 0.17</td>
</tr>
<tr>
<td>cardiac output</td>
<td>0.101 ± 0.042</td>
<td>0.051 ± 0.007</td>
<td>t₆ = 2.3, P = 0.06</td>
</tr>
<tr>
<td>mean arterial pressure*</td>
<td>16.2 ± 2.6</td>
<td>12.9 ± 0.9</td>
<td>t₆ = 2.3, P = 0.06</td>
</tr>
<tr>
<td>mechanical work rate†</td>
<td>0.019</td>
<td>0.015</td>
<td></td>
</tr>
<tr>
<td>O₂ demand rate‡</td>
<td>220</td>
<td>170</td>
<td></td>
</tr>
</tbody>
</table>

Symbols: *1 kPa = 7.5 mm Hg. †Calculated as the product of cardiac output and systemic mean arterial blood pressure, plus the kinetic energy (W) associated with accelerating the blood. ‡Calculated from work rate assuming 4.50x10⁻⁴ J per nmol O₂ and a 20% external mechanical efficiency.
Table 4. Body mass-specific volume (cm³ kg⁻¹) of left ventricular tissue components of sheep (N = 4) and goats (N = 4). Values are mean ± 95% CI.

<table>
<thead>
<tr>
<th>Component</th>
<th>Sheep</th>
<th>Goat</th>
<th>t-test</th>
</tr>
</thead>
<tbody>
<tr>
<td>cardiomyocyte</td>
<td>1.4 ± 0.3</td>
<td>1.2 ± 0.2</td>
<td>t₀ = 0.92, P = 0.39</td>
</tr>
<tr>
<td>collagen</td>
<td>0.11 ± 0.06</td>
<td>0.10 ± 0.04</td>
<td>t₀ = 0.35, P = 0.74</td>
</tr>
<tr>
<td>capillary lumen</td>
<td>0.14 ± 0.06</td>
<td>0.17 ± 0.07</td>
<td>t₀ = 0.56, P = 0.59</td>
</tr>
<tr>
<td>capillary endothelium</td>
<td>0.048 ± 0.014</td>
<td>0.032 ± 0.010</td>
<td>t₀ = 1.8, P = 0.12</td>
</tr>
<tr>
<td>larger non-capillary vessels</td>
<td>0.044 ± 0.033</td>
<td>0.060 ± 0.045</td>
<td>t₀ = 0.56, P = 0.60</td>
</tr>
<tr>
<td>fibroblast</td>
<td>0.016 ± 0.003</td>
<td>0.016 ± 0.010</td>
<td>t₀ = 0.12, P = 0.91</td>
</tr>
<tr>
<td>pericyte</td>
<td>0.0042 ± 0.0040</td>
<td>0.0056 ± 0.0040</td>
<td>t₀ = 0.48, P = 0.65</td>
</tr>
</tbody>
</table>
Table 5. Capillary numerical density (cm⁻²), capillary lumen radius (cm), and mean tissue cylinder radius (cm) of the left ventricle of sheep (N = 4) and goats (N = 4). Values are mean ± 95% CI.

<table>
<thead>
<tr>
<th></th>
<th>Sheep</th>
<th>Goat</th>
<th>t-test</th>
</tr>
</thead>
<tbody>
<tr>
<td>capillary density (number per area of tissue)</td>
<td>223,100 ± 53,200</td>
<td>256,100 ± 106,600</td>
<td>t₆ = 0.54, P = 0.61</td>
</tr>
<tr>
<td>capillary density (number per area of fiber)</td>
<td>292,200 ± 89,300</td>
<td>338,100 ± 143,100</td>
<td>t₆ = 0.53, P = 0.61</td>
</tr>
<tr>
<td>capillary radius†</td>
<td>0.00034 ± 0.00006</td>
<td>0.00037 ± 0.00006</td>
<td>t₆ = 0.77, P = 0.47</td>
</tr>
<tr>
<td>tissue cylinder radius‡</td>
<td>0.0012 ± 0.0002</td>
<td>0.0012 ± 0.0003</td>
<td>t₆ = 0.26, P = 0.81</td>
</tr>
</tbody>
</table>

Symbols: † 1 cm⁻² = 0.01 mm⁻². † 1 cm = 10,000 µm.
Table 6. Body mass-specific volume (cm3 kg$^{-1}$) of left ventricular cardiomyocyte organelles and other components (cytosol, lipid, sarcolemma, intercalated disc) of sheep ($N = 4$) and goats ($N = 4$). Values are mean ± 95% CI.

<table>
<thead>
<tr>
<th></th>
<th>Sheep</th>
<th>Goat</th>
<th>t-test</th>
</tr>
</thead>
<tbody>
<tr>
<td>myofibril</td>
<td>0.88 ± 0.14</td>
<td>0.79 ± 0.10</td>
<td>$t_6 = 0.96$, $P = 0.37$</td>
</tr>
<tr>
<td>mitochondria</td>
<td>0.31 ± 0.11</td>
<td>0.26 ± 0.03</td>
<td>$t_6 = 0.93$, $P = 0.39$</td>
</tr>
<tr>
<td>sarcoplasmic reticulum</td>
<td>0.030 ± 0.020</td>
<td>0.028 ± 0.006</td>
<td>$t_6 = 0.23$, $P = 0.82$</td>
</tr>
<tr>
<td>t-tubule</td>
<td>0.022 ± 0.010</td>
<td>0.024 ± 0.006</td>
<td>$t_6 = 0.24$, $P = 0.82$</td>
</tr>
<tr>
<td>nucleus</td>
<td>0.016 ± 0.013</td>
<td>0.015 ± 0.020</td>
<td>$t_6 = 0.10$, $P = 0.92$</td>
</tr>
<tr>
<td>other components</td>
<td>0.109 ± 0.045</td>
<td>0.088 ± 0.027</td>
<td>$t_6 = 0.75$, $P = 0.48$</td>
</tr>
</tbody>
</table>
Table 7. Mitochondrial inner membrane surface density (cm² cm⁻³ of mitochondria) and body mass-specific inner membrane surface area (cm² kg⁻¹) of the left ventricle of sheep (N = 4) and goats (N = 4). Values are mean ± 95% CI.

<table>
<thead>
<tr>
<th></th>
<th>Sheep</th>
<th>Goat</th>
<th>t-test</th>
</tr>
</thead>
<tbody>
<tr>
<td>inner membrane surface</td>
<td>355,000 ± 40,000</td>
<td>389,000 ± 29,000</td>
<td>(t_6 = 1.35, P = 0.23)</td>
</tr>
<tr>
<td>density*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>inner membrane surface</td>
<td>108,000 ± 27,800</td>
<td>100,000 ± 12,500</td>
<td>(t_6 = 0.51, P = 0.63)</td>
</tr>
<tr>
<td>area</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symbol: *1 cm² cm⁻³ = 0.0001 m² cm⁻³.
Figure captions

Figure 1. Electron micrographs of left ventricular tissue showing the hierarchy of magnifications used for stereological analysis. (A) Low magnification ($\times1700$) used to determine the densities of cardiomyocytes, collagen, capillaries, fibroblast cells, pericytes, and other larger non-capillary vessels in the left ventricular tissue. (B) High magnification ($\times11,500$) used to determine the densities of myofibrils, mitochondria, sarcoplasmic reticuli, t-tubules, nuclei and other components (cytosol, lipid, sarcolemma, intercalated disc) within the cardiomyocytes. (C) Capillary micrographs ($\times4200$) used for luminal diameter measurements. (D) Mitochondrion micrographs ($\times60,000$) used for inner membrane surface density measurements. Images (A) – (C) are from goats and (D) is from sheep.

Figure 2. Output of the oxygen transport model that we applied to the left ventricular tissue of sheep and goats during simulated heavy exercise. (A) Blood entering the capillary has a P_O_2 of 16.6 kPa, whereas blood exiting has a P_O_2 of 0.6 kPa. Tissue regions operating at P_O_2 levels < 0.05 kPa (light grey) and < 0.01 kPa (dark grey) are shown. Mean capillary path length (L_c) is 0.060 cm, capillary radius (R_c) is 0.00036 cm, and tissue cylinder radius (R_t) is 0.0012 cm. This is for the standard case assuming an oxygen demand rate of 670 nmol O$_2$ s$^{-1}$ cm$^{-3}$ of tissue and an external mechanical efficiency of 20%. (B) Predicted effect of varying the oxygen demand rate (nmol O$_2$ s$^{-1}$ cm$^{-3}$ of tissue) on the proportion of cardiac tissue operating at P_O_2 levels < 0.05 and < 0.01 kPa. (C) Predicted effect of varying the external mechanical efficiency (%) on the proportion of cardiac tissue operating at < 0.05 and < 0.01 kPa.

Figure 3. Output of the oxygen transport model that we applied to the left ventricular tissue of sheep and goats showing the relationship between oxygen supply, demand and consumption. Predicted oxygen consumption rate (nmol O$_2$ s$^{-1}$ cm$^{-3}$ of tissue) keeps pace with an increasing oxygen demand rate (nmol O$_2$ s$^{-1}$ cm$^{-3}$), except at very high levels of demand, where consumption is limited by the oxygen supply rate (nmol O$_2$ s$^{-1}$ cm$^{-3}$). This is for the standard case assuming an external mechanical efficiency of 20%. Inset is the same model as applied to skeletal muscle (47).

Figure 4. Interspecific scaling of mitochondrial and myofibril volume-density in the left ventricle of mammals. (A) Mitochondrial volume-density (% of cardiomyocyte) in sheep and goats from the present study (filled circles), and in other mammals sourced from the literature, including shrew, bat, wood mouse, house mouse, rat, guinea-pig, ferret, rabbit, cat, fox, coyote, wolf, dog, goat, human, pig, horse and cow (5, 25, 36). (B) Myofibril volume-density (% of cardiomyocyte) in sheep and goats from the present study, and in the other mammals sourced from the literature. Myofibril volumedensities in the other mammals are either published values, or are calculated by subtraction of the volume-density of the mitochondria, and of the other cardiomyocyte components (assumed to represent 12.7% of cardiomyocyte volume as determined in the present study). M_{body} is body mass in kg. Exponents presented with ±95% CI.
O_2 consumption (nmol s$^{-1}$ cm$^{-3}$) vs. O_2 demand (nmol s$^{-1}$ cm$^{-3}$)

- Maximum convective O_2 supply
- Demand
- Consumption

Inset: Magnified view of the consumption curve.
A

Mitochondrial density (%) vs. Body mass (kg)

\[28.3 M_{body}^{-0.04 \pm 0.01}, \quad r^2 = 0.69 \]

B

Myofibrillar density (%) vs. Body mass (kg)

\[58.4 M_{body}^{0.02 \pm 0.01}, \quad r^2 = 0.53 \]