Mechanisms of enhanced force production in lengthening (eccentric) muscle contractions
Walter Herzog, Faculty of Kinesiology, University of Calgary

Short title: Mechanisms of force production in eccentric contractions

Address for correspondence
Walter Herzog
Faculty of Kinesiology
University of Calgary
Calgary, AB
T2N 1N4
Canada
email: walter@kin.ucalgary.ca
Abstract

In contrast to isometric and shortening contractions, many observations made on actively lengthening muscles cannot be readily explained with the sliding filament and cross-bridge theory. Specifically, residual force enhancement, the persistent increase in force following active muscle lengthening beyond what one would expect based on muscle length, has not been explained satisfactorily. Here, we summarize the experimental evidence on residual force enhancement, critically evaluate proposed mechanisms for the residual force enhancement, and propose a mechanism for residual force enhancement that explains all currently agreed upon experimental observations. The proposed mechanism is based on the engagement of the structural protein titin upon muscle activation, and an increase in titin’s resistance to active compared to passive stretching. This change in resistance from the passive to the active state is suggested to be based on (i) calcium binding by titin upon activation, (ii) by binding of titin to actin upon activation, and (iii) as a consequence of titin-actin binding, a shift towards stiffer titin segments that are used in active compared to passive muscle elongation. Although there is some experimental evidence for the proposed mechanism, it must be stressed that much of the details proposed here remain unclear and should provide ample research opportunities for scientists in the future. Nevertheless, the proposed mechanism for residual force enhancement explains all basic findings in this area of research.

Introduction

Muscle contractions are divided into constant length (isometric), shortening (concentric), and lengthening (eccentric) contractions. While the mechanics of isometric and shortening contractions are well described by the currently accepted molecular mechanisms of muscle contraction, the sliding filament(51; 53; 55) and cross-bridge theories(49; 52; 54; 109), the mechanics of lengthening contractions are not (49; 50; 121). AF Huxley realized this in his first description of the cross-bridge theory, when realizing that the maximal force during lengthening contractions was 5.33 times the maximal isometric force, $F_0$, which was much greater than that typically observed experimentally (1.8 times $F_0$). Also, the heat liberation in lengthening muscles was predicted to be much bigger than that observed experimentally (45; 49). However, Huxley made suggestions on how these discrepancies between cross-bridge model and experimental observation could be eliminated at least qualitatively, by assuming, for example for the excess heat generation, that the cross-bridge bonds in lengthening contractions were not detached by chemical reactions, but by mechanical “breaking”(49).

Another shortcoming of the cross-bridge theory that has not been rectified to date, is the inability to predict the persistent increase in force of an actively lengthened muscle compared to the force under the same conditions but in the absence of active lengthening(121): the so-called “residual force enhancement”(22). Residual force enhancement had been observed well before the development of the initial cross-bridge theory(1), and thus, its absence from cross-bridge thinking is an oversight. In his book “Reflections on Muscles”, Huxley remarks on the residual
force enhancement and lengthening muscle by saying that: “I imagine that special features have been evolved which allow this elongation (of muscles) to take place without damaging the muscle” and that: “I suspect that many of the unexplained phenomena, such as those I have just described here (associated with muscle lengthening) are related to these special features, and have little relation to the processes that take place during shortening”. In this review, I will focus on these unexplained phenomena during muscle lengthening, with emphasis on residual force enhancement, and the features that have evolved in muscles to help explain the molecular mechanisms of force production in actively lengthening muscles.

Mechanisms of contraction

In order to understand why the sliding filament-based cross-bridge theory cannot explain residual force enhancement, we need to briefly review the current thinking on the molecular mechanisms of contraction. In 1953, Hugh Huxley suggested that contraction of muscles occurred by the sliding of two sets of filaments, the thick or myosin-based and the thin or actin-based filaments(31). This idea was supported in a set of twin papers in *Nature* by Hugh and Andrew Huxley(51; 55), providing overwhelming evidence that muscle contraction did not occur by a shortening of the thick filaments, as had been assumed up to that time(101). Andrew Huxley then provided a first mathematical description of how this sliding of myofilaments was powered(49). He proposed that the thick, myosin, filament contained side-pieces, cross-bridges, that cyclically attached to binding sites on the thin, actin filaments, and that the cross-bridges pulled the actin past the myosin filaments thereby producing shortening and force. Each cross-bridge attachment/detachment cycle was powered by the hydrolysis of one ATP. One of the consequences of this theory is that the maximal isometric force of a muscle only depends on muscle (sarcomere) length, being greatest when actin and myosin filaments overlap completely and a maximal number of cross-bridge attachments is possible, and becoming zero at sarcomere lengths when myofilament overlap ceases to exist(25). However, experimental observations over the past half century show consistently that the steady-state isometric force of a muscle does not only depend on muscle length (for a given level of activation), but also depends on its history of contraction: being greater if a muscle is actively stretched and smaller if a muscle is actively shortened prior to the isometric contraction(4; 10; 12; 14; 16; 17; 19; 20; 22; 23; 26; 30; 35; 36; 38; 41-44; 47; 57; 58; 60-62; 65; 66; 69-73; 75-77; 82-84; 89; 95; 97; 98; 102-104; 106; 107; 110; 111; 113; 115; 117; 119; 120). This history-dependent behavior of muscle contraction cannot be predicted with the cross-bridge theory, primarily because of the assumption that different cross-bridge states are connected by rate constants that are exclusively dependent on the relative position of a cross-bridge’s equilibrium location and its corresponding nearest feasible attachment site(121). Therefore, we are left with two conclusions: either the cross-bridge theory is not correct and needs replacement, or the cross-bridge theory is generally correct but needs amendment to account for the mechanical properties of muscles during and after active lengthening. We favor the second of these possibilities and will argue so below by demonstrating that forces during and following active lengthening are not only governed by actin-myosin based
cross-bridge forces, but also by forces arising from structural proteins, whose resistance to stretch changes with activation and force production.

**Enhanced force during and following lengthening contractions**

Residual force enhancement refers to the observation that the steady-state isometric force of a muscle is greater following active muscle lengthening compared to the corresponding force following a purely isometric reference contraction (figure 1). Residual force enhancement was first described systematically in 1952(1) and has been observed consistently in muscle (e.g.(1; 47; 91)), single fibre (e.g.(21; 22; 70; 108; 115)), myofibril (e.g.(60-62)) and single sarcomere preparations(76). Force enhancement increases with increasing lengthening magnitude (e.g.(1; 12; 22)), at least up to a certain amount of stretch(47), is independent (or nearly so) of the speed of lengthening (e.g.(1; 22)), is reduced when active lengthening of muscles is preceded by active shortening (37; 75), is greater on the descending than the ascending limb of the force-length relationship(91; 102), is associated with a substantial decrease in metabolic energy requirement per unit of force(59), is highly correlated with the transient force at the end of active lengthening(12), and is comprised, at least in part, of a passive component, the so-called passive force enhancement(38), which is not eliminated instantaneously when muscles are deactivated(39; 44). The passive force enhancement also increases with increasing magnitudes of muscle lengthening, increases for increasing muscle lengths, and can be abolished instantaneously by shortening the muscle from its stretched to its original length(39; 44).

Despite this abundance of consistent observations on residual force enhancement, and the general agreement on the properties associated with force enhancement, there is great debate on the molecular mechanisms responsible for residual force enhancement(19; 35; 40; 89).

**Mechanisms underlying force enhancement**

A number of mechanisms have been proposed to explain the molecular workings of residual force enhancement following active muscle lengthening. Some of these are based on the framework of the cross-bridge theory. For example, it has been suggested that force enhancement might be caused by a stress-dependent decrease in the rate of cross-bridge detachment from actin, thereby increasing the proportion of attached cross-bridges following active muscle lengthening compared to isometric reference contractions. This increase in the proportion of attached cross-bridges would then be associated with the increased force observed in the enhanced state(83). Other mechanisms are not based on the cross-bridge theory. For example, the idea that force enhancement is caused by the engagement of a passive structural element upon activation involves a mechanism of force production during active lengthening that does not rely on actin-myosin based cross-bridge force (e.g.(96)). Below, we will discuss the major mechanisms associated with force enhancement, and will attempt to explain the advantages and limitations of each of the proposals.

- **Cross-bridge theory based mechanisms of force enhancement**
Non-uniformity based on instability

Aruably the most frequent explanation for residual force enhancement has been the so-called “sarcomere length non-uniformity theory”. This theory is based on the idea that muscle segments and sarcomeres are mechanically unstable on the descending limb of the force-length relationship, and idea first promoted by AV Hill in 1953(46). Therefore, a muscle stretched on the descending limb of the force-length relationship would produce great elongations in some parts of the muscle, and little elongation in other parts (figure 2). The parts with little elongation would contain sarcomeres with greater myofilament overlap than an average sarcomere during a purely isometric reference contraction (where sarcomeres are assumed to remain relatively uniform in length), and thus would be able to produce more active force. The parts of the muscle subjected to great lengthening were thought to compensate for the lack of active force by increased passive forces (figure 2). Therefore, the enhanced forces following active muscle lengthening would be achieved with increased active force in some parts of the muscle, and increased passive force in the overstretched parts of the muscle(63; 86; 87; 89; 91). The advantage of this theory is that it can explain, at least theoretically, force enhanced states of muscles within the framework of the cross-bridge theory. However, its disadvantage is that approximately 60% of the working range of a muscle (the entire descending limb of the force-length relationship) would be unstable, thus producing unpredictable results and causing sarcomeres to be overstretched to a degree where they would be considered damaged(90; 116), and one might ask the question: why would the most basic contractile machinery of animal movement evolve in a way that 60% of its working range were unstable and prone to injury by overstretching sarcomeres?

The sarcomere length non-uniformity theory relies on the idea that serially arranged sarcomeres are unstable on the descending limb of the force-length relationship(46) and, based on its mathematical representation predicts that, at steady-state, force enhancement cannot occur on the ascending limb of the force-length relationship, and force in the enhanced state cannot exceed the maximal isometric force obtained at optimal sarcomere length(22; 23; 87). Below, we will review the evidence for these assumptions and predictions of the sarcomere length non-uniformity theory.

Sarcomere instability:

Initial testing of the idea of sarcomere instability on the descending limb of the force-length relationship involved active lengthening of muscle and fibre preparations, fixing them “instantaneously” in the stretched state, and compare the amount of overstretched sarcomeres following active lengthening to the amount observed following purely isometric or shortening contractions(5; 9; 88; 100). Results of such experiments typically demonstrated an increased proportion of overstretched (popped) sarcomeres compared to reference contractions not involving muscle lengthening. An advantage of these experiments is that sarcomeres are tested in their native environment, with sarcomere structures fully intact and structural proteins providing
A limitation of these experiments is that individual sarcomere dynamics could not be observed directly and damage to overstretched regions of muscles and fibres could not be uniquely associated with sarcomere instability, rather than, for example, a structural weakness of the muscle/fibre at the location of sarcomere disruption.

In contrast to single fibre and muscle preparations, isolated myofibrils represent serially arranged sarcomeres stripped of all supporting features except those imbedded in the sarcomeres themselves. Furthermore, individual sarcomere lengths can be measured continuously during lengthening, and the forces measured at the end of the myofibril represent the instantaneous, dynamic forces transmitted by each sarcomere (e.g. (6)) (neglecting the small inertial forces of a sarcomere compared to the much greater contractile forces). When stretching activated myofibrils on the descending limb of the force-length relationship, individual sarcomeres and half sarcomeres all elongate, but to different degrees (60). On the surface, this might be interpreted as support of sarcomere length instability. However, force in all myofibrils increased with stretch on the descending limb of the force-length relationship, thereby providing a positive restoring (stabilizing) force in all sarcomeres and half-sarcomeres (60). Furthermore, when myofibrils were held in the lengthened position to observe sarcomere dynamics following lengthening, sarcomeres remained at steady lengths and never were stretched quickly beyond actin-myosin filament overlap as predicted by the non-uniformity theory (60; 107). Finally, careful measurement of sarcomere and half-sarcomere dynamics in selected myofibril preparations reveals that stretching on the descending limb appears to produce more consistent sarcomere and half-sarcomere lengths compared to purely isometric contractions, because of increased stiffness in the long half-sarcomeres compared to the corresponding short half-sarcomeres (60). This result is also supported by early works on half-sarcomere dynamics in skinned fibres where half-sarcomere non-uniformities decreased with increasing sarcomere lengths, presumably because of the stabilizing action of titin (48), and work on intact fibres where segment lengths were found to be more stable after stretch compared to the corresponding isometric reference contractions (22).

In summary, in preparations where the dynamics of sarcomeres and half sarcomeres can be measured directly, (half-) sarcomeres appear perfectly stable indicated by the positive restoring force during lengthening and the stable (half-) sarcomere lengths following lengthening (34; 35; 60; 107). This interpretation is also consistent with decreased A-band shifts for increasing sarcomere lengths in fibre preparations, and the decreased variation in segment (22), sarcomere (99) and half-sarcomere lengths (60) following active lengthening compared to the corresponding isometric reference contractions, suggesting a stabilizing effect of muscle stretching, and a decrease in differences of segmental and (half-) sarcomere lengths.

**Force enhancement on the ascending limb of the force-length relationship:**

A crucial prediction of the sarcomere length non-uniformity theory is that force enhancement cannot occur on the positively sloped ascending part of the force-length relationship (e.g. (86; 87;...
The positive slope provides stabilizing restoring forces, and thus precludes sarcomere length instabilities and associated sarcomere length non-uniformities (34; 35). Nevertheless, even the earliest reports of force enhancement in whole muscle preparations found force enhancement on the “stable” ascending limb of the force-length relationship (1). This early result on whole muscles was supported by more recent work on cat soleus (91; 111). While the authors of that latest work argued that there was no force enhancement on the ascending limb of the force-length relationship, their data (Figure 3A) shows the opposite result: force enhancement in 14 out of 15 data points shown, and a maximum enhancement of approximately 15% (91). Similarly, a very small but consistent force enhancement on the ascending limb of the force-length relationship has been observed in single fibre preparations (70; 102), sarcomeres (105) and mechanically isolated half-sarcomeres (60), and although consistently observed in entire muscle and myofibril preparations, this result is not uniquely supported in some intact fibre preparations where force enhancement on the ascending limb was not observed (21; 22).

In summary, work on whole muscle and myofibril preparations seems to show force enhancement on the ascending limb of the force-length relationship consistently. However, this force enhancement is small compared to that observed on the descending limb of the force-length relationship. Results on single fibre preparations are mixed, some showing small but consistent force enhancement (70; 102), while others do not (21; 22), therefore, the final judgment on this issue cannot be made. Ultimately, the existence of force enhancement on the ascending limb might depend on structural variations between muscles, for example where, on the force-length relationship, passive forces become engaged.

**Enhanced forces that exceed the isometric force at optimal sarcomere length:**

Probably the most important prediction of the sarcomere length non-uniformity theory is that, at steady-state, forces in the enhanced state cannot exceed the isometric forces at optimal sarcomere length, although theoretical works have shown that very small enhancements above the plateau forces are possible, if sarcomeres lengths have not reached steady-state conditions (e.g., (13; 116)). Edman and colleagues were the first to systematically check if forces in the enhanced state (after active muscle lengthening) exceed the maximal isometric force at optimal length. They initially concluded that “yes” they did (21), but then reverted their decision with experiments in which the steady-state isometric forces were followed for a longer period of time after completion of muscle lengthening (22). However, in the classic work by Abbott and Aubert, the authors suggest that forces in the enhanced state of entire muscles exceed the maximal isometric forces at optimal muscle length (1). These results are supported by more recent evidence in whole muscle (91; 111), single fibre (70; 102; 108), myofibril (60), and single sarcomere preparations (76). Also, results of 12 half-sarcomeres in a single myofibril showed an average force enhancement of 44% above the maximal isometric force at optimal length (60), and findings from ten isolated sarcomere preparations stretched on the descending limb of the force-length relationship resulted in an average of 37% greater forces in the enhanced state than those
obtained for corresponding purely isometric contractions performed at optimal sarcomere length(76).

In summary, there is strong, evidence, that given the right lengthening conditions, forces in the enhanced state of muscles, fibres, myofibrils, sarcomeres and half sarcomeres, can easily exceed the isometric forces obtained at optimal length. The lone dissenting paper where this issue was carefully analyzed(22) also showed forces after active fibre lengthening in excess of the isometric plateau forces, but only by a few percent, and that was interpreted as within the margin of experimental error. However, careful examination of figure (3A) in that paper shows increasing forces in the enhanced states with increasing magnitudes of stretch, and one is left to wonder what would have happened if Edman and colleagues had added one or two more experiments with larger stretch magnitudes. The trend shown in their results(22) suggests that they might have found results consistent with other experiments in which the enhanced force clearly exceeded that of the isometric reference contractions.

In conclusion, it appears that muscle segments and sarcomeres are perfectly stable on the descending limb of the force-length relationship. Furthermore, there is overwhelming evidence on the muscle, fibre, single myofibril, sarcomere and half-sarcomere level that forces in the enhanced state can easily exceed the maximal isometric forces at optimal muscle/fibre/sarcomere lengths. Also, there is some evidence of force enhancement on the ascending limb of the force-length relationship, although this enhancement is much smaller than that observed on the descending limb and is not observed universally. Finally, restoring forces for muscles, fibres and sarcomeres show a positive slope with stretch, even on the descending limb of the force-length relationship. Together, these results suggest that sarcomere instability and sarcomere length-non-uniformity likely play a minor causal role in residual force enhancement observed in skeletal muscles. However, it should be emphasized that sarcomere length non-uniformities clearly exist in muscles, but these non-uniformities are present in isometric, shortening and lengthening contractions, and although specimens fixed after active lengthening of muscles show greater sarcomere disruptions than non-stretched control specimens, evidence in single fibres and myofibrils suggests that lengthening reduces variations in segmental(21), sarcomere, and half-sarcomere lengths(48; 60).

- Non-cross-bridge theory based mechanisms of force enhancement

Using sarcomere length non-uniformity, force enhancement has been explained within the cross-bridge theory framework for over three decades (e.g.(19; 23; 86; 87)). However, the finding of substantial (37% on average and over 50% in isolated cases) force enhancement above the isometric plateau forces in single sarcomere preparations(76) cannot be explained with increased overlap of myofilaments, and associated increase in force, in sarcomeres or half-sarcomeres. Similarly, results of 300% increased forces in calcium activated myofibrils compared to non-activated myofibrils pulled beyond actin-myosin filament overlap (Figure 3) are incompatible with an explanation based on actin-myosin based cross-bridge forces(78). Therefore, it appears
that there are other mechanisms causing the vast majority of the enhanced forces observed following active muscle lengthening.

**Passive force enhancement**

The idea that force enhancement might be associated with the engagement of a passive structural element upon activation has been proposed more than three decades ago (21), and corresponding muscle models of such a mechanism have been described (24). The idea of engagement of a passive element has intuitive appeal because force enhancement is known to increase with increasing magnitudes of stretch (e.g. (1; 11; 22; 47)), to cause an increase in the subsequent shortening velocity (22), and to be independent of the speed of muscle lengthening (e.g. (21)). However, empirical evidence for such a mechanism was lacking until 2002, when it was discovered in cat soleus muscles that force enhancement had a distinct passive component (hereafter called “passive force enhancement” (38)) that was not abolished upon deactivation (Figure 1). Subsequent research demonstrated that this passive force enhancement was also contained in single myofibril preparations (61; 62), suggesting that it was a sarcomeric property. Elimination of titin from sarcomeres abolished the passive force enhancement, indicating that titin might be an important player in (passive) force enhancement (62; 78).

Edman (22), argued that if force enhancement was indeed based on the engagement of a passive structural element upon muscle activation, then shortening a muscle prior to lengthening should eliminate the force enhancement associated with such a passive component. When performing shortening-stretch experiments, force enhancement was the same as that observed for muscle lengthening alone, suggesting that either engagement of a passive element did not exist, or that this passive element had to re-engage after the shortening contraction. When repeating shortening-stretch experiments in whole muscle (37; 74) and single fibre preparations (106), we observed a substantial, shortening magnitude-dependent decrease in force enhancement, in contrast to published results (22). Our experiments had been performed with no break between the shortening and the lengthening contractions, whereas previous experiments contained such a break. When repeating shortening-stretch experiments with breaks of 500ms and 1,000ms, we observed that the effect of shortening on the subsequent lengthening-induced force enhancement diminished (106), indicating that there appears to be an engagement of a passive structural component, and when shortening precedes lengthening, this component will deduct from the observed force enhancement, except if the break between shortening and lengthening exceeds a critical threshold (about 1s in our case), and force enhancement becomes identical to that observed without previous shortening. This last result suggests that the passive structural element is disrupted by shortening, but given sufficient time, can re-engage and produce normal force enhancement.

In summary, there is evidence from a variety of different mechanical tests on different structural levels that force enhancement is associated with the engagement of a passive structural element. Since passive force enhancement is observed in single myofibrils, and the passive forces in
myofibrils are known to primarily originate from the structural protein titin (Figure 4A), and since elimination of titin function from sarcomeres abolishes all passive force enhancement, it is reasonable to speculate that titin is, at least in part, responsible for the passive, and possibly the total force enhancement observed in skeletal muscles(34).

**Mechanism of Force Enhancement in Skeletal Muscle**

In this last segment, I would like to propose a possible mechanism for residual force enhancement based on the engagement of a structural passive component, the giant molecular spring titin. Many of the details of this proposed mechanism need further elucidation, and there is no claim of completeness of proof, or exclusiveness of action. However, in view of the fact that substantial (in excess of 50%) force enhancement above the plateau of the force-length relationship has been observed in single sarcomeres(76) and half-sarcomeres(60), and that forces three times those observed in passive elongations of myofibrils are obtained by active lengthening of myofibrils to lengths beyond actin-myosin overlap(78), it appears that some passive structural framework is required to explain these results.

Although segmental, sarcomere and half-sarcomere length non-uniformities are clearly part of every-day muscle contraction, current evidence suggests that, if anything, stretching reduces such non-uniformities on the fibre segment(22), sarcomere(48; 60) and half-sarcomere level(60), compared to corresponding purely isometric reference contractions. Thus, there is no denying that sarcomere length non-uniformities play a big part in muscle contraction, but they are by no means exclusive to stretches on the descending limb of the force-length relationship, and thus, may possibly be an associate rather than a cause of residual force enhancement.

If titin is indeed responsible for part of the force enhancement, and is “engaged” upon activation, as first suggested more than 30 years ago(21), then this engagement could occur in principally two ways: (i) by increasing titin’s spring stiffness through an increase in its inherent stiffness, or (ii) by increasing titin’s spring stiffness through a reduction in its free spring length (Figure 4B). An increase in titin’s stiffness upon activation would then result in greater forces from titin when a muscle is stretched actively compared to when it is lengthened passively (Figure 4C).

Intuitively, this is an appealing mechanism as it provides for low resistance elongation of passive muscles, which is what one wants, and for high resistance elongation of active muscle, becoming stronger when actin-myosin overlap and associated cross-bridge forces decrease and when, in the absence of another mechanism, muscles would be unstable and vulnerable to injury. Most intriguingly, such a mechanism would allow for high force production in lengthening muscle for little metabolic cost.

**Increases in the inherent stiffness of titin**

The idea that titin’s contribution to force production in muscles changes with contractile conditions is by now well accepted(27; 34; 35; 95). Aside from long-term adaptations of titin to functional demands by differential splicing(27-29; 93; 94), instantaneous changes to titin’s
stiffness are possible by phosphorylation and calcium binding. Phosphorylation experiments have primarily been conducted in cardiac muscle, and in general have resulted in decreased force with increasing calcium concentrations (28; 125), and thus are not directly relevant in the current context. However, calcium binding to glutamate-rich motifs of the PEVK region of titin has been shown to increase passive force in mouse soleus muscle fibres (68), an observation that was supported by experiments in single myofibrils from rabbit psoas muscle whose active force capacity was abolished by deletion of troponin C from the thin myofilament (62).

Recently, we examined the ability of Ig domains of titin to bind calcium and change their mechanical properties. Fluorescence spectroscopy revealed a change in microenvironment of the isolated I27 Ig domain of titin with calcium in a reversible and a dose-dependent manner (18). Further investigation of the unfolding characteristics of eight linked Ig domains demonstrated an increase in unfolding force of approximately 40pN (20% increase) and an increase in stiffness, suggesting force and stiffness regulation in the presence of calcium (muscle activation). Since normal forces on titin are estimated to be between 0-10pN (28; 122), the increase in force for Ig domain unfolding in the presence of calcium is substantial. It has been argued that Ig domain unfolding is likely not relevant for physiological sarcomere lengths (28). For example, for rabbit psoas fibres, unfolding of Ig domains is estimated to occur at sarcomere lengths ranging between 3.0-3.5µm (33; 64), while the physiologic range of sarcomere function (2.0-2.6µm) is thought to be substantially smaller (33). However, in the next sections, we will argue that Ig domain unfolding might be relevant for physiologic sarcomere excursions in the active state even though it likely plays only a minor or no role at all, when muscles are lengthened passively.

**Increases in titin stiffness by reduction of the free spring length**

Although changes in titin’s stiffness by calcium modulated titin-based forces when muscles are actively stretched are well acknowledged, these effects seem to be of minor magnitude compared to the greater than 100% of residual force enhancements observed for optimized stretch conditions and the more than 40% higher forces in the enhanced state compared to isometric forces at optimal muscle length (60; 76; 78). Another way of adjusting a molecular spring’s stiffness is by altering its free spring length. For titin, the free spring length can be changed effectively, if specific segments were bound to the rigid actin filament. Experimental evidence suggests that this is indeed the case (2; 8; 15; 56; 67; 79-81; 92; 118; 124). However, alternative interactions are possible, for example a winding of titin onto a rotating actin filament in lengthening and shortening contractions (85; 95). Nevertheless, titin binding to actin offers a simple way of adjusting titin’s stiffness and force in the active compared to the passive state. Solid phase binding assays suggest that the most promising area for titin-actin interactions is the PEVK segment (124). If indeed the PEVK segment was to interact with the actin myofilament upon muscle activation, this could explain many of the observations on actively lengthening muscles that have defied consistent explanation, and would in no way diminish the role of the cross-bridge theory. It merely would add titin as a force regulator to the existing, cross-bridge
Based, force regulation in skeletal muscle. Below, we propose how titin might work as a force regulator in active muscle in parallel with actin-myosin based cross-bridge forces.

**Proposal for titin’s role in force regulation in actively lengthening muscle**

Titin extends from the M-band of the sarcomere to the Z-band, with the I-band region of titin acting as a molecular spring with serially aligned spring segments (Figure 4A). Imagine titin in two initial positions, as shown in the top row of Figure (4B): one representing a short (left), the other a long (right) sarcomere. If a muscle is now stretched passively from either of the two initial positions to the same final position, the passive force will be the same, independent of the initial sarcomere length (Figure 4B, middle row). However, if a muscle is lengthened while activated from the two initial positions, titin will bind to the actin filament at the PEVK segment, and calcium will bind to titin. Titin binding to actin would naturally occur closer to the Z-band for the initially short sarcomere and farther away from the Z-band for the more elongated sarcomere, thereby increasing the distance from the titin binding site to the edge of the A-band for the short compared to the long (initial) sarcomere, thus causing more stretch (and thus more force in titin) for the initially short compared to the initially long sarcomere (Figure 4B).

Also, binding of the PEVK segment to the actin filament upon activation would only leave the distal Ig domain segment capable of acting as a free spring, thereb causing Ig domains to unfold within the physiological range of muscle excursion for active lengthening, while this would likely not be the case for passive muscle lengthening(33). Since Ig domain unfolding is known to require high forces(7; 32; 112; 114; 123), and since Ig domains have been shown to bind calcium and become harder to unfold by doing so(18), the free spring length available in active lengthening muscle is much stiffer than in passively lengthening muscle. Therefore, titin’s force regulating mechanisms in actively compared to passively lengthened muscle includes several force regulating mechanisms:

1. Calcium binding
2. Titin binding to the actin filament
3. Utilization of the stiff distal Ig domain segment

In turn, titin binding to actin depends on the initial sarcomere length, as titin binds closer to the Z-band for short compared to long initial sarcomere lengths. Furthermore, titin binding to actin reduces the free spring length of titin, and the free spring length (distal Ig domain) is on average much stiffer than the average stiffness of the unbound (passive) titin, and might cause Ig domain unfolding at much shorter lengths, possibly physiologically relevant sarcomere lengths, in active lengthening compared to passive lengthening of muscles(33; 64).

The mechanism of titin force regulation in actively lengthened muscle would explain a series of currently unexplained phenomena including:
Force enhancement above the isometric forces obtained at optimal muscle length (Figure 4C)(1; 60; 70; 76; 91; 102; 108)

(ii) The passive force enhancement observed in actively stretched muscles(3; 23; 26; 39; 44; 61; 62)

(iii) The increasing force enhancement with increasing stretch magnitudes(1; 11; 21; 22; 47)

(iv) The reduction of the energetic cost (per unit of force) for isometric contractions in the enhanced state compared to the corresponding purely isometric reference contractions(59).

In 1980, Andrew Huxley summarized the unexplained observations of actively lengthening muscles, and the fact that these observations could not be explained with the cross-bridge theory(50). He predicted that special features would be discovered and that these special features would explain many of the unexplained phenomena of actively lengthening muscle. Here, we propose that one of these special features is force regulation through titin, as described above and illustrated in Figure (4). We admit that many of the features described in our proposal need careful and detailed exploration in the future. However, the proposed mechanism of force enhancement, if nothing else, is consistent with experimental observations made in actively lengthened muscles that could not be explained previously. It is my hope that the mechanism proposed above will undergo critical testing using a variety of approaches on different structural levels of skeletal muscle.

Acknowledgments

The Canada Research Chair (CRC) Programme for Molecular and Cellular Biomechanics, The Killam Foundation, The Canadian Institutes of Health Research (CIHR), and The Natural Sciences and Engineering Research Council of Canada (NSERC)
**Figure Legends**

Figure 1: Force enhancement (FE) and passive force enhancement (PFE) in skeletal muscles following active elongation. (A) Cat soleus muscle stretched by 3, 6, and 9 mm showing increased peak forces after stretch, increased FE, and increased PFE with increasing magnitudes of stretch. (B) Single myofibril preparation from rabbit psoas showing passive force enhancement (PFE). (C) Isolated single sarcomere from rabbit psoas muscle showing FE and forces in the enhanced state that clearly exceed the isometric force at optimal sarcomere length (2.4 µm) preceding active lengthening O-FE. (First published in (34))

Figure 2: Schematic illustration of force enhancement within the framework of the sarcomere length non-uniformity theory. The black circle and grey square indicate two isometric contractions on the descending limb of the force-length relationship with relatively uniform sarcomere lengths. The open diamond illustrates the average sarcomere length after an active elongation of a muscle on the descending limb of the force-length relationship (identical to the average sarcomere length of the isometric contraction represented by the grey square). After active elongation, some sarcomeres are assumed to be pulled beyond actin-myosin filament overlap (popped sarcomeres – right black diamond) that are held exclusively by passive forces, while others are thought to be shorter than the average sarcomere length (left black diamond), and thus can produce more active force (because of increased actin-myosin filament overlap) than sarcomeres during the corresponding purely isometric reference contraction (grey square). Therefore, according to this theory, force enhancement is achieved by some sarcomeres being pulled to very long lengths (popped) while others are shorter than average, thereby having increased myofilament overlap which allows them to produce more force compared to the isometric force where sarcomere lengths are assumed to be relatively uniform.

Figure 3: Sarcomere forces as a function of sarcomere lengths when pulled quasi-statically (0.1 µm/s per sarcomere) from short lengths to lengths much beyond actin-myosin filament overlap. Note that once sarcomeres are pulled beyond actin-myosin filament overlap (~4.0 µm), active, cross-bridge based forces become zero and sarcomeres will only be supported by passive forces. Actively lengthened sarcomeres (Active) exhibit much greater passive forces than passively stretched sarcomeres (Passive). When titin was eliminated (No Titin), passive forces are virtually completely eliminated. When sarcomere stretching starts halfway down the descending limb of the force-length relationship (where active forces are substantially smaller than at optimal length – Half-Force), the passive forces are lower than those for sarcomeres stretched from optimal length, but are higher than the passive forces obtained during passive elongation. (First published in (78))

Figure 4: Proposed mechanism for the residual force enhancement observed in skeletal muscles following active lengthening. (A) Micrograph of myofibril (top panel), micrograph of an isolated sarcomere (mid-panel), and schematic illustration of a sarcomere with z-bands, thick and thin filaments, and location of titin (bottom panel). (B) Schematic illustration of a partial (part of the left hand side) sarcomere. The top panel shows two partial sarcomeres at rest: the left sarcomere is at a relatively short length, the right sarcomere at
a relatively long length. When passively stretched to the same length from their initial position (mid-panel), the two sarcomeres will achieve the same internal structural organization, and thus will exert the same passive force. However, when stretched actively (bottom panel) from the two initial lengths, the two sarcomeres will achieve different internal structural arrangements which will result in different force contributions through titin. In the initially short sarcomere (left initial position), titin binding to actin upon activation (proposed here to occur near the PEVK segment) will occur close to the z-band, thus when stretched, the distal portion of titin (the free segment that can still act as a spring) is stretched to a great degree and will produce a relatively large force. In contrast, in the sarcomere with the initially long length (right initial position), titin will bind to actin upon activation relatively far away from the z-band, thus upon active lengthening, the free segment of titin, is not as much stretched as for the sarcomere with the short initial length and thus the force will be smaller (compared to the initially short sarcomere) after the active lengthening. Note also, that we propose that there is calcium binding upon activation to the distal Ig domain segments (indicated by the colouring), thereby increasing their stability, and thus, the force required to unfold the distal Ig domain segments in active compared to passive lengthening. Finally, in this scenario, only the distal Ig domain segments of titin are available for elongation, and these segments, if we assume they must unfold upon elongation even for physiologically relevant muscle stretch magnitudes, are stiffer than the average stiffness for the whole titin protein, thereby further contributing to the increased resistance of titin in active compared to passive stretching. (C) Schematic illustration of the shift in passive forces (associated with titin) to shorter lengths and to increased stiffness upon activation. Such a shift allows for a straightforward explanation for all general observations that have been made in active and passive elongations of skeletal muscles.
1. **Abbott BC and Aubert XM.** The force exerted by active striated muscle during and after change of length. *J Physiol (Lond)* 117: 77-86, 1952.


59. Joumaa V and Herzog W. Energy cost of force production is reduced after active stretch in skinned muscle fibres. *Journal of Biomechanics (Accepted) 2013*.


A

I Band A Band

Z Line M Line

Titin

Thick filaments Thin filaments

B

Initial position

Z Actin

Myosin

Initial position

Passive stretch

Active stretch

Calcium

C

Normalized force

Sarcomere length [µm]

Passive force

Activation

FE