VENTILATION-PERFUSION IMBALANCE AND CHRONIC OBSTRUCTIVE PULMONARY DISEASE STAGING SEVERITY

[JAPPL-00085-2009-REVISION 1]

(n, 3,751 words)

Roberto Rodríguez-Roisin MD1,3, Mitra Drakulovic MD2, Diego Rodríguez MD2, Josep Roca MD1,3, Joan Albert Barberà MD1,3, Peter D Wagner MD4

(1) Servei de Pneumologia (Institut del Tòrax), Hospital Clínic, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), (2) Fundació Clínic de Recerca Biomèdica (FCRB), (3) Ciber Enfermedades Respiratorias, Universitat de Barcelona, Barcelona, Spain; and, (4) Division of Physiology, University of California, San Diego, USA

Supported by grants-in-aid by the Generalitat de Catalunya (2005SGR-00822), Maratò TV3 (#040430) and Esteve and Almirall. D Rodríguez MD was supported by ERS-SEPAR 2006 Long –Term Research Fellowship (#191).

Address for correspondence: Prof. R Rodríguez-Roisin, Servei de Pneumologia, Hospital Clínic, Villarroel, 170. 08036-Barcelona, Spain. Phone/Fax: (34)932275404. E-mail: rororo@clinic.ub.es

Running Head: Ventilation-Perfusion Mismatch in COPD

Key Words: Airflow Limitation – Arterial Blood Gases – Chronic Respiratory Failure – Global Initiative for COPD (GOLD) – Pulmonary Gas Exchange – Ventilation-Perfusion Mismatch
ABSTRACT (250 words)

Chronic obstructive pulmonary disease (COPD) is characterized by a decline in FEV1 and, in many advanced patients, by arterial hypoxemia with or without hypercapnia. Spirometric and gas exchange abnormalities have not been found to relate closely, but this may reflect a narrow range of severity in patients studied. Therefore, we assessed the relationship between pulmonary gas exchange and airflow limitation in patients with COPD across the severity spectrum. Ventilation-perfusion mismatch (VA/Q) was measured using the multiple inert gas elimination technique in 150 patients from previous studies. The distribution of patients according to the GOLD stage of COPD was: 15 with stage 1; 40 with stage 2; 32 with stage 3; and 63 with stage 4. In GOLD stage 1, AaPO2 and VA/Q mismatch were clearly abnormal; thereafter, hypoxemia, AaPO2 and VA/Q imbalance increased, but the changes from GOLD stages 1 to 4 were modest. Post-bronchodilator FEV1 was related to PaO2 (r = 0.62) and PaCO2 (r = –0.59) and to overall VA/Q heterogeneity (r = –0.48) (p < 0.001 each). Pulmonary gas exchange abnormalities in COPD are related to FEV1 across the spectrum of severity. VA/Q imbalance, predominantly perfusion heterogeneity, is disproportionately greater than airflow limitation in GOLD stage 1, suggesting that COPD initially involves the smallest airways, parenchyma and pulmonary vessels with minimal spirometric disturbances. That progression of VA/Q inequality with spirometric severity is modest may reflect pathogenic processes that reduce both local ventilation and blood flow in the same regions through airway and alveolar disease and capillary involvement.
INTRODUCTION

Chronic obstructive pulmonary disease (COPD) has emerged as a major worldwide public health challenge (26; 28). It is characterized by airflow limitation, the major site of which is the small airways. Airway obstruction and pulmonary emphysema are thought to cause this airflow limitation through persistent inflammation, as immune cells are present at all pulmonary sites (20-22). The inflammatory response leads to increased airway wall thickness, lumen reduction and mucus secretion, all directly obstructing airways. Emphysematous alveolar destruction reduces radial traction on airways, further contributing to airflow limitation, and causes remodelling of the gas-exchange zone with extensive loss of alveolar surface area and pulmonary capillaries.

COPD is the most common chronic respiratory disease state associated with chronic and/or acute respiratory insufficiency (26; 28). Uneven distribution of both alveolar ventilation and pulmonary blood flow, namely ventilation-perfusion (V_{A}/Q) mismatch, remains the most important cause of arterial hypoxemia, with or without hypercapnia, in both stable and exacerbated COPD (3; 7; 27; 43). However, the progression of V_{A}/Q imbalance in stable COPD remains to be examined, and no overview analysis with conclusive results is available to comprehensively understand the relationships between pulmonary gas exchange abnormalities and the spectrum of COPD, from mild to very severe stages.

While a recent meta-analysis by Franciosi et al. (18) concluded that PaO$_2$ was the only clinical variable that correlated with FEV$_1$, it is widely held that arterial blood gas abnormalities relate poorly to the severity of airflow limitation (39) and also that the pattern of V_{A}/Q mismatch is at best only weakly related to arterial blood gases (24; 39). This has been explained not only by the variability in the underlying anatomical and physiological components of airflow limitation and pulmonary gas exchange, but also by variability in the modulating effects of extra-pulmonary factors governing arterial blood gases.
(i.e., minute ventilation, cardiac output, and oxygen consumption), which are not necessarily related to the degree of airflow limitation (39).

Over the past ten years the Global Initiative for COPD (GOLD) has made a major effort to increase awareness of all facets related to COPD (26; 28). Indeed, the GOLD spirometric staging classification, based on measurements of airflow limitation during forced spirometry and also analysis of arterial blood gases, has become widely accepted as one of the best standards for COPD diagnosis and management, and also as the stratifying tool for research studies concerned with COPD severity. Here we summarized the relationships between the progression of COPD, as reflected by its GOLD classification, and that of alveolar ventilation to pulmonary blood flow inequalities (using the multiple inert gas elimination technique [MIGET] (16; 33; 41)) in a total of 150 patients. More specifically we addressed two questions: 1) what is the degree of gas exchange abnormalities at GOLD stage 1 (mild COPD; i.e., post-bronchodilator FEV₁/FVC ratio < 0.7 with FEV₁ ≥ 80% predicted)? And, 2) how does the relationship between spirometry and Vₐ/Q mismatch progress across the entire spectrum of COPD severity?
METHODS

The current paper includes data from 10 previously published studies (number of subjects, n=105) (1; 4; 6-9; 27; 31; 35; 38) and three others, two reported preliminarily (n=30) (14; 15) and one reported here for the first time (n=5). Ten COPD stage 1 patients were also additionally included to increase the small number of patients of the original stage 1 subgroup. All involved patients were in stable condition (i.e., at least three months distant from the last exacerbation), without significant co-morbidities, including cardiac failure, diabetes mellitus or other coexisting respiratory disease (Table 1). All were current (n=30) or past heavy (n=120) smokers and, as can be seen, virtually all were male (142/150). The distribution was 15 with Stage 1 (mild); 40 with stage 2 (moderate); 32 with stage 3 (severe); and 63 with stage 4 (very severe). The studies were approved by the Ethics Review Board at Hospital Clínic and all patients gave written informed consent.

Forced spirometry (using only post-bronchodilator values) and static lung volumes (CPF-S; Medical Graphics Corporation, St. Paul, MN USA) were measured according to ATS/ERS recommendations, using our own predicted equations (29; 30; 32). Arterial blood gases and minute ventilation were measured at rest and breathing ambient air, and AaPO2 and MIGET to measure the distributions of \(V_A/Q \) ratios calculated, as previously described (16; 33; 41). The quantitative degree of pulmonary elimination of the 6 inert gases of MIGET is determined by the \(V_A/Q \) distribution so that it is possible to estimate the distribution of both alveolar ventilation and capillary blood flow, computed as Log SDQ and Log SDV, respectively, to characterize parametrically the amount of \(V_A/Q \) dispersion (95% upper confidence limits are 0.60 and 0.65 - dimensionless -, respectively (10)). Severe \(V_A/Q \) inequality sufficient to produce life-threatening arterial hypoxemia (PaO2 < 40 mm Hg) leads to Log SD values of the order of 2.00–2.50 (42). A complementary, more global index of \(V_A/Q \) inequality, named DISP R-E*, includes the combined effects of the Log SDQ and Log SDV. It is the root mean square difference

Rodríguez-Roisin R et al. \(V_A/Q \) Imbalance in COPD
between measured retentions and excretions of the 6 inert gases (normal values, 1.0–3.0). If V_A/Q inequality leads to Log SD values of 2.50, DISP R-E* is about 20-30 (19). Inert gas data quality is explored by compiling the summed squared errors, named residual sum of squares (RSS), found in fitting the inert gas data to the corresponding V_A/Q distributions.

Results are expressed as mean ± SD, and 95% confidence interval (CI), unless otherwise stated. Mean variables between GOLD stages were analyzed using either one way analysis of variance (ANOVA) for parametric variables or Kruskal-Wallis test for non-parametric data; when significant differences were observed, post hoc comparisons were made using an α correction to < 0.0083 (Bonferroni) where appropriate. The Kolmogorov-Smirnov and Shapiro-Wilk tests were used for checking distributions normalcy. Pearson’s and Spearman’s correlation coefficients were applied to assess the strength of relationship for normally and non-normally distributed data, respectively.
RESULTS

Anthropometric and Pulmonary Functional Characteristics

The means (±SD) of demographic and usual lung function variables for all participants are shown in Table 1 as a function of GOLD stage. There was no difference in age, smoking history or body mass index across the four stages. In this study over all 150 patients, the RSS values corresponding to the corresponding V_A/Q distributions (Table 2) were 2.92±3.49 (95% CI, 2.49-3.34) and indicated data of good quality.

Values at GOLD Stage 1

Table 1 shows that post-bronchodilator FEV_1 was 87% predicted, and FEV_1/FVC was 0.65. Figure 1 shows that at stage 1, residual volume (RV) and single-breath diffusing capacity for carbon monoxide (DL_{CO}) were within normal limits without lung hyperinflation (i.e., IC/TLC ratio > 0.25 (11)). So too were arterial blood gases (Figure 1), but the AaPO_2 was already quite abnormal at 26 mm Hg as were the MIGET-derived indexes of V_A/Q inequality shown in Figure 1 and Table 2. The increase in the overall V_A/Q dispersion index (DISP R-E*, bottom panel) is explained mostly by the increase in the dispersion of pulmonary blood flow (Log SDQ, top panel). Both the AaPO_2 and the Log SDQ were about twice as large as typically seen in health in spite of only minor abnormalities in FEV_1/FVC ratio (and normal FEV_1).

More importantly, in addition to the behaviour of group mean values, Table 3 shows that almost all (14 of 15) stage 1 patients displayed abnormal overall V_A/Q inequality (i.e., DISP R-E*), and all but two showed an abnormal AaPO_2 equal to or greater than 15 mm Hg (normal range in our laboratory, 4-6 mm Hg). On the other hand, PaO_2 was < 80 mm Hg in only 40%, and PaCO_2 was increased (≥ 45 mm Hg) in none.
In sum, almost all patients at stage 1 show considerable V_A/Q inequality and an increased $AaPO_2$ despite mild airflow limitation. Of note that a decrease in FEV$_1$/FVC ratio of just 0.07 from the fixed value of 0.7 was associated with an increase of 38% over the upper limit of normal in the Log SDQ (Figure 1).

Progression of Spirometry and Gas Exchange according to the GOLD Stage: Group Findings

As shown in Figure 2, mild-to-moderate hypoxemia (< 80 mm Hg – \geq 60 mm Hg) was observed in 6 patients (40%) with stage 1, 24 (60%) with stage 2, 23 (72%) with stage 3, and 22 (35%) with stage 4; severe hypoxemia (< 60 mm Hg) was recorded in 39 (62%) with stage 4; hypercapnic respiratory failure (partial pressure of carbon dioxide \geq 50 mm Hg) was present in 1 (1%) and 13 (21%) patients at stages 3 and 4, respectively. Low DL$_{CO}$ (< 80% predicted) was observed in 7 patients (47%) with stage 1, 18 (45%) with stage 2, 23 (61%) with stage 3, and 58 (92%) with stage 4.

The severity of spirometric and arterial blood gas abnormalities significantly increased across the spectrum of the GOLD classification (Table 1). As shown in Figure 1 and Table 1, RV increased progressively while IC/TLC ratio decreased linearly. Mean DL$_{CO}$ remained normal until stage 2 and then decreased, paralleling the changes in RV. Both Figures 1 and 2 and Table 1 show that both PaO$_2$ and PaCO$_2$ changed little over the first two stages, but then changed rapidly with further severity (stages 3 and 4) of COPD. Since $AaPO_2$ increased only modestly, and linearly, over the entire range, this rapid change in PaO$_2$ and PaCO$_2$ at stages 3 and 4 reflects not only V_A/Q worsening but also insufficient alveolar ventilation in relation to carbon dioxide production.

Figure 1 shows that all indexes of V_A/Q inequality worsened linearly with GOLD stage. There are some important trends however in that, at stage 4, the Log SDQ (reflecting mostly low V_A/Q ratio areas) was not much higher than at stage 1, and nowhere near the values of 2.00-2.50 observed in life-threatening clinical conditions such as COPD severe exacerbation (5; 7; 27; 36; 37) or acute severe...
asthma (2; 17; 34). In contrast, the Log SDV (reflecting mostly high V_A/Q regions) increased more with GOLD stage and significantly at stage 3. However, this greater increase occurred because the values at stage 1 were closer to normal than was the case for the Log SDQ. Thus, by stage 4, absolute values of Log SDQ and Log SDV were not different from each other, and again had not reached values anywhere near those observed during acute severe COPD and bronchial asthma.

Table 3 shows that PaO$_2$ was reduced in only 60% of patients at stage 2 despite almost universally abnormal V_A/Q relationships and AaPO$_2$. Even at stage 3, only in 72% of patients was PaO$_2$ < 80 mm Hg, and it was not until stage 4 that essentially all patients exhibited arterial hypoxemia. Similarly, PaCO$_2$ was within normal limits in (essentially) all patients across the first three GOLD stages.

In sum, in all GOLD stages, essentially all patients presented abnormal V_A/Q relationships reflected in an increased AaPO$_2$, with many fewer patients demonstrating arterial hypoxemia with or without hypercapnia until stage 4. In addition, indexes of V_A/Q inequality by stage 4 are surprisingly only modestly worse than at stage 1. As a result, the progression of V_A/Q mismatch from GOLD stage 1 to stage 4 is not nearly as rapid as the loss of FEV$_1$, and the rapid deterioration in PaO$_2$ at stage 4 is not fully explained by further V_A/Q worsening.

Progression of Spirometry and Gas Exchange according to the GOLD Stage: Correlations

Over the entire range, most gas exchange variables were significantly related to post-bronchodilator FEV$_1$. These included PaO$_2$ ($r = 0.62$) and PaCO$_2$ ($r = -0.59$), AaPO$_2$ ($r = -0.30$) (Figure 2), Log SDV ($r = -0.49$), and DISP R-E* ($r = -0.48$) (p < 0.001 each); however, there was not a significant correlation between Log SDQ and FEV$_1$. These correlations show that spirometric variation explains no more than 40% of the changes in any of the gas exchange variables on a per patient basis. There were other significant, but less marked, correlations between Log SDQ, Log SDV and DISP R-E* and
PaCO₂ (r = 0.57, 0.36, and 0.37), and between the latter two Vₐ/Q descriptors (Log SDV and DISP R-E*) and the AaPO₂ (r = 0.28 and 0.53), respectively (p < 0.001 each).

Functional residual capacity and Log SDV (r = 0.46) and DISP R-E* (r = 0.50) (p<0.001 each) were linearly correlated, but the correlation with Log SDQ (r = 0.21; p<0.05) was weak. Likewise, there was a negative association between both the Log SDV (r = – 0.46) and also the DISP R-E* (r = – 0.45) and the IC/TLC ratio (p < 0.001 each), a parameter that expresses lung hyperinflation and is an excellent predictor of all-cause and respiratory mortality(11). Moreover, FRC (% predicted) was negatively associated with PaO₂ (r = – 0.52) while the IC/TLC ratio correlated positively with PaO₂ (r = 0.54) and negatively with PaCO₂ (r = – 0.50) and the AaPO₂ (r = – 0.33) (p < 0.001 each); PaO₂ and DLCO were also correlated (r = 0.50) (p < 0.001 each). No correlations were observed between Vₐ/Q descriptors and body mass index.
DISCUSSION

General Findings

The present perspective of pulmonary gas exchange disturbances across the GOLD classification is the most comprehensive analysis that has so far assessed the association between airflow limitation and V_A/Q imbalance in COPD being based on 150 patients. It identifies three major findings and complements and extends previous investigations.

Firstly, pulmonary gas exchange, as assessed by the AaPO$_2$ and V_A/Q inequality as assessed by the MIGET's indicators of inequality, is disproportionately abnormal at stage 1 before FEV$_1$ decline, and in particular is relatively more abnormal than the spirometric variables. The Log SDQ, reflecting mostly low V_A/Q ratio areas, is more abnormal than the Log SDV, reflecting mostly high V_A/Q ratio areas.

Secondly, there is a steady progression of arterial blood gas disturbances and V_A/Q mismatch from stage 1 (post-bronchodilator FEV$_1$/FVC ratio < 0.7 with FEV$_1$ ≥ 80%) through stage 4 (post-bronchodilator FEV$_1$ lower than 30% and/or chronic respiratory failure). This is reflected by increases in the Log SDV but not in the Log SDQ, which is already highly abnormal by stage 1.

Thirdly, and more importantly, the changes in V_A/Q inequality from stage 1 through stage 4 are modest and, by stage 4, the dispersions are nowhere near values that are observed during acute severe conditions, such as exacerbation in COPD (5; 7; 27; 36; 37) and bronchial asthma (2; 17; 34).

Stage 1 and Pulmonary Gas Exchange Abnormalities

Although not completely new, the considerable severity of gas exchange disturbances at stage 1 needs to be highlighted given the minimal degree of spirometrically-detected airflow limitation. The average amount of V_A/Q mismatch, as assessed by the Log SDQ is quite above the upper limit of normal while airflow limitation, as assessed by post-bronchodilator FEV$_1$/FVC ratio, is just 0.07 below the value of the
fixed ratio of 0.7. This is reflected not just in average values, but by the finding that almost all (Table 3) patients at this stage showed V_A/Q mismatch and half of them abnormal conventional gas exchange (hypoxemia and/or low DL$_{CO}$). Hence the observation cannot be ascribed to a few outliers. The most plausible explanation for the disproportionate dissociation between pulmonary gas exchange and spirometry at stage 1 is that FEV$_1$ reflects mostly large and medium airways function while alveolar gas exchange in a diffusely distributed disease like COPD is more likely determined by events in much smaller airways, alveolar spaces and blood vessels. Furthermore, it suggests that spirometry is not as sensitive in detecting early COPD as is gas exchange, but an important caveat must be made: The present data show that gas exchange in the present context is not sufficiently assessed by just PaO$_2$ and/or PaCO$_2$ measurements, but may benefit of calculation of the AaPO$_2$, a contention reinforced in the presence of a normal or mildly elevated cardiac output which, others things being equal, raises the mixed venous PO$_2$, hence increasing PaO$_2$ (40). MIGET-based outcome variables help to understand the pathophysiology but are not all necessary for such an analysis. That the Log SDQ was more abnormal than that of the Log SDV in stage 1 is evidence that low V_A/Q areas are more prominent than are high V_A/Q areas at this early stage of disease. This finding is compatible with underlying small airway abnormalities (12; 13; 21; 22) and dysfunction (25) known to be present in early COPD, that can lead to the presence of poorly ventilated but still well perfused alveolar units, along with the abnormally increased Log SDV also coupled with changes in pulmonary pre-capillary arteries (3), that may further contribute to impair the vascular regulation of V_A/Q matching. At stages 1 and 2, morphometric pulmonary emphysema severity was shown to be the best correlate of pulmonary gas exchange abnormalities (4). There is concern regarding the use of a fixed FEV$_1$/FVC ratio less than 0.7 to diagnose stage 1 COPD because of the risk of over-diagnosis and false-positive cases, leading to inappropriate misclassification.
and treatment, especially in the elderly (23). Our finding of relatively greater gas exchange than spirometric disturbances at stage 1 would seem to substantially mitigate that risk, although the number of patients at stage 1 in our cohort is modest, and whether or not these findings can be extended to larger COPD populations with mild COPD remains unsettled. The finding that arterial hypoxemia at stage 1 is less prevalent than V_A/Q inequality itself can be explained by mildly increased ventilation, which increases the alveolar PO$_2$, and mildly high cardiac output, which raises the mixed venous PO$_2$, other things being equal (40). Together these “extra-pulmonary” influences on arterial oxygenation serve to improve arterial oxygen tension for a given degree of V_A/Q imbalance.

Progression of Pulmonary Gas Exchange Abnormalities with GOLD Stage

As noted, there is a steady progression of most arterial blood gas disturbances and V_A/Q mismatch from stage 1 through stage 4. Most work to date has failed to find such a clear relationship between gas exchange and spirometric severity. However, most of these correlations are not too strong, a finding most likely explained by deliberate selection of patients at the GOLD stage 3-4 level in most prior studies (including our own (1; 4; 6-9; 14; 15; 27; 31; 35; 38), which had been designed for mostly other purposes. Within a relatively narrow band of spirometric variation, it is not so surprising that significant relationships have not been uncovered (24; 39). This is underscored by the large individual variance in both gas exchange and spirometry shown in Figures 1 and 2. Visual inspection of these illustrations suggests that without studying a wide range of severity, the variance would preclude finding such associations.

Most importantly, the other factor contributing to failure to find such relationships is probably the small degree of change in the V_A/Q indexes over the four stages. We find it remarkable that no statistically significant change in the Log SDQ can be found as FEV$_1$ drops from normal limits to 20% of predicted, and even the change in the Log SDV, between most of the GOLD stages, although
significant is modest. Two coexisting explanations may be plausible. First, \(V_A/Q \) disturbances are extensively abnormal even at stage 1, leaving less room to deteriorate with advancing disease; and, second, \(V_A/Q \) mismatch at most advanced COPD staging may be somewhat self-limiting in COPD. What we propose is that the underlying pathological processes that reduce ventilation in a lung region also reduce perfusion in the same region possibly due to a remaining strong hypoxic vasoconstriction and active collateral ventilation. If ventilation and perfusion are both reduced, their ratio is somewhat buffered. This appears to be the case in COPD patients undergoing lung volume reduction surgery, who exhibit nearly normal \(V_A/Q \) dispersions (14). Local airway obstruction would reduce ventilation, and emphysema in the same region would reduce blood flow by minimizing reducing blood flow and destroying capillaries. In this way, \(V_A/Q \) ratio changes might be buffered until, eventually, the local region became neither ventilated nor perfused and failed to take part at all in gas exchange. It is otherwise hard to explain how such a severe damage at stage 4 does not give rise to \(V_A/Q \) dispersion values higher than shown here when it is well-established that in acute severe airway disorders, such as exacerbation in COPD (5; 7; 36; 37) and in bronchial asthma (2; 17; 34), there can be twice as much \(V_A/Q \) inequality as in GOLD stage 4.

Strengths and limitations

There are several strengths and shortcomings in our analysis. Firstly, all the studies are united by a common author group, and more importantly for pulmonary gas exchange analyses, by common methodology (i.e., MIGET); secondly, this is the most thorough study that has been able so far to assess the natural progression of \(V_A/Q \) imbalance in stable COPD, thus providing a unique deeper insight into the difficult interplay between pulmonary gas exchange and airflow limitation in this airway disease state. We acknowledge however that this is a cross-sectional study, with the measurements averaged by GOLD stage, in which the number of patients studied at each GOLD stage is not uniform and that,
compared to the other three GOLD stages, the number of patients included in state 1 is small, in part
imposed by the difficult recruitment of this mild COPD cohort. Other limitations of our study are the
lack of clinical and imaging characterization in terms of small airways dysfunction and/or regional
emphysema such that no accurate phenotype discrimination could be made.

Conclusions

All in all, the current analysis highlights and extends what has been previously observed in individual
COPD patients with different degrees of severity. In stable COPD, the AaPO$_2$ is substantially increased
due to V$_A$/Q mismatch already at GOLD stage 1, a finding observed in over 90% of patients. The degree
of this increase in the Log SDQ (by 38%) is out of proportion to the reduction in post-bronchodilator
FEV$_1$/FVC ratio (by 0.07), confirming that pulmonary gas exchange abnormalities develop early in the
natural history of COPD as defined by spirometry. While further worsening of pulmonary gas exchange is
observed with each GOLD stage, the severity of V$_A$/Q inequality by stage 4 is surprisingly modest,
amounting to only about half of that shown in acute severe airway disease states. This may indicate that in
affected regions of the lung of COPD, alveolar ventilation and pulmonary blood flow are reduced together
by the respective pathological airway, alveolar and vascular processes as disease severity progresses while
hypoxic vasoconstriction and collateral ventilation still remain efficiently active.

Acknowledgments. The authors thank Conxi Gistau DI, Josep Lluis Valera DI, and Felip Burgos DI,
for their unique continuous technical support.

Rodríguez-Roisin R et al. V$_A$/Q Imbalance in COPD
Reference List

LEGENDS TO FIGURES

Figure 1. Relationship between FEV1/FVC ratio and means (±SE) for residual volume, IC/TLC ratio, DLCO, PaO2, PaCO2, AaPO2 (expressed in mmHg), dispersion of pulmonary blood flow (Log SDQ) and that of alveolar ventilation (Log SDV) and of an overall index of ventilation-perfusion heterogeneity (DISP R-E*) (all measured at rest and while breathing ambient air; spirometric results refer to post-bronchodilator values). Data are grouped according to the GOLD stage of COPD. Symbols denote statistical differences between stages; normal limits are indicated by the hatched areas in each panel, except for IC/TLC ratio whose best cutoff point for death from any cause corresponds to 0.25 (for p values, see Tables 1 and 2).

Figure 2. Relationships between FEV1 and PaO2, PaCO2 and AaPO2, measured at rest and breathing ambient air, from 150 patients (all expressed in mmHg; FEV1 results refer to post-bronchodilator values). Open squares correspond to stage 1, closed triangles to stage 2, open circles to stage 3, and closed circles to stage 4.
Table 1. Anthropometric and Functional Characteristics of the Patients Grouped According to the GOLD Stage of COPD

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>GOLD Stage 1 (Mild)</th>
<th>GOLD Stage 2 (Moderate)</th>
<th>GOLD Stage 3 (Severe)</th>
<th>GOLD Stage 4 (Very Severe)</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex (no. of patients) Male: Female</td>
<td>14:1</td>
<td>39:1</td>
<td>30:2</td>
<td>59:4</td>
<td>n.s.***</td>
</tr>
<tr>
<td>Age (yr)</td>
<td>64 ± 5</td>
<td>62 ± 9</td>
<td>63 ± 6</td>
<td>61 ± 8</td>
<td>n.s.***</td>
</tr>
<tr>
<td>Smoking history (Pack-years)</td>
<td>42 ± 3</td>
<td>63 ± 5</td>
<td>55 ± 6</td>
<td>54 ± 4</td>
<td>n.s.***</td>
</tr>
<tr>
<td>Body mass index (m/kg²)</td>
<td>27 ± 3</td>
<td>25 ± 4</td>
<td>27 ± 3</td>
<td>25 ± 4</td>
<td>n.s.***</td>
</tr>
<tr>
<td>FEV₁ (L)</td>
<td>2.80 ± 0.40</td>
<td>2.10 ± 0.45</td>
<td>1.27 ± 0.26</td>
<td>0.80 ± 0.21***</td>
<td>< 0.001***</td>
</tr>
<tr>
<td>FEV₁ (% of predicted)</td>
<td>87 ± 6</td>
<td>63 ± 8</td>
<td>39 ± 6</td>
<td>25 ± 81***</td>
<td>< 0.001***</td>
</tr>
<tr>
<td>FVC (L)</td>
<td>4.08 ± 0.62</td>
<td>3.66 ± 0.90</td>
<td>3.00 ± 0.86</td>
<td>2.40 ± 0.681***</td>
<td>< 0.001***</td>
</tr>
<tr>
<td>FVC (% of predicted)</td>
<td>98 ± 8</td>
<td>84 ± 14</td>
<td>67 ± 8</td>
<td>56 ± 161***</td>
<td>< 0.001***</td>
</tr>
<tr>
<td>FEV₁/FVC Ratio</td>
<td>0.65 ± 0.26</td>
<td>0.54 ± 0.15</td>
<td>0.40 ± 0.07</td>
<td>0.32 ± 0.101***</td>
<td>< 0.001***</td>
</tr>
<tr>
<td>TLC (% of predicted)(n, 127)</td>
<td>104 ± 6</td>
<td>105 ± 18</td>
<td>112 ± 12</td>
<td>123 ± 301***</td>
<td>< 0.011***</td>
</tr>
<tr>
<td>FRC (% of predicted)(n, 127)</td>
<td>115 ± 14</td>
<td>132 ± 28</td>
<td>159 ± 28</td>
<td>191 ± 501***</td>
<td>< 0.001***</td>
</tr>
<tr>
<td>RV (% of predicted)(n, 127)</td>
<td>121 ± 23</td>
<td>141 ± 52</td>
<td>183 ± 54</td>
<td>260 ± 101***</td>
<td>< 0.001***</td>
</tr>
<tr>
<td>IC/TLC Ratio (n, 127)</td>
<td>0.43 ± 0.04</td>
<td>0.33 ± 0.06</td>
<td>0.27 ± 0.04</td>
<td>0.20 ± 0.071***</td>
<td>< 0.001***</td>
</tr>
<tr>
<td>DLCO (% of predicted)(n,146)</td>
<td>86 ± 22</td>
<td>82 ± 21</td>
<td>72 ± 22</td>
<td>46 ± 2011***</td>
<td>< 0.001***</td>
</tr>
<tr>
<td>PaO₂ (mm Hg)</td>
<td>81 ± 9</td>
<td>78 ± 11</td>
<td>73 ± 9</td>
<td>59 ± 91111***</td>
<td>< 0.001***</td>
</tr>
<tr>
<td>PaCO₂ (mm Hg)</td>
<td>37 ± 3</td>
<td>38 ± 4</td>
<td>40 ± 5</td>
<td>45 ± 61111***</td>
<td>< 0.001***</td>
</tr>
<tr>
<td>AaP/O₂ (mm Hg)</td>
<td>26 ± 11</td>
<td>29 ± 9</td>
<td>32 ± 9</td>
<td>36 ± 81111***</td>
<td>< 0.001***</td>
</tr>
</tbody>
</table>

Values are means (±SD). Forced spirometric results refer to post-bronchodilator values; in 23 patients bronchodilator test was not available. To convert millimeters of mercury to kilopascals, multiply by 0.133. (****) Kruskal-Wallis test; ($$) One Way Independent Analysis of Variance. (1) p<0.0083, GOLD Stage 1 vs. 2; (2) p<0.0083, GOLD Stage 1 vs. 3; (3) p<0.0083, GOLD Stage 1 vs. 4; (5) p<0.0083, GOLD Stage 2 vs. 3; (7) p<0.0083, GOLD Stage 2 vs. 4; (11) p<0.0083, GOLD Stage 3 vs. 4; (13) p<0.0083, GOLD Stage 1 vs. 4; (14) p<0.0083, GOLD Stage 2 vs. 4; (16) p<0.0083, GOLD Stage 3 vs. 4; (17) p<0.0083, GOLD Stage 1 vs. 4; (18) p<0.0083, GOLD Stage 2 vs. 4; (19) p<0.0083, GOLD Stage 3 vs. 4; (20) p<0.0083, GOLD Stage 1 vs. 4; (21) p<0.0083, GOLD Stage 2 vs. 4; (22) p<0.0083, GOLD Stage 3 vs. 4; (23) p<0.0083, GOLD Stage 1 vs. 4; (1111) p<0.01, GOLD Stage 2 vs. 4; (1111) p<0.01, GOLD Stage 3 vs. 4; (1111) p<0.01, GOLD Stage 1 vs. 4; (1111) p<0.01, GOLD Stage 2 vs. 4.
Table 2. Ventilation-Perfusion Distributions of the Patients Grouped According to the GOLD Stage of COPD

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>GOLD Stage 1 (Mild)</th>
<th>GOLD Stage 2 (Moderate)</th>
<th>GOLD Stage 3 (Severe)</th>
<th>GOLD Stage 4 (Very Severe)</th>
<th>p-Value *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shunt (%QI)</td>
<td>1 ± 1</td>
<td>1 ± 1</td>
<td>1 ± 2</td>
<td>2 ± 2†</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Low V\textsubscript{A}/Q (% QI)</td>
<td>1.4 ± 3.3</td>
<td>2.8 ± 4.8</td>
<td>4.1 ± 7.0</td>
<td>3.1 ± 7.0</td>
<td>n.s.</td>
</tr>
<tr>
<td>Mean Q</td>
<td>0.83 ± 0.23</td>
<td>0.72 ± 0.23</td>
<td>0.68 ± 0.30</td>
<td>0.65 ± 0.27</td>
<td>n.s.</td>
</tr>
<tr>
<td>Log SDQ</td>
<td>0.83 ± 0.32</td>
<td>0.87 ± 0.30</td>
<td>0.98 ± 0.24</td>
<td>1.00 ± 0.26</td>
<td>< 0.05</td>
</tr>
<tr>
<td>High V\textsubscript{A}/Q (% V\textsubscript{E})</td>
<td>0.9 ± 2.8</td>
<td>7.4 ± 14.4</td>
<td>5.1 ± 10.7†</td>
<td>6.8 ± 11.5‡</td>
<td>< 0.05</td>
</tr>
<tr>
<td>Mean V</td>
<td>1.60 ± 0.54</td>
<td>1.54 ± 0.73</td>
<td>1.80 ± 0.52</td>
<td>2.00 ± 0.97†</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Log SDV</td>
<td>0.72 ± 0.25</td>
<td>0.79 ± 0.24</td>
<td>0.98 ± 0.26‡</td>
<td>1.04 ± 0.28‡</td>
<td>< 0.001</td>
</tr>
<tr>
<td>DISP R-E*</td>
<td>8.12 ± 4.43</td>
<td>9.02 ± 4.11</td>
<td>13.22 ± 6.08‡</td>
<td>14.20 ± 4.57¶</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Dead space (% V\textsubscript{E})</td>
<td>21 ± 12</td>
<td>28 ± 15</td>
<td>31 ± 12</td>
<td>34 ± 14‡</td>
<td>< 0.01</td>
</tr>
<tr>
<td>(\dot{V}_{E}), L·min(^{-1})</td>
<td>9.0 ± 4.0</td>
<td>9.0 ± 2.3</td>
<td>8.3 ± 2.0</td>
<td>8.4 ± 2.0</td>
<td>n.s.</td>
</tr>
<tr>
<td>(\dot{Q}_{I}), L·min(^{-1})</td>
<td>5.8 ± 1.8</td>
<td>6.0 ± 1.3</td>
<td>5.6 ± 1.5</td>
<td>5.3 ± 1.5</td>
<td>n.s.</td>
</tr>
</tbody>
</table>

Values are means (±SD). Shunt: perfusion to alveolar units with V\textsubscript{A}/Q ratios <0.005; Low V\textsubscript{A}/Q: perfusion to alveolar units with V\textsubscript{A}/Q ratios between 0.005 and 0.1 (excluding shunt); Mean Q: the mean V\textsubscript{A}/Q ratio of the blood flow distribution; Log SDQ: dispersion of blood flow distribution; Mean V: the mean of V\textsubscript{A}/Q ratio of the ventilation distribution; Log SDV: dispersion of ventilation distribution; High V\textsubscript{A}/Q: ventilation to units with V\textsubscript{A}/Q ratio between 10 and 100; DISP R-E*: dispersion of retention minus excretion of inert gases corrected by dead space; Dead space: ventilation to units with V\textsubscript{A}/Q ratios >100 and; \(\dot{V}_{E}\): minute ventilation; and, \(\dot{Q}_{I}\): cardiac output. Mean Q, Mean V, Log SDQ, Log SDV and DISP R-E* are dimensionless.

(*) Kruskal-Wallis test
(†) p<0.0083, GOLD Stage 1 vs. 3
(‡) p<0.0083, GOLD Stage 1 vs. 4
(§) p<0.0083, GOLD Stage 2 vs. 3
(¶) p<0.0083, GOLD Stage 2 vs. 4.
Table 3. Percentages of Abnormalities of the Principal Pulmonary Gas Exchange Descriptors According to the GOLD Stage of COPD

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>GOLD Stages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>PaO₂ (< 80 mm Hg)</td>
<td>40%</td>
</tr>
<tr>
<td>PaCO₂ (≥ 50 mm Hg)</td>
<td>0</td>
</tr>
<tr>
<td>AaPO₂ (≥ 15 mm Hg)</td>
<td>87%</td>
</tr>
<tr>
<td>Log SDQ (> 0.60)</td>
<td>67%</td>
</tr>
<tr>
<td>Log SDV (> 0.65)</td>
<td>60%</td>
</tr>
<tr>
<td>Log SDQ and/or Log SDV</td>
<td>73%</td>
</tr>
<tr>
<td>DISP R-E* (> 3.0)</td>
<td>93%</td>
</tr>
</tbody>
</table>

For abbreviations: see Tables 1 and 2. Ventilation-perfusion indexes are dimensionless. To convert millimeters of mercury to kilopascals, multiply by 0.133.
FIGURE 2

- **Arterial Oxygen Tension (mm Hg)**
 - $r = 0.62$
 - $p < 0.001$

- **Arterial Carbon Dioxide Tension (mm Hg)**
 - $r = -0.59$
 - $p < 0.001$

- **Alveolar-Arterial Oxygen Gradient (mm Hg)**
 - $r = -0.30$
 - $p < 0.001$

FEV₁, Percent Predicted