Comparison of Transient Otoacoustic Emission (TEOAE) responses from Neonatal and Adult Ears.

Giovanna Zimatore1, Stavros Hatzopoulos2, Alessandro Giuliani3, Alessandro Martini2, and Alfredo Colosimo1

1Department of Human Physiology and Pharmacology, University of Rome "La Sapienza", 00185 Rome, Italy ; (2) Center of Bioacoustics, University of Ferrara, Italy; (3) Istituto Superiore di Sanità, TCE laboratory, V.le Regina Elena 299, 00161 Rome, Italy

Abstract

TEOAE responses from neonatal (age: 48 hours) and adult subjects (age: 26.6 ±10.0 years) were analyzed by the combined use of Recurrence Quantification Analysis and Singular Value Decomposition. The data from the two age groups showed significant differences and similarities. The neonatal responses presented less deterministic structures than the adults, in terms of recurrent dynamical features. In both data sets the same high-level of individual-specific dynamical features was observed. The results from the Single Value Decomposition analysis suggest that a large percentage of variability in all the analyzed responses can be explained by 4 to 5 essential modes. This number is lower than that observed in simulated TEOAE responses generated by a 5-component gammatone model. A possible explanation is presented, based on simple instrumental and morpho-anatomical considerations.

Short title: Neonatal and adult TEOAEs

Keywords: Hearing physiology, Otoacoustic Emissions, Non-linear methods, Principal Component Analysis, Singular Value Decomposition, Gammatones.
ABBREVIATIONS:

RQA Recurrence Quantification Analysis
PCA Principal Component Analysis
%REC Percent Recurrence
%DET Percent Determinism
ENT Entropy
EMB Embedding Dimension
SVD Singular Value Decomposition
OAE Otoacoustic Emission
TEOAE Transiently-Evoked Otoacoustic Emission
REPRO Pearson correlation coefficient between two waveforms x100
OHC Outer hair cell
IHC Inner hair cell
CNS Central Nervous System
1. INTRODUCTION

The Transiently Otoacoustic Emission (TEOAEs) responses are generated by the movement of outer hair cells (OHCs) on the Organ of Corti, when the auditory periphery is stimulated by an acoustic click. In mammals, the OHCs, together with the inner hair cells (IHCs), the pillar cells and the tectorial membrane represent a sophisticated apparatus which allows recognition and analysis of the incoming acoustical vibration in the range from 20 Hz to 20 kHz. The TEOAEs are present in 100% of normal hearing subjects and constitute an expression of a normal cochlear functionality [28].

The information contained in the structure of the TEOAE responses could reveal the details of many auditory processes concerning not only the auditory periphery but the central nervous system as well. In fact the central nervous system (CNS) modulates the function of OHCs and IHCs through medial and lateral afferent fibers [22]. These facts have led to new procedures, based on the acquisition of TEOAE responses, which aim to establish the relationship between cochlear mechanics and the effects of the olivocochlear system [17, 23, 24].

The data in the literature indicate that the neonatal TEOAE responses, with respect to the adult ones, are characterized by: i) a large signal amplitude [26, 28]; ii) a wider and more uniform spectrum, shifted occasionally towards higher frequencies [25]; and iii) a large intra-subject variability (for newborn subjects and children up to about six years age) [11, 19, 24].

In a previous study [38] we provided a detailed description of the dynamical properties of TEOAEs from adult subjects by using two techniques, the recurrence quantification analysis (RQA) and the principal component analysis (PCA). In the present study we extend those results by applying the same analytical strategy to newborn subjects, as a means of acquiring an additional insight of the dynamical characteristics of the TEOAEs through a systematic comparison of two different age classes, newborns and adults.
From a practical viewpoint, our aim was to: i) investigate the age-related features of TEOAEs from a dynamical perspective; ii) define some general criteria to compare TEOAE responses recorded under quite different conditions, iii) provide the basis for a future investigation of pre-term and full-term newborns; as well as for a comparison between human and other mammals’ signals.

It is worth to stress that the analytical methods we used include a standardization procedure which eliminates any effect of the signal amplitude on the dynamics. This allowed us to focus only on the order(time)-dependent features of the TEOAE responses and to classify them from an essentially statistical viewpoint. In the common practice of the study of complex signals, this is considered a basic step towards the identification of reliable mechanistic models. Moreover, we complemented the statistical description of TEOAEs dynamics by analyzing the properties of single signals through a Singular Value Decomposition (SVD) approach that makes it possible to estimate the basic modes generating TEOAEs, as well as to verify the congruence between natural and simulated systems. This approach is absolutely new in the study of TEOAE signals and opened the door to relevant conclusions concerning: i) the individual features of TEOAEs responses, which are not significantly different between the studied age groups; ii) the basic difference between natural and simulated signals in terms of number of normal modes buried in them.

2. MATERIALS AND METHODS

Data Sets

A) Neonatal TEOAE responses.

The neonatal TEOAE responses were collected in a quiet room of the Neonatology department of Ferrara University, Italy, in the second day of life (48 hours) and during spontaneous sleep after feeding, according to protocols described in previous publications [12, 13, 27]. The 60 newborn
subjects were randomly selected and were characterized by a normal weight (3.2-4.0 kg) , an Apgar index of neurological development and health higher than 8 and did not present any audiological risk factors. All the responses selected for the present work showed a TEOAE correlation >= 80% , a value established in previous studies [12, 22, 24] as the criterion for accepting the normality of a neonatal TEOAE response.

The TEOAE responses were recorded by the Otodynamics ILO-292 analyzer (software version 4.20B and 5.60H). The standard ILO TEOAE neonatal probe was employed in all recordings. The adequacy of the probe fit was evaluated by measuring the proper frequency range of the stimulus (1.0-5 kHz).

B) TEOAE Responses from adult subjects

The adult TEOAE responses were obtained in the Audiology department of Palermo University, Italy, from 62 subjects, chosen on the basis of the absence of : i) any patho-physiological objective sign of clinical relevance, and ii) any systematic pharmacological treatment within three months from the acquisition of the TEOAE response. Click-evoked emissions were recorded in a sound-attenuated booth with the patient seating adjacent to the recording equipment, using an ILO 88 system (Otodynamics) with standard adult ILO probes. The probe fit was evaluated by measuring the adequacy of the stimulus across the frequency range of 0.5-5 kHz.

TEOAE protocols.

For both neonatal and adult subjects a non-linear TEOAE stimulation protocol was used, consisting of three clicks with a positive polarity followed by a fourth click with inverse polarity and intensity equal to the sum of the previous three. For the neonatal subjects, the click stimuli had an intensity of 82-84 dB SPL; for the adult subjects, stimuli of 76-80 dB SPL were used.
The responses were high-pass filtered at 500 Hz (adults) and 1200 Hz (neonates). Due to time restrictions in the Neonatology ward the neonatal responses were the average of at least 100 individual responses (sweeps). When the signal to noise ratio (S/N), at 2.0, 3.0 and 4.0 kHz was higher than 8.0, 11.0 and 10.0 dB respectively [12], the neonatal TEOAE response was considered a “pass” and the subject was added to the pool of acceptable subjects. For the adult subjects each response was the average of a minimum of 260 to a maximum of 2400 individual sweeps. A response was considered pass when the S/N ratio was higher than 3 dB at 2.0, 3.0 and 4.0 kHz [10, 23, 28].

RQA Parameters.

RQA aims to a direct and quantitative description of the amount of deterministic structure [5, 29] of a signal and it was shown to be an efficient and relatively simple tool in the non-linear analysis of many physiological signals [4, 8, 30, 32]. The basic idea behind RQA is the identification of recurrence of local data points in a reconstructed phase-space. The targeted system is analyzed by reconstructing the space of the true signal dynamics, using a coordinate system of surrogate variables, created by a combination of the measured signal and time-lagged copies of itself. In this work the temporal series delay (lag) has been set to 1.

This coordinate system (embedding matrix, EM) is then transformed into a distance matrix by simply computing the Euclidean distance between row (epochs) of the EM. An important aspect of the RQA analysis is the definition of: i) the embedding dimension for the deconvolution of the original signal in a multidimensional space, and ii) the radius (maximum euclidean distance at and below which the recurrent points are defined and displayed) [6, 18, 20, 35-37].

Each distance below the radius is considered a recurrence pair and the distance matrix is transformed into a recurrence plot by darkening all the recurrent points (Figure 1c,d).
For the adult and neonatal data sets the following RQA parameter values have been used, as suggested in a previous study [38]: embedding dimension=10 and radius=15. This last value is expressed as a percentage of the average distance between all epochs, and automatically scales for any differences in the TEOAE signal amplitude.

The RQA descriptors used in this study are the following:

1) The percentage of recurrence (%REC), which quantifies the percentage of the plot occupied by recurrent points.

2) The percentage of determinism (%DET), which is the percentage of recurrent points that appear in a sequence, forming diagonal line structures in the distance matrix. A line is \textit{a priori} defined as the sequence which is equal to or longer than a predetermined threshold length. In the present case the threshold was set to 8. In this context, the RADIUS parameter defines the distance below which two epochs are considered recurrent, and the %DET threshold defines the minimum number of consecutive recurrent points that can be scored as deterministic.

The %DET corresponds to the number of patches of recurrent behavior in the studied series, i.e., to portions of the state space in which the system resides for a longer duration than expected by chance alone (quasi-attractors [34]). It should be noted that theoretically a recurrence can be observed by chance whenever the system explores two nearby points of its state space. On the contrary, the observation of recurrent points consecutive in time which form lines parallel to the main diagonal, is an important signature of deterministic structuring [5, 31, 32].

3) The entropy (ENT) is defined in terms of the Shannon-Weaver formula for information entropy [32] computed over the distribution of length of the lines of recurrent points and measures the richness of deterministic structuring of the series.

Based on data from a previous study [38] the %DET appears as the parameter of choice due to its higher content of robust information concerning the dynamical structure of the analyzed responses.
The %DET variable was studied in terms of population properties and on an individual basis. For the population analysis, we compared the two age groups looking for the existence of a significant difference in the amount of determinism. This comparison, being performed on different time windows allowed us to evaluate (i) the amount of stationarity along the various segments of the TEOAE response, and (ii) the stationarity differences between the two groups. For the individual analysis more than one response was available for a number of subjects. From these repetitions we could compute the value of inter- and intra-individual variability in the %DET variable as well in other RQA descriptors. From the ratio of intra- and inter-subjects variability we were able to estimate the average amount of “individuality” within the two age groups.

Principal Component Analysis (PCA) and Singular Value Decomposition (SVD).

PCA and SVD are two applications of essentially the same algorithm, designed to solve an eigen-value/eigen-vector problem, in different contexts [20].

PCA has been proved most useful in multivariate statistics, as a means to minimize redundant information [14], while SVD is used to identify the essential dynamical modes of time dependent signals [1-3] acting as a precise noise-filter tool. PCA applies to data sets having the form of a rectangular matrix \(X \), where the rows are the statistical units (M) and the columns are the measured (or observed) variables (N). In the case of SVD, the matrix \(X \) has subsequent time-lagged copies of a time series as columns, and subsequent epochs of length equal to the embedding dimension as rows. The matrix \(X \) can be expressed as:

\[
X = U S V^T
\]

The superscript \(T \) indicates a transposed matrix, and the matrices \(U, V \), have dimensions \(M \times K \) and \(N \times K \), respectively, and fulfill the relation \(U^T U = V^T V = 1 \). \(S \) is a \(K \times K \) diagonal matrix whose non-zero elements (singular values) are such that: \(s_{11} > s_{22} > s_{33} \ldots > s_{kk} > 0 \).
Within this context we can project the original data into a new set of coordinates US (principal component scores) with no loss of information. Each element of X can, in fact, be reconstructed by the equation:

\[X_{ij} = \sum_{k=1}^{N} U_{ik} S_k V_{jk} \]

(2)

The new coordinates are by construction orthogonal (i.e. statistically independent), each representing an independent aspect of the data set.

PCA is one of the most widespread modeling technique, with applications ranging from sociology to organic chemistry, physiology and theoretical physics, thanks to the following property: by an expansion truncated to A terms (with \(A < N \)) one obtains:

\[X_{ij} = \sum_{k=1}^{A} U_{ik} S_k V_{jk} + E_{ij}^2 \]

(3)

Where the squared error term \((E_{ij}^2)\) is a minimum. What makes expression (3) different from (2) is the presence of the error term and the sum limited to a lower number of coordinates with respect to the original data field. Since the error term is a minimum, projecting the original data on the new, lower-dimensional component space \((A < N)\) is optimal in a least-square-sense. This implies that we can keep the meaningful (signal-like) part of the information, contained in the first principal components, and discard the noise, contained in the error term. In the PCA context, "meaningful" means "correlated", since the first principal components convey information linked to the correlated portion of the information carried by each variable, while the (uncorrelated) noise remains confined within minor components.

By the SVD method, a privileged coordinate system is obtained by diagonalizing a correlation matrix in an embedding space [3-4]. The method points to the determination of the approximate number of modes (eigenvalues) excited in the system. In particular, from the percentage of variance explained by each eigenvalue, the number of independent (orthogonal) modes structuring the overall dynamics may be estimated. Moreover, the number of significant eigenvalues is a measure of the complexity of the system comparable to the correlation dimension.
In the present study we applied both PCA and SVD. PCA was used to investigate the amount of individuality in terms of clusters of repeated TEOAEs from the same individuals, in a component space derived from RQA parameters, SVD was applied to single TEOAE signals in order to compute their relative complexity in terms of the number of normal modes necessary to attain a given level of explained variability.

TEOAE simulation

To synthesize the TEOAE responses we have assumed that the inner ear behaves as a bank of gammatone filters and that a click evoked otoacoustic emission is simply the sum of the impulse responses generated by each filter. The gammatone simulation method has been chosen due to the relatively easy interpretation and physiological meaning of the simulated results. Each gammatone generator behaves as a narrow band-pass filter and is characterized by a specific central frequency (fc) which varies along the basilar membrane and is inversely proportional to the distance from the stapes. In the time domain each gammatone is given by:

\[
\gamma(t) = at^3 e^{i\omega_c t} \cos \omega_c t
\]

(4)

where \(\omega_c = 2\pi f_c \), \(b = \beta \omega_c \) is even related to the signal damping and \(a = (\omega_c)^{3.5} \) makes the power of the gammatone independent of \(\omega_c \) [33 and references therein].

We used a set of 5-gammatones as suggested by Wit and van Dijk with fc set at 1.0, 1.5, 2.2, 3.3, and 5.0 kHz, and a reduced set including 3 elements with fc values located at the extreme and in the middle of the frequency range between 1.5 to 5 kHz. (fc set at 1.0, 2.2, 5.0 kHz).

The aim of the simulations was to investigate whether the overall similarity in the TEOAE waveform shape was matched by similar results of the SVD analysis for natural and simulated signals.
3. RESULTS

Comparing adult and neonatal responses in different time-windows.

Considering that the default ILO response has a length of 20.4 ms, several smaller windows were studied. Such an approach revealed important information regarding: i) the study of stationarity for signals from both data sets, and ii) the identification of the window that best discriminates neonatal and adult TEOAE responses.

The RQA was carried out within three overlapping time-windows (T1, T2 and T3) having different starting points (from 4.0, 7.0 and 9.2 ms, respectively) and a common ending point of 20 ms (see Figure 1a). These windows were chosen according to the following considerations: in the first 4 ms (T1) the adult signals have an amplitude of almost zero [13]; in the adult subjects the most significant part of the responses [13, 27] occurs after 7 ms (T2); after 10 ms (T3) the signal’s amplitude decreases abruptly, and low-frequency components appear.

To attain a more precise estimate among the responses at different time-intervals and to localize the time occurrence of non-stationarities in the two age classes, the analysis was also carried out over three identical, but non-overlapping 5 ms segment. These windows were named as P1 (4.0-9.0 ms), P2 (9.0-14.0 ms) and P3 (14.0-19.0 ms) and are shown in Fig. 1b.

Figure 1

The data in Figure 2 show that for all the six considered windows, the % DET values in the neonatal group (panels a,b) are lower than those from the adult subjects (panels c,d); the differences between the two age classes, however, were more evident in non-overlapping windows. To provide a conservative estimate of such differences, in all subsequent analyses we only considered...
overlapping windows. The RQA parameters were calculated in the T2 time-window because the corresponding standard deviation values of the inter-subject variability were maximal.

Figure 2

Individual features

The analysis of the %DET variable, showed that the inter-subject variability was larger in neonates than in adults, in accordance with the information in the literature [11, 25]. Also the intra-subject variability was larger in neonates than in adults. On the contrary, the “extent” of individual features, as indicated by the ratio Inter-subject variability / Intra-subject variability, presented similar values, as shown in Table 1.

Table 1

The analysis of the REPRO variable produced different results. For the adult responses, the extent of individual features was estimated as 2.87/0.81= 3.56, while in the case of neonatal responses the estimated value was 2.43/2.20= 1.10. Such an estimate fails to highlight any individual character as for the REPRO value in the neonatal group, pointing to a relative weakness of the REPRO parameter in the evaluation of acoustic performance of newborns, due to a relevant intra-subject variability.

Data from a previous study show that replicated TEOAE responses from adult subjects are recognizable in a Principal Components space [38], namely that responses recorded from the same subject fall close to each other in a Principal Components reference plane. More precisely, signals from the same ear of same subject and analyzed by RQA cluster in a Principal Components reference plane derived from %Rec, %Det and Ent parameters. The same procedure has been applied in the present study to sort out individual features in both neonates and adults. In **Figure 3** it is possible to observe that signals recorded from the same ear of the same subject cluster in a Principal Components reference plane derived from the RQA descriptors. In the case of adults, it
was also possible to test the reliability of these results by using signals recorded in subsequent sessions.

Figure 3

SVD analysis of natural and simulated TEOAE signals.

Figure 4 reports the distribution of the total average variability explained by each mode within a subset of at least 10 adult and neonatal responses. A relevant feature emerging from this analysis is that, in both data sets, the majority (90% to 95%) of the observed variability is explained by four eigenvalues arranged into couples. This suggests that the responses of both data sets might contain components from four classes of TEOAE generators, divided into two pairs. In each pair, the constituent elements oscillate, in the average, with a phase shift of approximately 90° (sine-cosine pairing) with respect to each other.

Figure 4

Figure 5, reports the results obtained over the simulated TEOAE signals with a 3 and a 5 gammatones model. For both models the SVD analysis was carried out using slightly different values of β. This parameter is inversely proportional to the filter “gain”, namely to the active (amplifying) function of the gammatone. Panels a and b of Figure 5 show the simulated TEOAEs based on 3 and 5 gammatones, respectively; panel c reports the SVD analysis of the two simulated signals.

Figure 5

The number of essential modes associated with both the simulated signals is basically the same (6), and significantly higher than the one observed in natural signals (Figure 4). Concerning the distribution of the percentage of the explained variance over the mode’s number, the TEOAE signal generated by 3 gammatones (Figure 5a) seems to better reproduce the characteristic coupling of the natural signals. The total variance explained by modes 1 to 5 is above 99.0% for both newborn and
adult signals, and amounts for 94.7% and 89.0% in the case of signal simulated by 3 and 5 gammatones, respectively. In spite of the obvious limitations of the model, this points to a relatively simple behaviour of the natural system, under the explored conditions.

4. DISCUSSION

Comparing neonatal and adult TEOAE responses revealed a number of dynamical differences and similarities which can be summarized as follows:

1. The newborn responses appear less deterministic than the adult ones, in all the investigated conditions in the overlapping windows (T1,T2,T3) as well as in the non-overlapping windows (P1,P2,P3). We assume that the decrease of the variable %Det in the neonatal responses of the P3 window (14-19 ms), might be related to the lack of medium-low TEOAE frequencies generated by apical OHCs, which are supposed to be mainly responsible for the last portion of the signal [12, 13, 28].

2. The responses from neonatal subjects are less stationary in comparison to adults. The non-overlapping windows P1-P3 highlighted a small albeit statistically significant difference between the two groups in terms of the relative stationarity character of TEOAEs. Based on these results it might be speculated that the adult signals were more structured; in this context the aging processes of the auditory periphery can be considered as a progressive and system ordering process.

3. Both adult and neonatal TEOAE responses show the same amount of individual features as measured by the ratio between inter/intra-subject variability of the %Det variable. Although the inter and intra-subject variabilities are different in the two data sets, the ratio value is quite similar (3.70 versus 3.79 for adults and neonates respectively). This implies that individual characteristics are present in the TEOAE responses since the first days of life. These results were also confirmed by PCA on the entire set of RQA parameters and FFT spectral parameters (5 values, one for each frequency bands) (results not shown).
4. Both data sets display the same number of dominant modes as shown by SVD analysis. This result suggests that the dynamic features of the TEOAE responses are similar for both age groups. Differences were observed between natural and simulated TEOAE responses: the latter show a higher complexity (more modes were needed to explain the same percentage of variability) which is probably caused by the lack of coupling between the structures responsible for the number of modes.

In general, the results indicate an overall decrease in complexity from neonatal to adult TEOAE responses. This decrease involves both a signal regularization (increase in stationarity) as well as a higher determinism. Within this context it might be hypothesized that the aging process makes the TEOAEs more similar between them (lower inter-individual variability) and more stable. Concerning individuality, the similarities between the two groups are in agreement with a genetic source of inter-subjects variability. On the other hand genetic factors, being age-independent, cannot account for the differences observed between the age groups (loss of complexity, stationarity increase, etc.). Thus, in such case functional/physiological explanations are in order.

In such a context, it may be useful to identify the biological structures responsible for the “principal modes” of the natural TEOAEs shown in Figure 4, on the basis of the scheme of Giguere and Woodland [7, 21] reported in Figure 6.

Figure 6

The simulated TEOAE signal in Figure 5 can be considered the output of the cochlear amplifier at the level of the round window, and in this context the simulated response (point B in the scheme) is not filtered by the transfer functions of both the middle and the external ear. Real TEOAE responses of the type shown in Figure 1, were recorded inside the auditory canal (point A in Figure 6). The difference in dominant modes between real and simulate responses, suggests that the blocks (I) and (II) of Figure 6, are somehow responsible for reducing the TEOAE complexity.
As for the source of individual features, it should be noted that our analysis is independent of the TEOAE response amplitude, which rules out trivial considerations based on different ear size or morphology. Identical results as those reported in Figure 3 (data from left ear responses) were obtained from right ear responses (not shown). It seems relevant to notice that the number of dominant modes is essentially identical in newborn and adult signals; this indicates that, whatever the mechanistic basis of the underlying phenomena would be, it does not reveal any age dependent effect under our conditions. We could not find any significant correlation between signals from the two ears of the same subject. Thus, the mechanistic source of TEOAE individual features should be searched at a micro-scale, maybe at the level of different distribution patterns of outer hair cells, which could be envisaged as different in the two ears even for newborns: this point, however, surely needs more detailed investigation. The comparison between pre-term and full-term newborns seems also worth of investigation in future works. In both cases, as well as in any other analytical study of TEOAE signals, it is difficult to overestimate the euristic power of simulated signals generated by appropriate mechanistic models [15,16]. As indicated by the simulation results reported in the present paper on the basis of a relatively simple model, however, such an approach, if aiming to account for the subtle dynamical features of TEOAEs at the highest possible level of resolution, requires consideration of the possible non linear coupling between the functional units included in the underlying mechanism.

5. ACKNOWLEDGEMENTS
This work has been partly supported by grants of the Italian M.U.R.S.T. (60%) to A.C. The authors are indebted to Maddalena Rossi (University of Ferrara) for TEOAE data collection and to prof. G. Grisanti and dr. C. Parlapiano (University of Palermo) for data collection and very useful discussions.
6. REFERENCES

FIGURE LEGENDS:

Fig.1: Typical TEOAE signals and their Recurrence Plots.
A typical TEOAE signal from a newborn and the corresponding Recurrence Plot are reported in (a) and (c), respectively. Panels (b) and (d) refer to an adult signal. In panels (a), (c) full and open symbols show, respectively, overlapping (T1, T2, T3) and non-overlapping windows (P1, P2, P3): see the Methods section for further details. Circles and squares indicate, respectively, the start and the end of windows. In panels (b), (d), the used RQA parameters are: Emb=10, Radius=15, Lag=1, Line=8.

Fig. 2: Deterministic structure of adults and neonates TEOAE in different time windows.
Upper (a,b) and bottom (c,d) panels refer to newborn and adult signals, respectively; left (a,c) and right (b,d) panels refer to overlapping and non-overlapping time windows, respectively. The time spans of the windows is the following: T1 = 4 - 20 ms; T2 = 7 - 20 ms; T3 = 9.2 - 20 ms; P1 = 4 - 9 ms; P2 = 9 - 14 ms; P3 = 14 - 19 ms.

Fig.3: TEOAE Clustering in a PCA plane.
Upper and bottom panels refer to neonate and adult left ear signals, respectively. The PCA analysis has been carried out over the main RQA parameters (% REC, %DET, ENT). In each panel the same symbol is used for the same individual. In panel b, closed symbols refer to signals recorded, for a given individual, in subsequent experimental sessions, separately analyzed and plotted over the plane obtained by an initial (learning) set of measurements (open symbols).
Fig 4: SVD analysis of real TEOAE signals.

Panels (a) and (b) refer to responses from adult and neonatal subjects, respectively. For each group average-values were estimated from at least 10 signals and reported, for both classes, together with maximum and minimum values.

Fig 5: Simulated TEOAE signals.

Simulated TEOAE from three and five-component gammatone model: a) A three component model with fc set at 1.0, 2.2, and 5.0 kHz and $\beta=0.1$; b) a five component model with fc set at 1.0, 1.5, 2.2, 3.3 and 5.0 kHz and $\beta=0.11$; c) SVD analysis of the simulated TEOAE signals in panels a (filled symbols) and b (open symbols).

Fig 6: Block scheme of the Auditory system.

Point A indicates the microphone position in the experimental set up for TEOAE recording. The pathway of the natural TEOAEs from generation to the monitoring site is: from III to II to I. Point B shows the round window location of the inner ear, where in theory the simulated signals should be observed.
TABLES:

Table 1: Inter- and Intra-subject variability in %DET.

<table>
<thead>
<tr>
<th></th>
<th>INTER</th>
<th>INTRA</th>
<th>INTER/INTRA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neonates</td>
<td>15.64</td>
<td>4.22</td>
<td>3.70</td>
</tr>
<tr>
<td>Adults</td>
<td>9.91</td>
<td>2.61</td>
<td>3.79</td>
</tr>
</tbody>
</table>

Average and standard deviation values of % DET over repeated signals of the same individual are calculated for at least 6 individuals in each age class. Inter-subjects variability (INTER) is the standard deviation of the averages relative to individuals in the same class. Intra-subject variability (INTRA) is the average of the standard deviations relative to individuals in the same class.
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6