Role of matrix metalloproteinase-9 in endothelial apoptosis in chronic heart failure in mice

Alexander V. Ovechkin, Neetu Tyagi, Walter E. Rodriguez, Melvin R. Hayden, Karni S. Moshal, and Suresh C. Tyagi
Department of Physiology and Biophysics, School of Medicine, University of Louisville, Louisville, Kentucky

Submitted 20 April 2005; accepted in final form 3 August 2005

MMP-9 expression were measured by quantitative RT-PCR. Com-مضاربة ماذا يكون في الخلايا الاندفاعية في التهاب القلب في الفئرانية؟

expression were measured by Western blot analyses. MMP-2 and مرض النوبة القلبية وبيولوجيا النسيجية في القلب والقلب الناضج.

tors-1, connexin-43, and a disintegrin and MMP-12 (ADAM-12) (TUNEL), and CD-31 by immunolabeling. Protease-activated recep-مضاربة ماذا يكون في الخلايا الاندفاعية في التهاب القلب في الفئرانية؟

tion.

AVF group. Protease-activated receptor-1, connexin-43, and 3 مرض النوبة القلبية وبيولوجيا النسيجية في القلب والقلب الناضج.

CD-31 colabeling) in AVF mice was prevented in the MMP-9KO مرض النوبة القلبية وبيولوجيا النسيجية في القلب والقلب الناضج.

levels. Increased EE apoptosis (caspase-3 activation and TUNEL/ مرض النوبة القلبية وبيولوجيا النسيجية في القلب والقلب الناضج.

H11001 مرض النوبة القلبية وبيولوجيا النسيجية في القلب والقلب الناضج.

of anesthetized mice 8 wk after AVF. Apoptosis was detected مرض النوبة القلبية وبيولوجيا النسيجية في القلب والقلب الناضج.

by measuring caspase-3, transferase-mediated dUTP nick-end labeling مرض النوبة القلبية وبيولوجيا النسيجية في القلب والقلب الناضج.

(TUNEL), and CD-31 by immunolabeling. Protease-activated recep-مضاربة ماذا يكون في الخلايا الاندفاعية في التهاب القلب في الفئرانية؟

tors-1, connexin-43, and a disintegrin and metalloproteinase مرض النوبة القلبية وبيولوجيا النسيجية في القلب والقلب الناضج.

12 (ADAM-12) expression were measured by Western blot analyses. مرض النوبة القلبية وبيولوجيا النسيجية في القلب والقلب الناضج.

MMP-2 and MMP-9 expression were measured by quantitative PT-PCR. Compared مرض النوبة القلبية وبيولوجيا النسيجية في القلب والقلب الناضج.

with control, AVF caused an increase in left ventricle end مرض النوبة القلبية وبيولوجيا النسيجية في القلب والقلب الناضج.

diastolic pressure and decrease in −dP/dt. In contrast, the MMP- مرض النوبة القلبية وبيولوجيا النسيجية في القلب والقلب الناضج.

9K0 + AVF group, these variables were changed toward control مرض النوبة القلبية وبيولوجيا النسيجية في القلب والقلب الناضج.

levels. Increased EE apoptosis (caspase-3 activation and TUNEL/ مرض النوبة القلبية وبيولوجيا النسيجية في القلب والقلب الناضج.

CD-31 colabeling) in AVF mice was prevented in the MMP-9KO + مرض النوبة القلبية وبيولوجيا النسيجية في القلب والقلب الناضج.

AVF group. Protease-activated receptor-1, connexin-43, and مرض النوبة القلبية وبيولوجيا النسيجية في القلب والقلب الناضج.

ADAM-12 were induced in AVF. MMP-9 gene ablation ameliorated مرض النوبة القلبية وبيولوجيا النسيجية في القلب والقلب الناضج.

the induction. The results suggest that impaired cardiac function مرض النوبة القلبية وبيولوجيا النسيجية في القلب والقلب الناضج.

in volume overload is associated with EE apoptosis, cardiac remodeling, مرض النوبة القلبية وبيولوجيا النسيجية في القلب والقلب الناضج.

and endothelium-myocytes uncoupling in response to MMP-9 activation.

arteriovenous fistula; endocardial dysfunction; extracellular matrix مرض النوبة القلبية وبيولوجيا النسيجية في القلب والقلب الناضج.

remodeling; terminal deoxynucleotidyl nick-end labeling; connexin- مرض النوبة القلبية وبيولوجيا النسيجية في القلب والقلب الناضج.

43; protease-activated receptors-1; a disintegrin and metalloproteinase-12; congestive heart failure

MYOCARDIAL REMODELING IN congestive heart failure (CHF) is مرض النوبة القلبية وبيولوجيا النسيجية في القلب والقلب الناضج.

associated with accumulation of extracellular matrix (ECM) مرض النوبة القلبية وبيولوجيا النسيجية في القلب والقلب الناضج.

between endothelial and muscle cells (21) and is one of the مرض النوبة القلبية وبيولوجيا النسيجية في القلب والقلب الناضج.

most important factors of endocardial endothelial dysfunction مرض النوبة القلبية وبيولوجيا النسيجية في القلب والقلب الناضج.

(8, 14). Previous studies showed that morphological changes in مرض النوبة القلبية وبيولوجيا النسيجية في القلب والقلب الناضج.

myocardium are associated with increased expression and مرض النوبة القلبية وبيولوجيا النسيجية في القلب والقلب الناضج.

activity of matrix metalloproteinases (MMPs) (6, 18). MMPs مرض النوبة القلبية وبيولوجيا النسيجية في القلب والقلب الناضج.

degrade interstitial collagen and elastin, but the more collagen مرض النوبة القلبية وبيولوجيا النسيجية في القلب والقلب الناضج.

is degraded, the more that is synthesized. Consequently, synthesis مرض النوبة القلبية وبيولوجيا النسيجية في القلب والقلب الناضج.

exceeds degradation and leads to accumulation of oxidized ECM (19, 29). ECM accumulation leads to increased endothelial to myocyte distance (20), and, recently, our laboratory showed that activation of MMPs leads to endocardial-myocyte uncoupling (21). There are >20 MMPs in the family, but MMP-2 and MMP-9 are the most robustly increased during the early and late phase of CHF, respectively (28).

Different stimuli, including cardiac mechanical stress and over- مرض النوبة القلبية وبيولوجيا النسيجية في القلب والقلب الناضج.

load, have been found to increase the rate of myocardial apoptosis, a process of programmed cell death (10). It has been found that myocyte apoptosis is one of the factors in developing CHF, but the role of endothelial apoptosis in progression of cardiac dysfunction remains controversial (17). The capillary endothelium, strategically located between flowing blood and underlying cardiac muscle, plays an important role in controlling myocardial performance (19). In fact, 16% of the myocardium consists of capillaries, including lumen and endothelium (11). We hypothesized that, in a chronic heart volume overload model and the late phase of CHF, myocardial dysfunction involves endothelial apoptosis in response to MMP-9 activation, ECM accumulation, and endothelial-myocyte (E-M) uncoupling.

Previously, our laboratory demonstrated that tissue inhibitor مرض النوبة القلبية وبيولوجيا النسيجية في القلب والقلب الناضج.

of metalloproteinase-4 (TIMP-4) ameliorated the endothelial cell apoptosis in part by inhibiting MMPs (22). To demonstrate a direct role of MMP in apoptosis, we tested the hypothesis that ablation of the MMP-9 gene can also alleviate the endothelial cell apoptosis in heart failure.

MATERIALS AND METHODS

All mice were exposed to a similar environment and all animal مرض النوبة القلبية وبيولوجيا النسيجية في القلب والقلب الناضج.

procedures were approved by the Institutional Animal Care and Use مرض النوبة القلبية وبيولوجيا النسيجية في القلب والقلب الناضج.

Committee of the University of Louisville Medical Center. Male mice مرض النوبة القلبية وبيولوجيا النسيجية في القلب والقلب الناضج.

aged 8–12 wk, MMP-9 knockout (MMP-9KO; FVB.Cg-Mmp9tm1Tvu) مرض النوبة القلبية وبيولوجيا النسيجية في القلب والقلب الناضج.

and FVB/NJ controls (2), were obtained from Jackson Laboratories مرض النوبة القلبية وبيولوجيا النسيجية في القلب والقلب الناضج.

(Bar Harbor, ME). An arteriovenous fistula (AVF) was created مرض النوبة القلبية وبيولوجيا النسيجية في القلب والقلب الناضج.

between the aorta and the caudal vena cava (0.5 cm below the left مرض النوبة القلبية وبيولوجيا النسيجية في القلب والقلب الناضج.

ventricle) of anesthetized mice (100 mg/kg ip; 8750–7587/05 $8.00 Copyright© 2005 the American Physiological Society http://www . jap.org).
were collected (5). Well-defined continuous interfaces of the septum and posterior wall of LV wall were measured. Only M-mode echocardiography with just below the tip of the mitral-valve leaflet. LV size and the thickness echocardiograms were obtained from a short-axis view of the LV at or transducer probe was placed on the left hemithorax of the mice in the array transducer was used for measurements of LV function. The graphic system equipped with a 15-MHz shallow-focus 15-6L phased-heart, and body weights were measured. The heart was excised under deep anesthesia. Lung, were recorded. The heart was excised under deep anesthesia. Lung, and end-systolic pressure, respectively; MAP, mean arterial pressure; LVEDd and LVEDs, left ventricular end-diastolic and end-systolic diameter, respectively; LVPWd and LVPWs, left ventricular end-diastolic and end-systolic wall thickness, respectively. FS, fractional shortening. *P < 0.05. Note that there were no significant differences between the data obtained from control (WT), MMP-9 knockout (MMP-9KO), and MMP-9KO+AVF groups.

Echocardiography. A Hewlett-Packard Sonos 7770 echocardiographic system equipped with a 15-MHz shallow-focus 15-6L phased-array transducer was used for measurements of LV function. The transducer probe was placed on the left hemithorax of the mice in the partial left decubitus position. Two-dimensionally targeted M-mode echocardiograms were obtained from a short-axis view of the LV at or just below the tip of the mitral-valve leaflet. LV size and the thickness of LV wall were measured. Only M-mode echocardiography with well-defined continuous interfaces of the septum and posterior wall were collected (5).

Measurements of aortic and LV blood pressure. The Millar transducer was calibrated manually using a mercury manometer. The arterial blood pressure, heart rate, and systolic and diastolic blood pressures were measured by a pressure-tipped Millar transducer (SPR-249A) inserted into the right common carotid artery. Ten minutes after stabilization, the aortic pressure was measured by advancing the catheter into the LV. The catheter was connected to a pressure transducer (Micro-Med) positioned at the level of the heart. Ten minutes after the insertion of the catheter, LV variables were measured (4). LVESD, LVEDD, and –dP/dt were measured. At the end of the experiment, the anesthetized mice were prepared for the excision of the lungs and arrested heart.

MMPs activity. Zymography using 1% gelatin gels were performed on LV tissue homogenates as described (29).

MMP-2 and MMP-9 expression by quantitative RT-PCR. DNA-free total RNA was isolated from tissue with TRIzol reagent (GIBCO), and RNA (1 μg/μl) was used for preparation of first-strand

Table 1. Gravimetric and hemodynamic data

<table>
<thead>
<tr>
<th></th>
<th>WT</th>
<th>MMP-9KO</th>
<th>AVF</th>
<th>MMP-9KO+AVF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body weight, g</td>
<td>27.3 ± 0.4</td>
<td>26.2 ± 0.5</td>
<td>27.1 ± 0.6</td>
<td>26.3 ± 0.3</td>
</tr>
<tr>
<td>Heart weight, g</td>
<td>0.15 ± 0.012</td>
<td>0.16 ± 0.013</td>
<td>0.232 ± 0.025*</td>
<td>0.18 ± 0.014</td>
</tr>
<tr>
<td>Lungs weight, g</td>
<td>0.32 ± 0.04</td>
<td>0.31 ± 0.05</td>
<td>0.54 ± 0.07*</td>
<td>0.39 ± 0.06</td>
</tr>
<tr>
<td>Heart rate, beats/min</td>
<td>409.2 ± 9.5</td>
<td>428.3 ± 8.9</td>
<td>398.5 ± 10.1</td>
<td>399.2 ± 7.4</td>
</tr>
<tr>
<td>LVEDP, mmHg</td>
<td>1.2 ± 0.6</td>
<td>1.4 ± 1.0</td>
<td>8.4 ± 2.9</td>
<td>2.6 ± 0.8</td>
</tr>
<tr>
<td>LVESP, mmHg</td>
<td>112.7 ± 1.6</td>
<td>110.9 ± 2.0</td>
<td>96.4 ± 1.8*</td>
<td>99.6 ± 1.3</td>
</tr>
<tr>
<td>LVEDP/heart weight</td>
<td>746.7 ± 133.3</td>
<td>687.5 ± 153.9</td>
<td>414.4 ± 72*</td>
<td>559.7 ± 92.3</td>
</tr>
<tr>
<td>MAP, mmHg</td>
<td>69.8 ± 0.7</td>
<td>67.7 ± 0.6</td>
<td>71.8 ± 1.1</td>
<td>62.3 ± 0.7</td>
</tr>
<tr>
<td>–dP/dt, mmHg/s</td>
<td>5491 ± 201</td>
<td>4838 ± 288</td>
<td>3156 ± 243*</td>
<td>4391 ± 298</td>
</tr>
<tr>
<td>+dP/dt, mmHg/s</td>
<td>9050 ± 435</td>
<td>8236 ± 378</td>
<td>7666 ± 443</td>
<td>7997 ± 478</td>
</tr>
<tr>
<td>(–dP/dt)/MAP, s⁻¹</td>
<td>81.7 ± 6.3</td>
<td>82.4 ± 3.2</td>
<td>40.4 ± 4.1*</td>
<td>68.9 ± 8.3</td>
</tr>
<tr>
<td>LVEDd, mm</td>
<td>2.81 ± 0.08</td>
<td>2.78 ± 0.07</td>
<td>3.91 ± 0.11*</td>
<td>2.91 ± 0.08</td>
</tr>
<tr>
<td>LVEDs, mm</td>
<td>1.69 ± 0.07</td>
<td>1.65 ± 0.07</td>
<td>2.79 ± 0.12*</td>
<td>1.83 ± 0.09</td>
</tr>
<tr>
<td>LVPWd, mm</td>
<td>0.74 ± 0.03</td>
<td>0.72 ± 0.04</td>
<td>0.85 ± 0.05*</td>
<td>0.79 ± 0.05</td>
</tr>
<tr>
<td>LVPWs, mm</td>
<td>1.12 ± 0.03</td>
<td>1.08 ± 0.03</td>
<td>1.29 ± 0.04*</td>
<td>1.08 ± 0.03</td>
</tr>
<tr>
<td>FS, %</td>
<td>39.86 ± 0.85</td>
<td>40.65 ± 1.1</td>
<td>28.65 ± 1.03*</td>
<td>37.45 ± 1.33</td>
</tr>
</tbody>
</table>

Values are means ± SE; n = no. of animals. MMP, matrix metalloproteinase; AVF, arteriovenous fistula; LVEDP and LVESP, left ventricular end-diastolic and end-systolic pressure, respectively; MAP, mean arterial pressure; LVEDd and LVEDs, left ventricular end-diastolic and end-systolic diameter, respectively; LVPWd and LVPWs, left ventricular end-diastolic and end-systolic wall thickness, respectively. *P < 0.05. Note that there were no significant differences between the data obtained from control (WT), MMP-9 knockout (MMP-9KO), and MMP-9KO+AVF groups.

Fig. 1. Histological analysis of left ventricle (LV) at 8 wk after arteriovenous fistula (AVF). Frozen tissue sections were labeled with trichrome for collagen. A: control (WT) mice; B: AVF mice. Arrows indicate deposition of collagen (blue). Note that the heart with AVF is hypertrophic. Insets: ×20 magnification. C: WT mice; D: AVF mice. Note greater collagen expression in overloaded heart.
cDNA by RT. The RNA samples were incubated (70°C, 5 min) with 1 μl of oligoprimers in a final volume of 5 μl. Samples then were incubated in 15 μl of a reaction buffer. Expression level of the RNA was determined from 2 μl of each cDNA sample for amplification of the housekeeping gene, glycerol aldehyde phosphate dehydrogenase (mouse GAPDH: GenBank accession no.: NM-008084). Upstream (5'-TACATTTCCCTCTCTTACT-3') and downstream (3'-CCA-CATTGACGTCCAGAGA-5') primers for MMP-2 and -9 were synthesized based on the mouse MMP-2 and -9 mRNA sequences (GenBank). Denaturation step was set for 30 s at 94°C, annealing for 60 s at 60°C, and extension for 90-s cycles at 72°C. Glucose-3-phosphate dehydrogenase samples were taken after 30 cycles, and MMPs samples were taken after 35 cycles. PCR reactions were performed with a thermal cycler (Perkin-Elmer 9600) in 50 μl of 1× PCR buffer, 1.5 mM MgCl₂, each primer at 0.2 μM, 200 μM deoxynucleotide triphosphate, and 1 U of Taq DNA polymerase (Invitrogen). Amplification mixtures were analyzed by 1% agarose gel electrophoresis.

Western blot analysis of protease-activated receptors-1, a disintegrin and metalloproteinase-12, connexin-43, and caspase-3. LV tissue homogenates were prepared, analyzed on 10% SDS-PAGE, and transferred to polyvinylidene difluoride membranes. Twenty-five micrograms of total protein were loaded onto each lane. The membranes were blotted with anti-caspase-3, protease-activated receptor-1 (PAR-1), a disintegrin and metalloproteinase-12 (ADAM-12), or connexin-43 monoclonal antibodies (Cell Signaling and Chemicon) as previously described (4). The secondary IgG-alkaline phosphatase was used for detection. Actin blots were used as a loading control. The bands were scanned and normalized with actin intensity. The gels were stained with Commassie blue for protein.
Transferase-mediated dUTP nick-end labeling and CD-31 immu
nohistochemical labeling. To determine whether CHF caused en
dotheial and endocardial injury, 5-μm serial heart tissue sections from
snap-frozen blocks were labeled with transferase-mediated dUTP
nick-end labeling (TUNEL; Upstate Cell Signaling Solutions, Lake
Placid, NY) according to the instructions of the manufacturer for
apoptosis identification by nicked DNA labeling. Endothelial cells
were marked using FITC-labeled anti-mouse CD31/PECAM-1 anti-
body (Southern Biotech, Birmingham, AL) on serial tissue sections
from the same frozen blocks. Quantitative analysis was performed
using Image Pro program (IMAGE-PRO Media Cybernetics, Silver
Spring, MD), and data was expressed in marker area (pixels2) aver-
aged form five randomly selected fields per slide.

Statistical analysis. Values are reported as means ± SE. Differ-
ences between groups were compared by one-way ANOVA with
repeated measurements and multiple comparisons (consideration
given to within-sample variability of observations). A probability
level of $P < 0.05$ was used to indicate statistical significance.

RESULTS

Hemodynamic variables. Mean arterial blood pressure and
heart rate (67.9 ± 0.8 mmHg, $n = 3$ and 408.8 ± 9 beats/min,
$n = 3$, respectively) were not significantly different between all
groups (12 animals). Although the body weight (26.7 ± 0.5 g)
was not significantly different between all groups, the heart
weight was significantly increased in AVF mice compared with
controls (WT and MMP9KO groups) (Table 1), suggesting
cardiac hypertrophy in mice with chronic volume overload.
The histological data revealed biventricular hypertrophy in
AVF mice. In addition, compared with WT, the focal fibrosis

Fig. 5. Comparison of effects of AVF on connexin (Conn)-43 expression in
LV by Western blot analysis. Values are means ± SE; $n = 3$ in each group.
* $P < 0.05$. Note that increased connexin-43 expression in AVF group was
prevented in MMP-9KO+AVF group.

Fig. 6. Two-dimensional M-mode echocar-
diogram of LV [WT group (A); AVF group
(B); MMP-9KO + AVF group (C)] and
comparison of effects of AVF on LV func-
tion (D). Values are means ± SE. * $P =
0.005$. Note that increase in LV end-diastolic
diameter (LVEDD) in AVF animal (B) was
prevented in MMP-9KO+AVF animal (C).
was also increased in LV and right ventricle in the animals from the AVF group (Fig. 1). In contrast, there was no hypertrophy or focal fibrosis in WT, MMP-9KO, and MMP-9KO + AVF mice.

In AVF animals, compared with controls, LVEF was decreased and LVESD was increased. In those animals, the $-\frac{dP}{dt}$ normalized by mean arterial pressure was significantly decreased, suggesting that LV diastolic relaxation is decreased in AVF animals compared with controls (Table 1). LV systolic dysfunction in AVF animals was shown by LVEF-to-heart weight ratio (Table 1). In contrast, both diastolic and systolic dysfunctions were prevented in MMP-9KO + AVF mice (Table 1).

Role of MMP-9 in cardiac remodeling. Total MMP activity in heart tissue was significantly increased in the AVF group compared with WT. The quantitative RT-PCR data also showed increased MMP-9 mRNA expression in heart tissue from AVF animals (Fig. 2). Although the basal levels of MMP-2 were higher in MMP-9 KO mice than in WT mice, there was a significant increase in MMP-2 expression in AVF compared with both WT and MMP-9KO groups (Fig. 2). Compared with WT, the level of PAR-1 expression was significantly increased in AVF animals, but ablation of MMP-9 in animals that underwent AVF attenuated the increase (Fig. 3). Similarly, the heart tissue expressions of ADAM-12 and connexin-43, which significantly increased in the AVF group, were attenuated in MMP-9KO + AVF animals (Figs. 4 and 5). These data suggest that AVF-induced MMP-9 is involved in PAR-1, ADAM-12, and connexin-43 overexpression.

Cardiac function. The LV dilatation and LV wall thickness measured by echocardiography revealed that the LV wall-to-LV end-diastolic diameter (EDD) ratio was significantly decreased in the AVF group compared with controls, and ablation of MMP-9 in MMP-9KO + AVF animals prevented this decrease (Fig. 6). These data suggest a role of MMP-9 in cardiac dilatation in CHF.

Fig. 7. Comparison of effects of AVF on caspase-3 expression in LV by Western blot analysis. Values are means ± SE; n = 3 in each group. *P < 0.05. Note that increased caspase-3 expression in AVF group was prevented in MMP-9KO + AVF group.

Fig. 8. Effect of AVF on endocardial apoptosis [transferase-mediated dUTP nick-end labeling (TUNEL) assay] in LV [WT group (A); AVF group (B); MMP-9KO + AVF group (C)]. D: quantitative presentation of TUNEL marker expression; n = 3 in each group. Scale bars show means ± SE. *P < 0.0025 compared with all groups.
Endothelial and myocyte apoptosis. There was significant induction of caspase-3 in AVF hearts compared with WT or MMP-9KO, with or without AVF (Fig. 7). There were higher numbers of TUNEL-positive cells (Fig. 8) in heart tissue of AVF animals compared with controls. Although the general morphological appearance of the MMP-9KO/AVF heart tissue (Fig. 8C) may appear to be different from WT, there was no quantitative or qualitative difference when compared with MMP-9KO alone (no AVF) or WT. The increase in caspase-3 activation and TUNEL was prevented in MMP-9KO + AVF animals. The colabeling of TUNEL and CD-31, as a marker for endothelial cells in serial heart tissue sections, demonstrated that endothelial cells underwent apoptosis (Fig. 9). Based on TUNEL-positive and CD-31 positive vs. CD-31-negative cells, we estimated that 75% of TUNEL-positive cells were endothelial origin (Table 2). Besides those cells, there were other TUNEL-positive cells, suggesting that endothelial, as well as myocyte apoptosis, is involved in this chronic heart failure model (Table 2). The induction of caspase-3 and in situ TUNEL in the LV of AVF suggest involvement of MMP-9 in transduction of apoptosis.

DISCUSSION

We and others suggested the role of endocardial apoptosis in the cardiac dysfunction in CHF (27, 31). However, the mechanism of this phenomenon is still unknown (1, 18). The results of the present study show that impaired cardiac function in chronic volume overload CHF is associated with endothelial and myocyte apoptosis and is accompanied by endothelial-myocyte uncoupling in response to MMP-9 activation. MMPs are potential mediators of cardiac remodeling and progression to heart failure. Previously, we showed that, during the compensatory phase of CHF, MMP-2 is increased and MMP-9 is overexpressed (23). Others have suggested that targeted deletion of MMP genes in mice attenuates cardiac remodeling in acute (6, 9, 26) and in LV pressure overload chronic heart failure models (10). In the present study, we demonstrated molecular and cellular mechanisms that mediate the pathogenesis of chronic heart failure and the involvement of MMPs in cardiac remodeling and dysfunction.

The histological and gravimetrical data suggested that cardiac hypertrophy in mice with chronic volume overload heart failure were associated with ECM accumulation (Fig. 1). We obtained histological data on MMP-9KO similar to the data obtained by others (6) and found that there was no significant difference in MMP-9KO (control and AVF). The total MMP-2 and MMP-9 expressions were significantly increased in animals from the AVF group (Fig. 2). We measured total MMP and MMP-9 expression in MMP-9KO animals (control and AVF) and found that there was no expression of MMP-9 in control and AVF. However, there was increased MMP-2 expression (Fig. 2). This finding is in part due to a compensatory response to MMP-9 ablation (6). In addition, the lung weight from the AVF animals was significantly higher than controls, suggesting pulmonary edema (Table 1). A significant decrease in the LV wall-to-LV EDD ratio, changes in LVEF and LVEDP, and decrease in LV contraction and relaxation suggested that cardiac function in those animals was also impaired (Table 1 and Fig. 6). The ablation of MMP-9 in animals with AVF significantly normalized LV parameters and clearly indicates that MMP-9 plays a crucial role in pathogenesis of chronic heart failure. These results are consistent with previous reports that MMP-9 inhibition, or targeted deletion of the MMP-9 gene in mice, attenuates LV dilation and decreases

<table>
<thead>
<tr>
<th>Table 2. Morphological data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>CD31-positive cells/field</td>
</tr>
<tr>
<td>TUNEL-positive cells/field</td>
</tr>
<tr>
<td>CD31/TUNEL colocalized cells/field</td>
</tr>
</tbody>
</table>

Values are means ± SE; n = no. of animals. *P < 0.05 compared with all groups. †P < 0.05 compared with WT or MMP-9KO group.

Fig. 9. Comparison of immunofluorescence staining for apoptotic cells (TUNEL assay) in LV. A: AVF group. B: MMP-9KO + AVF group. Regions shown were enlarged 6 times. Bright green spots show positive immunostaining for apoptotic cells. Red spots show positive immunostaining for CD-31 (endothelial marker). Note greater endocardial endothelial apoptosis in AVF group (A) compared with MMP-9KO + AVF group (B).

Fig. 10. Overall hypothesis: stress and progression of congestive heart failure are associated with activation of latent MMP, which activates PAR receptors and subsequently activate ADAM-12. This, in turn, induces MMP-9- and ADAM-12-dependent oxidized extracellular matrix (ECM) accumulation, leading to endothelial-myocyte (E-M) uncoupling and endothelial apoptosis. EC, endothelial cell; MC, myocyte cell.
collagen accumulation in the infarcted area after experimental myocardial infarction (6), after AVF (3), or after pressure overload (10).

Our hypothesis was that impaired cardiac function in CHF could be the consequence of endothelial apoptosis in response to E-M uncoupling due to ECM accumulation in the myocardium (Fig. 10). We found that the levels of caspase-3 activation and numbers of TUNEL-positive cells in heart tissue of AVF animals were significantly higher than in controls (Figs. 7 and 8). Serial heart tissue sections were immunochemically developed with CD-31 antibody as a label for endothelial cells and TUNEL for apoptosis. This TUNEL/CD-31 colabeling showed that endothelial as well as myocyte apoptosis is involved in pathogenesis of CHF (Fig. 9). Previously, our laboratory reported that activated PAR-1 led to cardiac remodeling (21) and that inhibition of MMPs prevented connexin-43 degradation and ameliorated heart failure (13). In the present study, we found that, other than increased expression of PAR-1, ADAM-12, an enzyme involved in cell adhesion and myoblast differentiation and fusion (15), was also overexpressed in AVF animals. This finding suggests that increased activity of PAR-1 could lead to activation of several proteolytic events. It was shown previously that reduced connexin-43 expression produces uncoupling between myocytes (24). In our model, increased expression of connexin-43 might be associated with E-M uncoupling due to a compensatory response to cell disintegration by ADAM-12. However, further studies are needed to confirm the relationship between PAR-1 and connexin-43 remodeling by ADAM-12. The results of our experiments show that, in animals from MMP-9KO + AVF, the increase in the levels of apoptosis was prevented (Figs. 8 and 9). In addition, PAR-1, ADAM-12, and connexin-43 expressions were also normalized (Figs. 3–5).

Limitations. TUNEL detection alone is not enough to confirm apoptotic death (12, 25, 30). Therefore, we measured the levels of caspase-3 and showed that a caspase-3 inhibitor ameliorated the endothelial cell apoptosis (22). Here, we suggested that caspase-3 was significantly induced in AVF hearts compared with the sham or the MMP-9−/− mouse hearts with and without AVF (Fig. 7). These results suggested apoptosis in the AVF hearts, in part, due to activation of caspase-3.

The connection between PAR-1 and connexin-43 may not be strong. However, in light of our human heart end-stage failure data, in which we showed that connexin-43 synthesis and degradation both were increased and MMPs were activated in CHF (22). It is a logical extension of the idea that volume overload stress activated the MMP that, in turn, activated PAR-1, leading to induction of connexin-43 in AVF.

In summary, the results of the present study demonstrate that, in chronic volume overload model of CHF in mice, impaired cardiac function is associated with endothelial and myocyte apoptosis. The mechanism of these phenomena involves activation of MMP-9, leading to cardiac remodeling and E-M uncoupling. Our study also shows that MMP-9 has a major role in ventricular remodeling associated with endothelial and myocyte apoptosis (Fig. 10).

GRANTS

A part of this study was supported by National Heart, Lung, and Blood Institute Grants HL-71010 and HL-74185.

REFERENCES