Lower capillarization, VEGF protein, and VEGF mRNA response to acute exercise in the vastus lateralis muscle of aged vs. young women

Andrea N. Crole,1,4 Kevin A. Zwetsloot,1,4 Lenna M. Westerkamp,1,4 Nicholas A. Ryan,1,4 Angela M. Pendergast,1,4 Robert C. Hickner,1,2,4 Walter E. Pofahl,3 and Timothy P. Gavin1,2,4

Departments of 1Exercise and Sport Science, 2Physiology, and 3Surgery, and 4Human Performance Laboratory, East Carolina University, Greenville, North Carolina

Submitted 29 April 2005; accepted in final form 11 July 2005

Crole, Andrea N., Kevin A. Zwetsloot, Lenna M. Westerkamp, Nicholas A. Ryan, Angela M. Pendergast, Robert C. Hickner, Walter E. Pofahl, and Timothy P. Gavin. Lower capillarization, VEGF protein, and VEGF mRNA response to acute exercise in the vastus lateralis muscle of aged vs. young women. J Appl Physiol 99: 1872–1879, 2005. —In humans, the majority of studies demonstrate an age-associated reduction in the number of capillaries surrounding skeletal muscle fibers; however, recent reports in rats suggest that muscle capillarization is well maintained with advanced age. In sedentary and trained men, aging lowers the number of capillaries surrounding type II, but not type I, skeletal muscle fibers. The fiber type-specific effect of aging on muscle capillarization is unknown in women. Vascular endothelial growth factor (VEGF) is important in the basal maintenance of skeletal muscle capillarization, and lower VEGF expression is associated with increased age in nonskeletal muscle tissue of women. Compared with young women (YW), we hypothesized that aged women (AW) would demonstrate lower overall muscle capillary contacts were lower overall (YW: 2.36 ± 0.32 capillaries; AW: 2.08 ± 0.17 capillaries), specifically in type II (YW: 2.37 ± 0.39 capillaries; AW: 1.91 ± 0.36 capillaries) but not type I fibers (YW: 2.36 ± 0.34 capillaries; AW: 2.26 ± 0.24 capillaries). Muscle VEGF protein was 35% lower at rest, and the exercise-induced increase in VEGF mRNA was 50% lower in AW compared with YW. There was no effect of age on VEGF receptor expression. These results provide evidence that, in the vastus lateralis of women, 1) capillarization surrounding type II muscle fibers is lower in AW compared with YW and 2) resting VEGF protein and the VEGF mRNA response to exercise are lower in AW compared with YW.

kinase insert domain-containing receptor; Flt-1; fiber cross-sectional area; vascular endothelial growth factor

BY THE YEAR 2030, IT IS PREDICTED THAT THERE WILL BE 70 MILLION PEOPLE 65 yr or older in the United States (38). Among the many changes associated with advanced age in humans are significant changes in skeletal muscle structure and function, including sarcopenia (13, 42), lower oxidative capacity (13, 33), and fewer capillaries surrounding muscle fibers (13, 41, 42). These adverse changes are not present in all muscles and may affect only certain muscle fiber types within a given muscle. For example, aging can lower citrate synthase activity in the gastrocnemius muscle but not the vastus lateralis muscle of aged men (33). In addition, aging can lower muscle fiber cross-sectional area (FCSA) of type II, but not type I, fibers in humans (13, 42). In the only known report investigating fiber type-specific muscle capillarization in humans (13), capillary-to-fiber ratio (C/F) was lower surrounding type IIA and IIB fibers but not type I fibers of aged compared with young men. Interestingly, recent reports demonstrate that muscle capillarization is well maintained in Fisher 344 (F344) and F344 × Brown Norway rats (31, 40, 48). Thus age-associated reductions in muscle capillarization may be present predominantly surrounding type II muscle fibers in humans. Reductions in capillarization may be detrimental in the aged as skeletal muscle capillarization is an important determinant of maximal oxygen consumption (VO2 max), insulin sensitivity, and FCSA in humans (27, 28). To our knowledge, in aged women (AW) compared with young women (YW), there is only a single report demonstrating lower overall skeletal muscle (gastrocnemius) capillarization (13) and no report on fiber type-specific effects of aging on muscle capillarization. Thus the effects of aging on capillarization in muscles other than the gastrocnemius and on fiber type-specific capillarization in women are unknown.

It is well known that endurance exercise training promotes skeletal muscle angiogenesis in humans (5, 7, 12, 28). Endurance exercise training can also increase muscle capillarization in aged humans (12, 28, 42). However, debate exists on whether the angiogenic response to endurance exercise training is similar between young and aged humans. In response to a 20-wk endurance-training program (1 h/day; 4 days/wk at 70–80% VO2 max), young men (22 yr) demonstrated a significant increase in the number of capillaries in contact with both type I and IIA fibers (14, 42). In contrast, aged men (62 yr) did not demonstrate an increase in capillary contacts (CC) with any fiber type (14), suggesting that the angiogenic response to exercise training may be at least attenuated in aged muscle. This study by Denis et al. (14) included aged men who were fairly active at the beginning of the study; thus results from this study must be interpreted with caution. A subsequent study by this same group did demonstrate significant increases in individual C/F of type I and IIA fibers, but not type IId/x fibers, in response to 14 wk of endurance training in aged men (8). Proctor et al. (42) demonstrated similar C/F surrounding type I but lower C/F surrounding type IIA and IIB fibers in aged compared with young untrained and trained men.

The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
In young mouse skeletal muscle, inhibition of endogenous vascular endothelial growth factor (VEGF) production reduces the skeletal muscle capillary supply by 64% and promotes skeletal muscle cell apoptosis demonstrating that VEGF is important in basal skeletal muscle capillary regulation, which in turn is important in the basal maintenance of skeletal muscle mass (51). In human skeletal muscle, acute exercise increases VEGF mRNA (20, 21, 26, 44), whereas exercise training increases VEGF protein levels (25, 26). In rats, inhibition of VEGF prevents increases in vessel density in response to exercise training, demonstrating that VEGF is important in skeletal muscle angiogenesis (3). Together, these data demonstrate that VEGF is important for the maintenance and expansion of skeletal muscle capillarization.

Aging lowers VEGF mRNA expression in breast tissue (22) and fibroblasts (37) in humans, whereas aging lowers VEGF protein in the kidney (36) and carotids bodies (16) in rats. In skeletal muscle, the VEGF mRNA response to the same relative intensity of acute resistance exercise is similar in young and aged men (35), whereas the VEGF mRNA and protein responses to severe ischemia are lower in aged mice (46). The VEGF mRNA response to the same relative intensity of acute aerobic exercise is preserved in 24- vs. 6-mo-old F344 rats (48). Whether muscle VEGF expression is lower at rest and in response to acute exercise in AW is unknown. Compared with YW, we hypothesized that AW would demonstrate 1) lower muscle capillarization in a fiber type-specific manner and 2) lower VEGF and VEGF receptor expression at rest and in response to acute exercise.

METHODS

Subjects. Eleven sedentary YW (range 18–28 yr) and nine sedentary AW (range 60–85 yr) volunteered to participate in the study after written and verbal explanations of the content and intent of the study were given, in accordance with the University and Medical Center Institutional Review Board. All subjects were healthy nonsmokers with no history of cardiopulmonary disease. Subject characteristics are listed in Table 1. Subjects were carefully prescreened to preclude participation by individuals with overt cardiovascular disease. Subjects taking medications for cardiovascular disease were excluded. One AW was on hormone replacement therapy. Sedentary subjects were defined as participating in <1 h of strenuous physical activity per week.

Submaximal exercise and muscle biopsies. VO2 max was measured on an electronically braked cycle ergometer (Lode, Excaliber Sport, Groningen, The Netherlands) by open-circuit spirometry (True Max 2400, Parvo Medics, Salt Lake City, UT). The test began with a 5-min warm-up at 50 W for YW and 20 W for AW. After the warm-up, the workload was increased 25 W for YW and 20 W for AW every 2 min until volitional fatigue. Body density was determined via hydrostatic weighing, and body fat percent was determined from body density based on a two-compartment model.

Submaximal exercise and muscle biopsies. At least 1 wk after the VO2 max test, subjects completed 45 min of cycle ergometer exercise (25 min exercise, 5 min rest, and 20 min of exercise) at 50% VO2 max. Before commencement of exercise and at 4 h postexercise, a muscle biopsy was obtained from the vastus lateralis for the measurement of mRNA and protein. The resting and postexercise muscle biopsy samples were obtained from alternate legs. Samples were stored at −80°C until analysis. A section of the resting biopsy sample was oriented in an optimal cutting temperature (OCT)-trigalactan mixture, frozen in liquid nitrogen-cooled isopentane, and stored at −80°C until processing for the measurement of muscle morphometry and capillarization.

The postexercise biopsy was obtained at 4 h postexercise, as we have previously shown that VEGF mRNA is increased to a similar level at 2 and 4 h after the completion of a single acute systemic cycle ergometer exercise bout in young men (20). Because it is possible that the VEGF mRNA response to acute exercise may be delayed in aged compared with young humans, we chose to obtain a single biopsy at 4 h and not 2 h postexercise.

Estradiol. Estradiol has been shown to modulate VEGF expression in human vascular smooth muscle cells (6). To minimize the potential for estradiol influences in the present study, YW were studied during the menses phase of the menstrual cycle. Six YW were taking an oral contraceptive and were studied during the low-estradiol phase of their oral contraceptive treatment. All AW were postmenopausal. Plasma estradiol was measured from a venous sample obtained before the submaximal exercise bout by a chemiluminescent enzyme immunoassay (Access, Beckman Coulter, Brea, CA).

Morphometric and morphological analysis. At −20°C, muscle tissue mounted in OCT-trigalactan was sectioned to a thickness of 10 μm on a cryostat, mounted on slides, and kept until fixation. Sections were stained for capillaries using the Rosenblatt method (47), which simultaneously provides fiber typing (type I and II) and capillary visualization. There is no difference in the number of capillaries visualized with frozen biopsy samples using the Rosenblatt technique and the number visualized in tissue sections prepared from perfusion-fixed muscle (29). In human skeletal muscle, type I fibers stain more intensely than type II fibers (10).

Muscle sections were viewed under a light microscope (Nikon 400), and a digital image was taken of the section (Nikon Coolpix 990), as previously described (20). Capillaries were quantified manually from the digital image on individual fibers in an artifact-free region. The following indexes were measured (28): 1) the number of capillaries around a fiber (CC), 2) the C/F on an individual-fiber basis, and 3) the number of fibers sharing each capillary (sharing factor). Capillary density (CD) was calculated by using the fiber as the reference space. Capillary-to-fiber perimeter exchange index was calculated as an estimate of the capillary-to-fiber surface area. Quantification of the capillaries was performed on at least 50 fibers by randomly selecting a fiber in an artifact-free region. FCSA and fiber perimeter were measured with the image-analysis system and commercial software (SigmaScan, Jandel Scientific) calibrated to transform the number of pixels (viewed on a computer monitor) into micrometers.

DNA isolation and Northern analysis. Total cellular RNA was isolated from each sample, and standard Northern blot analysis was performed for VEGF, KDR, and Flt-1 mRNA as previously described (20). Blots were exposed to XAR-5 X-ray film (Eastman Kodak, New Haven, CT) by use of a Cronex Lightning Plus screen at −80°C. Autoradiographs were quantitated by densitometry within the linear range of signals and normalized to β-actin mRNA levels.

Protein isolation and analysis. A portion of the muscle biopsy was homogenized in RIPA (1× PBS, 1% Igepal, 0.5% sodium

Table 1. Subject characteristics

<table>
<thead>
<tr>
<th></th>
<th>Young</th>
<th>Aged</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, yr</td>
<td>22±3</td>
<td>70+8</td>
<td><0.001</td>
</tr>
<tr>
<td>Height, cm</td>
<td>165.0±4.6</td>
<td>161.2±6.3</td>
<td>0.141</td>
</tr>
<tr>
<td>Mass, kg</td>
<td>62.4±10.0</td>
<td>61.5±8.0</td>
<td>0.821</td>
</tr>
<tr>
<td>Body fat, %</td>
<td>25.0±6.3</td>
<td>25.2±1.7</td>
<td>0.800</td>
</tr>
<tr>
<td>VO2max, ml O2·kg−1·min−1</td>
<td>28.0±4.8</td>
<td>17.6±4.5</td>
<td><0.001</td>
</tr>
<tr>
<td>VO2max, ml O2·kg·FFM−1·min−1</td>
<td>35.8±5.2</td>
<td>22.5±5.8</td>
<td><0.001</td>
</tr>
<tr>
<td>Estradiol, pg/ml</td>
<td>45.4±39.4</td>
<td>31.6±19.7</td>
<td>0.363</td>
</tr>
</tbody>
</table>

Values are means ± SD. VO2max, maximal oxygen consumption; FFM, fat-free mass.
deoxycollate, 0.1% SDS with protease inhibitors) as previously described (20). Total protein was measured by bicinchoninic acid (Bio-Rad, Hercules, CA). For each sample, V̇O₂ max was lower in AW compared with YW. Estradiol matched for height, weight, and body composition. As anticipated, V̇O₂ max was lower in AW compared with YW. Estradiol was not different between groups.

Muscle morphology. There was no difference in type I FCSA between groups, but type II FCSA was smaller in AW compared with YW (Table 2). There was no difference in type I fiber percentage, but the area percentage of type I fibers was greater in AW compared with YW.

Overall, there were fewer capillaries surrounding muscle fibers in AW compared with YW (Table 3). When analyzed by fiber type, the overall difference resulted from fewer muscle capillaries associated with type II fibers in AW compared with YW. Interestingly, neither CD nor capillary-to-fiber perimeter exchange index was different between YW and AW, suggesting that the loss of muscle capillaries with aging is similar in magnitude to the loss of FCSA and fiber perimeter such that these relative measures of muscle capillarization remain unchanged with aging. Consistent with this, linear regression revealed significant relationships between C/F on an individual-fiber basis and FCSA for type II fibers when all subjects were examined together (Fig. 1). When analyzed within groups, a significant relationship was only observed in type II fibers of AW.

VEGF and VEGF receptor expression. Results for VEGF, KDR, and Flt-1 mRNA at rest and in response to acute aerobic exercise are in Fig. 3. VEGF protein was significantly lower in AW compared with YW independent of exercise condition. Flt-1 protein was significantly reduced by acute exercise in AW compared with YW.

DISCUSSION

The major findings of the present study in the vastus lateralis muscle of women are 1) capillarization surrounding type II muscle fibers is lower in AW compared with YW; 2) VEGF protein is 35% lower at rest in AW compared with YW; and 3) the VEGF mRNA response to exercise is 50% lower in AW compared with YW. To our knowledge, these are the first findings demonstrating lower fiber type-specific muscle capillarization, lower muscle VEGF protein, and a lower muscle VEGF mRNA response to acute aerobic exercise in AW compared with YW.

Subjects. Groups were well matched for height, weight, and body composition. Consistent with previous reports, aerobic capacity was lower in AW (13). As groups, both YW and AW were in the lowest 10th percentile in aerobic capacity (1). These age-adjusted values are based on treadmill exercise, whereas cycle ergometry was used in the current report. V̇O₂ max is 3–5 ml O₂·kg⁻¹·min⁻¹ lower during cycle ergometry compared with treadmill exercise (19). When adjusting for this difference, both YW and AW groups were in the 20th percentile for their age, respectively.

Aging and skeletal muscle capillarization. Our finding of a loss of capillaries surrounding muscle fibers in the vastus lateralis of AW compared with YW is consistent with a previous finding in gastrocnemius muscle (13). It could be hypothesized that a greater loss of capillaries would be present in the vastus lateralis than in gastrocnemius since the gastrocnemius is used frequently during common everyday activities such as walking. However, citrate synthase activity is lowered by advanced age in gastrocnemius, but not the vastus lateralis.

Table 2. Fiber cross-sectional area comparison

<table>
<thead>
<tr>
<th></th>
<th>Young</th>
<th>Aged</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall fiber cross-sectional area, µm²</td>
<td>4,808±1,415</td>
<td>4,060±760</td>
<td>0.198</td>
</tr>
<tr>
<td>Type I</td>
<td>4,852±1,484</td>
<td>5,017±1,038</td>
<td>0.794</td>
</tr>
<tr>
<td>Type II</td>
<td>4,784±1,477</td>
<td>3,407±893</td>
<td>0.034</td>
</tr>
<tr>
<td>Overall fiber perimeter</td>
<td>292±45</td>
<td>268±23</td>
<td>0.188</td>
</tr>
<tr>
<td>Type I</td>
<td>290±47</td>
<td>297±32</td>
<td>0.727</td>
</tr>
<tr>
<td>Type II</td>
<td>262±35</td>
<td>232±26</td>
<td>0.027</td>
</tr>
<tr>
<td>Type I fibers, %</td>
<td>35.5±9.1</td>
<td>42.9±14.2</td>
<td>0.199</td>
</tr>
<tr>
<td>Area of type I fibers, %</td>
<td>35.8±10.0</td>
<td>52.2±14.4</td>
<td>0.011</td>
</tr>
</tbody>
</table>

Values are means ± SD.

Table 3. Capillary comparison among groups

<table>
<thead>
<tr>
<th></th>
<th>Young</th>
<th>Aged</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall capillary contacts</td>
<td>2.36±0.32</td>
<td>2.08±0.17</td>
<td>0.042</td>
</tr>
<tr>
<td>Type I</td>
<td>2.36±0.34</td>
<td>2.26±0.24</td>
<td>0.465</td>
</tr>
<tr>
<td>Type II</td>
<td>2.37±0.39</td>
<td>1.91±0.36</td>
<td>0.020</td>
</tr>
<tr>
<td>Overall individual capillary-to-fiber ratio</td>
<td>0.86±0.12</td>
<td>0.76±0.08</td>
<td>0.061</td>
</tr>
<tr>
<td>Type I</td>
<td>0.84±0.15</td>
<td>0.83±0.13</td>
<td>0.884</td>
</tr>
<tr>
<td>Type II</td>
<td>0.87±0.13</td>
<td>0.68±0.15</td>
<td>0.099</td>
</tr>
<tr>
<td>Overall share factor</td>
<td>2.87±0.14</td>
<td>2.81±0.36</td>
<td>0.601</td>
</tr>
<tr>
<td>Type I</td>
<td>2.92±0.18</td>
<td>2.86±0.27</td>
<td>0.575</td>
</tr>
<tr>
<td>Type II</td>
<td>2.84±0.13</td>
<td>2.91±0.33</td>
<td>0.568</td>
</tr>
<tr>
<td>Overall capillary contacts capillaries/mm²</td>
<td>190±51</td>
<td>190±26</td>
<td>0.969</td>
</tr>
<tr>
<td>Type I</td>
<td>187±55</td>
<td>170±31</td>
<td>0.468</td>
</tr>
<tr>
<td>Type II</td>
<td>277±61</td>
<td>285±65</td>
<td>0.709</td>
</tr>
<tr>
<td>Overall CFPE, capillaries/1,000 µm</td>
<td>2.99±0.48</td>
<td>2.87±0.24</td>
<td>0.541</td>
</tr>
<tr>
<td>Type I</td>
<td>3.01±0.62</td>
<td>2.87±0.37</td>
<td>0.584</td>
</tr>
<tr>
<td>Type II</td>
<td>3.01±0.50</td>
<td>2.79±0.41</td>
<td>0.320</td>
</tr>
</tbody>
</table>

Values are means ± SD. CFPE, capillary-to-fiber perimeter exchange index.
suggesting that more distal muscles may be more greatly affected by aging than more proximal muscles (33). In the present report, C/F on an individual-fiber basis and CC were \(\sim 12\% \) lower in AW, whereas Coggan et al. (13) reported an \(\sim 35\% \) reduction in C/F and CC. Thus differences in the magnitude of the loss of muscle capillaries between the present report and Coggan et al. could possibly be due to greater age-associated loss of muscle capillaries in more distal muscles.

To our knowledge, the present findings are the first report demonstrating a fiber type-specific loss of muscle capillaries in AW. In men, aging results in an \(\sim 25\% \) loss of muscle capillaries surrounding type II fibers, with no significant loss surrounding type I fibers (42). Combined, these data suggest that type II fibers may be more susceptible to the age-associated loss of muscle capillaries in more distal muscles. To date, the present findings are the first report demonstrating a fiber type-specific loss of muscle capillaries in AW. In men, aging results in an \(\sim 25\% \) loss of muscle capillaries surrounding type II fibers, with no significant loss surrounding type I fibers (42). Combined, these data suggest that type II fibers may be more susceptible to the age-associated loss of muscle capillaries than type I fibers. It should noted that, because of the nature of human muscle biopsies, our results could be influenced by fiber-type grouping in aged muscle (15).

Recent data suggests that muscle capillarization is well preserved in F344 × Brown Norway (31, 40) and F344 (48) rats with aging. Animal models are attractive in aging research in that genetic differences between animals are minimized and successful subject recruitment issues are not relevant. Several factors likely influence group results from human aging studies and make definitive statements more complex. These factors include differences in physical activity levels (9, 14, 34), differences in the number of men and women studied in each group (34), and the lack of statistical analyses (4, 23). Except for a single report (14), a review of the human aging literature suggests that muscle C/F is lower in aged compared with young subjects whether statistical differences were present or not (4, 9, 13, 23, 34, 41, 42). We are aware of only three reports that have adequately controlled participant enrollment to study sedentary young and aged individuals (13, 41, 42). In each of these reports, muscle C/F is statistically lower in aged compared with young subjects. Frontera et al. (18) demonstrated that, from the age of 65 to 77 yr, there is a 22% reduction in muscle capillarization without a loss of muscle FCSA. Therefore, the vast majority of data in humans suggests that aging lowers muscle capillarization, which is in contrast to recent reports in rats (31, 40, 48).

There are two prominent theories on the regulation of muscle capillarization. The first suggests that muscle capillarization is primarily scaled to fiber size (2), whereas the second suggests that muscle capillarization is scaled to metabolic demand (32). Although aging resulted in the loss of muscle capillaries, the magnitude of the loss was similar to the losses in FCSA and fiber perimeter such that there was no difference in either CD or capillary-to-fiber perimeter exchange index between YW and AW. It is impossible to determine from our...
data which mechanism predominates in the regulation of human muscle capillarization. It is interesting, however, that the relationship between muscle capillarization and muscle fiber size is maintained (no difference in CD). Many mechanisms have been proposed to contribute to age-associated sarcopenia, including motoneuron denervation, mitochondria-induced apoptosis, changes in anabolic hormones, and increased rates of proteolysis (recently reviewed in Refs. 15, 30, 39). Given that the loss of endogenous VEGF results in capillary rarefaction and, therefore, indirectly results in muscle nuclei apoptosis (a likely mechanism of muscle atrophy) in transgenic mice (51), an additional mechanism for age-associated sarcopenia could be that aging reduces VEGF, resulting in the loss of muscle capillaries, which in turn promotes muscle atrophy. This theory remains to be experimentally tested.

Aging, resting VEGF, and resting VEGF receptor expression. We had hypothesized that resting muscle VEGF expression would be lower in AW. In the present report, there was no difference in resting VEGF mRNA between young and aged muscle, but resting VEGF protein was 35% lower in aged muscle, suggesting that lower VEGF may contribute to lower muscle capillarization in AW. Lower VEGF protein and a concomitantly lower muscle capillarization are consistent with a recent report from Tang et al. (51) demonstrating that VEGF is important in basal maintenance of muscle capillarization, where inactivation of endogenous skeletal muscle VEGF production decreased capillarization by 64%. To further identify whether VEGF protein levels may in part regulate muscle capillarization, we analyzed the relationship between muscle capillarization and VEGF protein from individuals in the...
present report and our laboratory’s previous report from lean and obese young men (21). Linear regression revealed a strong relationship between resting VEGF protein levels and overall CC, consistent with the suggestion that VEGF likely contributes to the regulation of muscle capillarization in humans (Fig. 4).

A divergence between resting VEGF mRNA and protein was observed in aged muscle. Two possibilities for the divergence of VEGF mRNA and protein levels in aged muscle are 1) a reduction in VEGF translation may be present in aged muscle and 2) VEGF protein degradation may be accelerated in aged muscle. The translation of VEGF is complicated because of the long 5’ untranslated region of VEGF mRNA, which is incompatible with efficient ribosomal scanning (49). To overcome this, the 5’ untranslated region of VEGF mRNA contains an internal ribosome entry site that maintains efficient translation of VEGF mRNA under conditions of stress, such as hypoxia, when overall protein synthesis is reduced (49). Aged human muscle does demonstrate increased activation of several stress-associated MAPK signaling cascade proteins (ERK1/2, p90RSK, Mnk 1, p38 MAPK, and JNK/SAPK), which may be involved in alterations in the regulation of translation in aged muscle (53). We are unaware of any studies investigating specific VEGF protein translation or degradation rates in aged tissue.

The biological activity of VEGF occurs predominantly through binding of VEGF to the VEGF receptors KDR and Flt-1. It is currently hypothesized that most angiogenic activity occurs through KDR, whereas Flt-1 acts as a negative (angiostatic) regulator of angiogenesis (17). Lower capillarization in aged tissue therefore could be the result of either lower KDR or increased Flt-1 expression. There were no differences in KDR or Flt-1 mRNA and protein between young and aged muscle, suggesting that lower VEGF receptor expression does not play an important role in the lower capillarization observed in AW.

Aging, exercise, VEGF, and VEGF receptor expression. As hypothesized, the VEGF mRNA response to acute aerobic exercise was 50% lower in aged human muscle. It was also hypothesized that aging would reduce the VEGF receptor response to exercise; however, both KDR and Flt-1 mRNA were increased by exercise independent of age. Our finding that the VEGF mRNA response to acute exercise is lower in aged muscle is significant, as the angiogenic response to exercise training may be attenuated in aged compared with young human muscle (14, 42).

Exercise is a well-known stress to muscle that results in intracellular hypoxia (43, 45) and angiogenesis (5, 7, 12, 28). Consistent with this, acute exercise increases VEGF mRNA (20, 24, 44), whereas exercise training increases VEGF protein in human muscle (25, 26). Interestingly, the skeletal muscle VEGF mRNA response to resistance exercise is similar in young and aged men (35). The discrepancy between our data and those of Jozsi et al. (35) may likely reflect different VEGF regulatory mechanisms involved in resistance vs. aerobic ex-
exercise. A likely mediator of resistance exercise-induced VEGF mRNA expression may be activation of Akt by hypertrophic stimuli (50). Likewise, aerobic exercise-induced VEGF expression has been proposed to involve hypoxia (52). A lower VEGF mRNA response to ischemia-induced hypoxia has been observed in aged mouse muscle (46), whereas a similar muscle VEGF mRNA response to the same relative acute aerobic exercise intensity between young and aged F344 rats has been recently reported (48). Thus the age-attenuated VEGF mRNA response to the same relative aerobic exercise intensity appears to be unique to humans.

Several studies have demonstrated an angiogenic response to endurance exercise training in aged individuals (11, 12, 28, 42); however, these studies employed either a cross-sectional design of young and aged untrained and trained individuals (11, 42) or an experimental design utilizing aged individuals only (12, 28). In the only known report investigating the angiogenic response to the same relative intensity exercise training program in young and aged subjects, angiogenesis was observed in young but not aged individuals (14). These results must be viewed with some caution, because the aged individuals were fairly active before the initiation of the training. However, if the pattern of a lower VEGF mRNA response to acute exercise persists throughout an exercise-training program, our results of a lower VEGF mRNA response to the same relative exercise intensity are consistent with an aging-related impairment of the angiogenic response to exercise training.

In summary, we have demonstrated in the vastus lateralis muscle of AW that capillarization surrounding type II muscle fibers, resting VEGF protein, and the exercise-induced increase in VEGF mRNA are lower compared with YW. Whether a lower VEGF mRNA response to acute exercise contributes to a lower angiogenic response to exercise training in AW remains to be determined.

ACKNOWLEDGMENTS

The authors thank Adam Rotstein for assistance.

GRANTS

This study was supported by National Institute on Aging Grant AG-021891 (T. P. Gavin). R. C. Hickner was supported in part by National Institute on Aging Grants AG-18407 and AG-19209.

REFERENCES