Effect of exercise on cerebral perfusion in humans at high altitude

C. H. E. Imray,1 S. D. Myers,2 K. T. S. Pattinson, A. R. Bradwell, C. W. Chan, P. Collins, A. D. Wright, and the Birmingham Medical Research Expeditionary Society4

1Coventry and Warwickshire County Vascular Unit, University Hospitals Coventry and Warwickshire National Health Service Trust, Coventry; 2QinetiQ, Farnborough; 3Nuffield Department of Anesthetics, University of Oxford, John Radcliffe Hospital, Headley Way, Headington, Oxford; 4The Medical School, University of Birmingham, Birmingham; and 5ScanMed Medical Instruments, Moreton-in-the-Marsh, United Kingdom

Submitted 3 September 2004; accepted in final form 1 April 2005

This study aimed to measure changes in cerebral perfusion at rest and during exercise up to \(V\text{O}_2 \text{max} \) at altitudes from 150 to 5,260 m to gain further insight into the factors that limit exercise and alter cerebral function on acute exposure to high altitude.

MATERIALS AND METHODS

Subjects. Eleven healthy white Europeans (1 woman; ages 32–65 yr) were studied. All were nonsmokers, normotensive, on no medication, physically fit, living at 50–150 m, with no recent exposure to high altitude, and were familiar with cycle ergometer-based exercise tests. Measurements were recorded at Birmingham, UK (150 m) and during an expedition to Bolivia. The first measurement at high altitude was made 24–36 h after arrival at 3,610 m (La Paz). Two subjects were subsequently excluded from the study because of excessive rises of blood pressure during exercise at this altitude. The group then

The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
traveled by road, and repeat measurements were made on the remaining nine subjects 24–36 h after arrival at 4,750 m (Refugio Potosi) and 5,260 m. All measurements at high altitude were therefore completed within 9 days of arrival in Bolivia. Barometric pressure was obtained from the mean of four portable barometers (Suunto Observer, Helsinki, Finland).

Alticycle. The Alticycle cycle ergometer has four novel features (Fig. 1). First, the cycling position is fully supine. The body of the subject is held by shoulder straps and a waist belt to the alticycle frame. The head, resting freely in a stable position, is isolated from the main body of the alticycle, and the arms are free. Second, the exercise load is provided by a friction brake applied to a 2-kg flywheel linked through a series of gears that allows it to rotate between 4,000 and 5,000 revolutions/min. This combination provides good inertia for cycling but with minimal weight. Third, power output and cadence are measured via a strain-gauged crank set assessing torque and cadence (Schoberer Rad Meßtechnik, Jülich, Germany). Power is measured directly in Watts on a second-by-second basis. Fourth, it folds into a self-contained compact backpack-style unit (81×37×24 cm, weight 25 kg), allowing it to be carried by a single person.

Exercise tests. Subjects completed two tests at each altitude. A VO_{2 max} test was undertaken first, followed by a submaximal test on the same day separated by a minimum interval of 4 h. Subjects rested for one-half hour before each test and then exercised gently for 5 min at 50 W to warm up. Subjects maintained a cadence rate of 55 pedal revolutions/min for each test. For the maximal test, starting loads for each subject were estimated to produce a test lasting ~10 min (53). The load was increased by 20-W increments per minute up to volitional exhaustion. In the submaximal test, subjects were required to complete 15 min of cycling comprising three 5-min, consecutive exercise periods at 30, 50, and 70% of the altitude-specific VO_{2 max}, respectively.

Expired gas was analyzed breath by breath using a Cosmed K4b^2 portable gas-exchange unit (Cosmed, Rome, Italy) for oxygen uptake (VO_{2}; photometric gas analyzer), end-tidal CO_2 (infrared absorption), and minute volume (turbine flowmeter). The Cosmed K4b^2 was chosen for its portability and performance at high altitude (6), which has been confirmed subsequently by the authors (36). Gases were collected via a tight-fitting Cosmed-modified Hans Rudolph face-mask. Finger-pulse oximetry (arterial oxygen saturation) was measured using an Ohmeda Biox 3740 Pulse Oximeter (Ohmeda). Continuous beat-to-beat blood pressure was measured using the radial artery tonometry technique with a COLIN CRM-7000 monitor (ScanMed Medical Instruments, Moreton-in-the-Marsh, UK), and mean blood pressure was calculated from the formula mean blood pressure = diastolic blood pressure + 1/3(systolic blood pressure – diastolic blood pressure). Predicted heart rates at VO_{2 max} were calculated using the formula 220 – age (yr).

Cerebral hemodynamics. MCA blood velocity was measured using a 2-MHz, pulsed-wave, range-gated Doppler ultrasound (DWL Multi-Dop T1, DWL Elektronische Systeme, Singen, Germany). The MCA time-averaged mean velocity (cm/s) was recorded electronically. A single, experienced operator performed the measurements by insonating the right MCA through the temporal bone window with the subject at rest. The insonation depth was initially set at 50 mm and then gradually increased to identify the optimal signal. Once found, the position was fixed using a locking headband, which allowed the subject to cycle freely. Occasionally, it was necessary to optimize the signal manually during a test by adjusting the direction but not the depth of the beam.

Cerebral regional oxygenation (rSO_2) was measured by continuous, noninvasive, near-infrared cerebral spectroscopy. The Critikon 2020 (Johnson and Johnson Medical, Newport, UK) spectroscopy is based on a two-channel sensor and a coupling compensation system. Infrared light is emitted at four wavelengths (776.5, 819.0, 871.4, and 908.7 nm) from a light-emitting diode, and two silicon photodiode detectors are set 10 and 37 mm from the light-emitting diode. The absolute concentrations of oxyhemoglobin (in μM) and deoxyhemoglobin (in μM) are calculated from a modified version of the Beer-Lambert law. The dual detector sensor position was standardized over the right frontoparietal region of the head with sensor margins 3 cm from the midline and 3 cm above the supraorbital crest, taking care to avoid the sagittal and frontal sinus areas (18). The measurement of rSO_2 was calculated from the equation rSO_2 = (oxygenated hemoglobin/total hemoglobin) × 100.

Statistical analyses. Data was collected continuously by logging it to the DWL Multi-Dop T1. Offline analysis was subsequently undertaken. All data are reported as mean and standard deviation (SD) unless indicated otherwise. Resting measurements were taken immediately before the VO_{2 max} test at each altitude. Heart rate, mean blood pressure, arterial saturation, end-tidal PCO_2, minute volume, VO_{2}, MCA blood velocity, cerebral deoxygenation, cerebral oxygenation, total hemoglobin, and rSO_2 were taken from a mean of the three last readings (~20, ~10, and 0 s) at each level of exercise. Cerebrovascular resistance (CVR) was calculated using the formula CVR_{tot} = mean arterial blood pressure/MCA blood velocity (26, 44), and cerebral oxygen delivery using the formula cerebral oxygen delivery = arterial oxygen saturation × MCV blood velocity (33).

The significance of changes occurring in resting measurements during ascent and changes in measurements during submaximal exercise were assessed by repeated-measures ANOVA (StatView for Windows, Abacus Concepts, Berkeley, CA) with difference located using Tukey’s honestly significant different post hoc test. Resting and VO_{2 max} data were compared using paired t-tests. P values of <0.05 were considered significant.
The Research and Ethics Committee of the South Birmingham Health Authority granted approval for the studies, and subjects gave their written, informed consent.

RESULTS

No technical difficulties were experienced with the pulse oximeter or the Alticycle. The signal from the Colin blood pressure monitor occasionally required optimization by adjusting the sensor position over the radial artery, and this was a particular problem with the recordings at 5,260 m. The K4b² needed to be carefully cleared of condensation before each test. When using an early version of the Alticycle, background rumble interfered with the transcranial Doppler recordings when subjects exercised close to V˙O₂max. Interference was significantly reduced initially using a 100-MHz filter. Although this was satisfactory, the Alticycle was adapted for all experimental data reported in this paper with a rubber interface placed between the joints of the Alticycle and the subject's head being supported independently of the ergometer by a firm pillow, eliminating the need for the 100-MHz filter. Good signals from the cerebral spectroscopy probe were maintained by careful cleaning of the forehead and probe with ethanol. Mean (SD) cerebral oxygen delivery between the different altitudes were: 74% (SD 4) at 5,260 m.

Environmental measures and subject characteristics for each altitude are listed in Table 1. Body mass did not change significantly during the study. Resting and exercise cardiorespiratory data are shown in Table 2 and cerebral perfusion data in Table 3 and Figs. 2–5. With increasing altitude, resting heart rate, mean blood pressure, total hemoglobin, and oxyhemoglobin did not change (Table 2). Resting arterial oxygen saturation and end-tidal Pco₂ decreased at all altitudes compared with 150 m (P < 0.0001 for both) (Table 2). Resting V˙O₂ increased at all altitudes compared with 150 m (P < 0.05). Resting ventilation also increased significantly at 4,750 m (P < 0.05) and 5,260 m (P < 0.001). Resting MCA blood velocity increased from 60.2 cm/s (SD 14.1) at 150 m to 73.4 cm/s (SD 20.4) at 5,260 m (P < 0.001), and resting rsO₂ decreased from 68.4% (SD 2.1) at 150 m to 62.4% (SD 3.6) at 5,260 m (P < 0.0001) (Table 3). There was no difference in resting CVR̄ or cerebral oxygen delivery between the different altitudes (Fig. 2).

Exercise at 150 m (Tables 2 and 3). Mean arterial blood pressure did not change significantly during exercise. Oxygen saturation was unchanged during submaximal exercise but fell at V˙O₂max (P < 0.0001). End-tidal CO₂ was unchanged during submaximal exercise but was reduced from 36.3 Torr (SD 4.7) resting to 33.1 Torr (SD 5.3) at V˙O₂max (P < 0.05). Ventilation and V˙O₂ rose progressively during both submaximal and V˙O₂max tests (P < 0.0001). MCA blood velocity rose initially but fell at the highest workloads with an increase from 60.2 cm/s (SD 4.1) at rest to 65.5 cm/s (SD 12.9) at 70% V˙O₂max (P < 0.05) and a reduction to 50.5 cm/s (SD 22.3) at V˙O₂max.

Table 1. Environmental measurements and subject characteristics for each altitude

<table>
<thead>
<tr>
<th>Altitude, m</th>
<th>150</th>
<th>3,610</th>
<th>4,750</th>
<th>5,260</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atmospheric pressure, mmHg</td>
<td>743</td>
<td>496</td>
<td>435</td>
<td>410</td>
</tr>
<tr>
<td>Ambient temperature, °C</td>
<td>23.6</td>
<td>24.9</td>
<td>14.6</td>
<td>14.3</td>
</tr>
<tr>
<td>Body mass, kg</td>
<td>81.1 (9.7)</td>
<td>81.6 (9.7)</td>
<td>82.5 (10.3)</td>
<td>82.5 (10.9)</td>
</tr>
<tr>
<td>Height, cm</td>
<td>181.1 (5.1)</td>
<td>25.4 (2.9)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data are means (SD); n = 9. Body mass did not alter significantly during ascent.

Table 2. Cardiorespiratory data during exercise at different altitudes

<table>
<thead>
<tr>
<th>Altitude, m</th>
<th>150</th>
<th>3,610</th>
<th>4,750</th>
<th>5,260</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart rate, beats/min</td>
<td>68 (14)</td>
<td>98 (9.3)</td>
<td>119 (13.1)</td>
<td>133 (13.4)</td>
</tr>
<tr>
<td>Mean BP, mmHg</td>
<td>106 (9.2)</td>
<td>112 (9)</td>
<td>115 (12)</td>
<td>120 (11)</td>
</tr>
<tr>
<td>Oxygen, saturation %</td>
<td>99.0 (0.8)</td>
<td>98.6 (0.5)</td>
<td>98.1 (0.8)</td>
<td>97.1 (0.7)</td>
</tr>
<tr>
<td>End-tidal Pco₂, Torr</td>
<td>36.2 (4.7)</td>
<td>38.6 (3.7)</td>
<td>38.4 (3.8)</td>
<td>37.3 (4.6)</td>
</tr>
<tr>
<td>Ventilation, l/min</td>
<td>12.9 (2.2)</td>
<td>37.8 (4.9)</td>
<td>56.4 (8.1)</td>
<td>78.3 (25.4)</td>
</tr>
<tr>
<td>V˙O₂, ml/min kg⁻¹</td>
<td>7.5 (1.5)</td>
<td>19.9 (1.4)</td>
<td>28.2 (3.3)</td>
<td>36.6 (4.1)</td>
</tr>
</tbody>
</table>

Data are means (SD) for the 9 subjects completing the study; n = 7. Differences are reported between altitudes for resting values and for exercise at each altitude; 70% maximal oxygen uptake (V˙O₂max) and V˙O₂max are compared with rest. BP, blood pressure; V˙O₂, oxygen uptake. Significant differences: *p < 0.05; †p < 0.01; ‡p < 0.001; ‡‡p < 0.0001.

J Appl Physiol • VOL 99 • AUGUST 2005 • www.jap.org
Exercise and cerebral perfusion at high altitude

Table 3. Cerebral perfusion data during exercise at different altitudes

<table>
<thead>
<tr>
<th>Altitude</th>
<th>Rest</th>
<th>30% VO2max</th>
<th>50% VO2max</th>
<th>70% VO2max</th>
<th>Maximal</th>
<th>Rest</th>
<th>30% VO2max</th>
<th>50% VO2max</th>
<th>70% VO2max</th>
<th>Maximal</th>
</tr>
</thead>
<tbody>
<tr>
<td>150 m</td>
<td>60.2</td>
<td>64.5</td>
<td>64.6</td>
<td>50.6</td>
<td>66.6</td>
<td>87.2</td>
<td>83.4</td>
<td>78.7</td>
<td>58.6</td>
<td>73.4</td>
</tr>
<tr>
<td>3,610 m</td>
<td>69.4</td>
<td>67.1</td>
<td>64.6</td>
<td>50.7</td>
<td>87.2</td>
<td>83.4</td>
<td>78.7</td>
<td>58.6</td>
<td>73.4</td>
<td>81.3</td>
</tr>
<tr>
<td>4,750 m</td>
<td>65.5</td>
<td>67.1</td>
<td>62.6</td>
<td>47.6</td>
<td>71.9</td>
<td>69.7</td>
<td>64.6</td>
<td>64.6</td>
<td>73.4</td>
<td>81.3</td>
</tr>
<tr>
<td>5,260 m</td>
<td>50.5</td>
<td>44.0</td>
<td>44.4</td>
<td>44.0</td>
<td>87.2</td>
<td>83.4</td>
<td>78.7</td>
<td>58.6</td>
<td>73.4</td>
<td>81.3</td>
</tr>
</tbody>
</table>

Data are means (SD) for the 9 subjects completing the study. MCA, middle cerebral artery; HbDO2, deoxyhemoglobin; HbO2, oxyhemoglobin. Differences are reported between altitudes for resting values and for exercise at each altitude; 70% VO2max and VO2max are compared with rest. Significant differences: *P < 0.05; †P < 0.01; §P < 0.001; ‡P < 0.0001.

(P < 0.01) (Fig. 2). rSO2 increased from 68.4% (SD 2.1) at rest to 70.9% (SD 3.8) during submaximal exercise (P < 0.0001) and to 69.8% (SD 3.1) at VO2max (P < 0.05) (Fig. 3). CVrest and cerebral oxygen delivery were not significantly different between resting and VO2max (Figs. 4 and 5).

Exercise at 3,610 m (Table 2 and 3). Mean arterial blood pressure did not change significantly during exercise. Arterial oxygen saturations were reduced at all levels of exercise compared with baseline (P < 0.0001). End-tidal CO2 during submaximal exercise rose initially but was reduced from 24.9 Torr (SD 1.7) at rest to 21.1 Torr (SD 2.4) at 70% VO2max (P < 0.0001) and to 19.3 Torr (SD 1.7) at VO2max (P < 0.0001). Ventilation and VO2 rose progressively during the tests (P < 0.0001). MCA blood velocity rose initially and fell with maximal exercise, with an increase from 64.5 cm/s (SD 14.1) at rest to 66.0 cm/s (SD 17.3) at 70% VO2max (P < 0.0001) and a reduction to 50.6 cm/s (SD 21.7) at VO2max (P < 0.0001) (Fig. 2). rSO2 was reduced from 66.2% (SD 2.5) at rest to 62.6% (SD 2.1) during submaximal exercise (P < 0.0001) and to 61.2% (SD 3.3) at VO2max (P < 0.0001) (Fig. 3). There was a rise in CVrest from 1.7 (SD 0.41) at rest to 2.16 (SD 0.57) at VO2max (P < 0.05) (Fig. 4) and a fall in cerebral oxygen delivery from 5,811 (SD 1,419) at rest to 4,665.6 (SD 1,324) at VO2max (P < 0.01) (Fig. 5).

Exercise at 4,750 m (Tables 2 and 3). Mean arterial blood pressure increased from 107 mmHg (SD 13) to 128 mmHg (SD 15) during submaximal exercise (P < 0.05) and remained elevated at VO2max compared with resting (P < 0.001). End-tidal CO2 rose initially but was reduced from 23.7 mmHg (SD 2.0) at rest to 20.9 mmHg (SD 2.3) at 70% VO2max (P < 0.0001) and to 19.0 mmHg (SD 2.7) at VO2max (P < 0.0001). Ventilation and VO2 rose progressively during the tests (P < 0.0001).

Fig. 2. Changes in middle cerebral artery blood velocity during exercise at different altitudes (●, 150 m; ◆, 3,610 m; ★, 4,750 m; ▲, 5,260 m). Values are means and SE. Velocity at rest increased with increasing altitude (P < 0.05). At all altitudes, velocity increased during submaximal exercise (P < 0.05–0.0001) but fell at maximal oxygen uptake (VO2max; P < 0.01–0.0001).

Fig. 3. Changes in cerebral oxygenation at different altitudes (●, 150 m; ◆, 3,610 m; ★, 4,750 m; ▲, 5,260 m). Values are means and SE. Resting oxygenation decreased with increasing altitude (P < 0.0001). At 150 m, oxygenation increased during submaximal exercise (P < 0.0001) and at VO2max (P < 0.05). At higher altitudes, oxygenation was reduced during submaximal exercise and at VO2max (P < 0.01–0.0001).
0.0001). MCA blood velocity rose initially and fell at maximal workloads, with an increase from 66.6 cm/s (SD 20.5) at rest to 78.7 cm/s (SD 20.7) at 70% \(\dot{V}O_2 \text{max} \) (\(P < 0.0001 \)) and a reduction to 58.6 cm/s (SD 19.4) at \(\dot{V}O_2 \text{max} \) (\(P < 0.0001 \)) (Fig. 2). \(rSO_2 \) was reduced from 63.0% (SD 2.1) at rest to 58.9% (SD 2.1) during the submaximal exercise test (\(P < 0.0001 \)) and was reduced to 59.4% (SD 2.6) at \(\dot{V}O_2 \text{max} \) (\(P < 0.0001 \)) (Fig. 3). The rise in \(CVR_{rest} \) from 1.75 (SD 0.61) at rest to 2.49 (SD 1.25) at \(\dot{V}O_2 \text{max} \) was not significant (\(P = 0.057 \); Fig. 4), but there was a fall in cerebral oxygen delivery from 5,487 (SD 1,688) at rest to 4,270 (SD 1,295) at \(\dot{V}O_2 \text{max} \) (\(P < 0.01 \); Fig. 5).

Exercise at 5,260 m (Tables 2 and 3). Mean arterial blood pressure increased from 108 mmHg (SD 14) during submaximal exercise (\(P < 0.0001 \)) but was reduced to 107 mmHg (SD 14) at \(\dot{V}O_2 \text{max} \) compared with resting. Arterial oxygen saturations were reduced compared with resting (\(P < 0.0001 \)). End-tidal \(CO_2 \) rose initially but then was reduced from 21.3 Torr (SD 2.9) at rest to 19.4 Torr (SD 1.9) at 70% \(\dot{V}O_2 \text{max} \) (\(P < 0.001 \)) and to 14.9 Torr (SD 2.0) at \(\dot{V}O_2 \text{max} \) (\(P < 0.0001 \)). Ventilation and \(VCO_2 \) rose progressively during the tests (\(P < 0.0001 \)). MCA blood velocity rose initially and fell at maximal exercise, with an increase from 73.4 cm/s (SD 20.4) at rest to 81.0 cm/s (SD 19.6) at 70% \(\dot{V}O_2 \text{max} \) (\(P < 0.0001 \)) and a reduction to 67.1 cm/s (SD 16.3) at \(\dot{V}O_2 \text{max} \) (\(P < 0.0001 \)) (Fig. 2). \(rSO_2 \) was reduced from 62.4% (SD 3.6) at rest to 61.2% (SD 3.9) during submaximal exercise (\(P < 0.01 \)) and was reduced to 58.0% (SD 3.0) at \(\dot{V}O_2 \text{max} \) (\(P < 0.0001 \)) (Fig. 3). There was a rise in \(CVR_{rest} \) from 1.63 (SD 0.64) at rest to 2.16 (SD 0.7) at \(\dot{V}O_2 \text{max} \) (\(P < 0.0001 \)) (Fig. 4) and a fall in cerebral oxygen delivery from 6,158 (SD 1,690) at rest to 5,049 (SD 1,264) at \(\dot{V}O_2 \text{max} \) (\(P < 0.01 \)) (Fig. 5).

DISCUSSION

The cardiopulmonary effects of exercise at altitude have been studied extensively, but the effect of exercise on cerebral perfusion has received limited attention. No comparable studies of cerebral oxygenation at \(\dot{V}O_2 \text{max} \) or any combined measurements of cerebral oxygenation and MCA blood velocity at \(\dot{V}O_2 \text{max} \), at high altitude have been reported. Our results showed reductions in cerebral oxygenation and oxygen delivery during submaximal and maximal exercise at altitude.

The major determinants of cerebral blood flow are arterial \(PO_2 \) (\(PAO_2 \)), arterial \(PCO_2 \) (\(PACO_2 \)) (1), and blood pressure, and each of these is altered by both exercise and altitude. Reductions in both \(PAO_2 \) and \(PACO_2 \) on acute exposure to altitude, and during exercise at altitude, will have opposing effects on cerebral blood flow. Furthermore, the effects of these stimuli will be modified and vary with acclimatization. An important part of the respiratory acclimatization to altitude is the change in the hypercapnic ventilatory response, resulting in increased ventilatory sensitivity to \(CO_2 \) (26). It has been shown that both cerebral blood flow and cerebral oxidative metabolism returns toward baseline by 3 wk at 5,260 m (31). In the present study, the responses observed at 4,750 and 5,260 m probably reflected partial acclimatization since they were performed 4–7 days after arrival at 3,610 m.

Our finding that acute exposure to the three altitudes had no effect on resting mean systemic arterial blood pressure is consistent with other reported studies (50). The rise in mean blood pressure in response to submaximal exercise at each high altitude was similar to that found at 150 m but was only significantly increased at the two highest altitudes. The fall in blood pressure at \(\dot{V}O_2 \text{max} \) is consistent with other reports (50, 51). The changes in blood pressure we observed with exercise at altitude are well above the range at which autoregulation has been shown to occur. Autoregulation maintains a constant cerebral blood flow of 50–60 ml·100 g\(^{-1}\)·min\(^{-1}\) over arterial pressures ranging from 60 to 140 mmHg (16). Experience during carotid endarterectomy under loco-regional anesthesia suggests that cerebral blood flow during the cross-clamp phase can be increased with a fairly modest rise in blood pressure, avoiding the need for shunting. A rise in systolic blood pressure of 35–45 mmHg can reverse neurological deficits (46) and is also associated with improved regional cerebral oxygenation (22). The rise in blood pressure may maintain cerebral perfusion during submaximal exercise at altitude, but the fall in blood pressure at \(\dot{V}O_2 \text{max} \) could be a critical factor limiting exercise.

![Fig. 4](http://jap.physiology.org/content/99/4/703/F4.large.jpg)

Fig. 4. Changes in cerebrovascular resistance at different altitudes (●, 150 m; •, 3,610 m; ◦, 4,750 m; ▲, 5,260 m). Values are means and SE. Resting values did not change with increasing altitude. Resting and \(\dot{V}O_2 \text{max} \) values were not significantly different at 150 m but rose at 3,610 m (\(P < 0.05 \)), 4,750 m (\(P < 0.01 \)), and 5,260 m (\(P < 0.001 \)).

![Fig. 5](http://jap.physiology.org/content/99/4/703/F5.large.jpg)

Fig. 5. Changes in cerebral oxygen delivery at different altitudes (●, 150 m; •, 3,610 m; ◦, 4,750 m; ▲, 5,260 m). Values are means and SE. Resting values did not change with increasing altitude. Resting and \(\dot{V}O_2 \text{max} \) values were not significantly different at 150 m but fell at 3,610 m (\(P < 0.01 \)), 4,750 m (\(P < 0.01 \)), and 5,260 m (\(P < 0.01 \)).
Near infrared cerebral spectroscopy measures changes in cerebral tissue oxygenation, which is dependent on blood flow, arterial oxygenation, cerebral metabolism, and arterial/venous partitioning (the relative proportion in either the arterial or venous vascular beds). The fall in arterial oxygen saturation at rest with increasing altitude was the most likely cause of the decrease in resting cerebral oxygenation and the increase in resting MCA blood velocity. Similar rises in MCA blood velocity have previously been reported and appear to be most marked on acute ascent, gradually returning toward normal over the following days to weeks (14, 23, 31). The small rise in cerebral oxygenation during submaximal exercise at 150 m could have occurred as a result of an increase in oxygen delivery induced by a gradual fall of cerebral vascular resistance and a matching increase in MCA velocity; but an alternative explanation for the observed rise in cerebral oxygenation could be decreased cerebral oxygen consumption. Similar changes in MCA blood velocity and cerebral oxygenation during submaximal exercise have been reported (17, 18, 34).

At $\bar{V}O_2$ max at 150 m, there was a rise in CVRrest and an associated fall in MCA velocity. Despite this, near infrared cerebral oxygenation remained higher than the resting levels. This may be attributable to decreased V_O_2, which has been described previously during exhaustive exercise at sea level (9).

In contrast, at the high altitudes studied, cerebral oxygenation (rSO2) fell progressively during submaximal exercise, with a further fall at maximal exercise. There was an increase in cerebral deoxygenated hemoglobin with both altitude and exercise. Saito and colleagues (42) showed similar changes in cerebral oxygenation at sea level and a fall at 2,700 and 3,700 m during submaximal exercise, which was equivalent to our level of 50% of V_O_2 max. However, we found that although cerebral oxygen delivery was sustained to 70% V_O_2 max at sea level, at the high altitudes studied, oxygen delivery peaked at 30% V_O_2 max and thereafter fell. With partial acclimatization, there appeared to be a trend toward improved cerebral oxygen delivery as seen at 5,260 m. The increase in MCA blood velocity during submaximal exercise may have been due to several factors, the most important of which would appear to be increases in mean blood pressure, because there were only small slacks in cerebral vascular resistance and arterial oxygen saturation. Both of these changes would tend to increase cerebral blood flow, and this was reflected in the rise in cerebral oxygen delivery observed at all altitudes at 30% submaximal exercise. There appeared to be a second phase between 70% V_O_2 max and V_O_2 max. In this phase, there was a marked rise in CVRrest at all altitudes, and this is associated with falls in end-tidal CO2 and small rises in arterial oxygen saturation. Both of these changes would tend to decrease cerebral perfusion, and again this was reflected in the reduction of cerebral oxygen delivery observed at all altitudes at V_O_2 max. Somewhat surprisingly, we found no direct correlation between end-tidal CO2 and CVRrest. However, CVRrest is a product of the complex dynamic interrelationship between all variables mentioned above as well as changes in hypoxic and hypercapnic ventilatory responses and cerebrovascular responsiveness to CO2.

The factors limiting exercise at altitude may be different from those that limit exercise at sea level and may include diffusion limitation of V_O_2 in the alveolus, the work of ventilation, respiratory muscle fatigue, and the possible steal of blood from limb locomotor muscles to respiratory muscles (8, 10, 30). The perception of dyspnea is also increased during exercise at altitude (5), which may lead to the premature ending of exercise. At altitude, V_O_2 in the lung is diffusion limited (52), and this is further exacerbated by exercise. Our results do not support a diffusion limitation of CO2 at V_O_2 max at altitudes up to 5,260 m, but further studies are required with measurements of PaCO2. Assessment of other vascular beds, such as exercising muscle, using near-infrared techniques could be used to determine whether there were significant steals of blood either to or from the cerebral circulation at V_O_2 max. These techniques have been successfully used by Nielsen and colleagues at sea level (33).

Our findings of reduced cerebral oxygen delivery and increased CVRrest during exercise above 50% of maximum exercise at altitude may relate to the pathogenesis of AMS and HACE. Exercise is likely to exacerbate AMS through increased hypoxia and sodium retention (55), and our results confirm that the brain is subjected to increasing hypoxia during exercise. Our results may explain the deterioration seen in the accuracy of marksmanship caused by acute exposure to altitude and independent of exercise (47) as well as transient and focal neurological deficits occurring at altitude (2, 32). The large rises in blood pressure observed on exercising close to or at V_O_2 max could explain some of the focal and global transient and permanent neurological events observed at high altitude. Clinical examination at a later time point might miss the period...
of profound hypertension. It is also of interest that the standard formula of 220 – age (yr) used to predict maximal heart rate provided a good estimate at 150 m but increasingly underestimated maximal heart rate at each of the high altitudes. This finding has implications for studies using this formula for predicting energy expenditure or work rate during exercise at altitude.

The reduction in cerebral oxygenation we demonstrated at submaximal exercise is relevant for normal climbing at \(\text{V}\text{O}_2 \) of 50–75% \(\text{V}\text{O}_2\text{max} \) (39). The finding that mountaineers with a more vigorous ventilatory response to hypoxia have more residual neurobehavioral impairment may be a result of reduced cerebral oxygen delivery (13). The hypercapnic vasoconstriction and subsequent reduced cerebral oxygenation might be due to a hypocapnic-driven reduction in cerebral blood flow (13). Schoene and colleagues (44) showed that the fall in arterial saturation on exercise at altitude was actually greater in subjects with a low hypoxic ventilatory drive. The observed reduction of cerebral oxygen delivery during exercise may be more important than absolute altitude in determining the development of AMS. At any given altitude, arterial and cerebral oxygenations are a dynamic variable dependent on absolute altitude, oxygen delivery, and \(\text{V}\text{O}_2 \). A resting individual at a higher altitude may have the same cerebral oxygenation as an exercising individual at a lower altitude. Both subjects are at the same “virtual” altitude. Assessing cumulative hypoxic insult (time at a virtual altitude) over a 24-h period might more accurately predict the hypoxic stress an individual has experienced.

The limitations of the near-infrared cerebral spectroscopy method have been reviewed (43, 37). The two-sensor technique eliminates the contribution from the scalp and skull, thereby giving a measurement of tissue oxygenation at a depth of 2.5–5.0 cm. Concerns over contamination of the intracerebral readings with scalp blood flow have been raised in the past. Providing the spacing between the scalp detectors is adequate, scalp flow makes no significant contribution. This was demonstrated using laser Doppler velocimetry and occlusion of scalp flow using a pneumatic tourniquet (35). Near-infrared spectroscopy provides a measure of the proportion of blood that is oxygenated. It does not distinguish how much is in the arterial or venous part of the vascular bed. The proportion of total blood in the brain has been estimated to be 28% arterial and 72% venous (29). In this study, we assumed that neither hypoxia nor exercise affects the arteriovenous partitioning. However, partitioning of the arterial and venous volumes in the brain under hypoxic conditions at rest has been modeled (56), and it is possible that further changes could occur with exercise.

The transcranial Doppler technique is operator dependent and requires careful focusing of the ultrasound probe on the MCA. We standardized this as far as possible by using one experienced operator (28). We cannot be certain whether arterial diameter remained constant during the exercise tests at altitude, but other studies at sea level found no changes with either decreases or increases in \(\text{P}\text{aCO}_2 \) (45) or during hypocapnia alone (49). Jorgensen and colleagues (24) showed that the increase in regional cerebral perfusion during exercise at sea level occurred in the MCA territory, with increases in mean MCA blood velocities of 19–32%. However, it has been suggested that much of the increase in MCA blood velocity in response to exercise could arise as an artifact from the increase in amplitude and frequency of the arterial pressure waveform used in Doppler ultrasound studies (38). Nevertheless, cerebral blood flow measured by \(^{133}\text{Xe} \) clearance increased by 31% during submaximal exercise at sea level (48). Our finding of a 15% increase in MCA blood velocity was similar to the 14% reported by Hellstroem and colleagues (11), who combined duplex ultrasonography and transcranial Doppler ultrasonography. Our results are also comparable to those reported by Huang and colleagues (15), who, on acute exposure to 4,300 m, recorded increases in internal carotid flow velocity of 15–33% on exercising at 45 and 72% \(\text{V}\text{O}_2\text{max} \). Hellstroem and colleagues (11) performed a study at sea level in which a reduction in MCA blood velocity was found at 80–90% of maximal exercise. This was associated with a reduction of \(\text{P}\text{aCO}_2 \), again similar to our findings at 150 m. When exercising at 96% \(\text{V}\text{O}_2\text{max} \) at high altitude, Huang and colleagues (15) noted a small fall in internal carotid flow velocity, but flow remained higher than resting levels in contrast to our study.

Our results are consistent with the hypothesis that cerebral blood flow provides an important signal to the central nervous system and may become a factor limiting exercise at altitude, rather than cardiorespiratory capacity and muscle fatigue (25). Our finding of considerable reductions in cerebral oxygen delivery and cerebral oxygenation during exercise at altitude suggest that these may provide the critical signals. The reduction of cerebral oxygenation during exercise, if it persists during altitude acclimatization, may explain why \(\text{V}\text{O}_2\text{max} \) is reduced despite normalization of arterial oxygen content (7). Reduction in cerebral oxygenation during exercise may exacerbate the neurological features of AMS and contribute to the development of HACE and other neurological deficits. Our results lend credence to the time-honored advice to avoid strenuous exercise on arrival at high altitude.

ACKNOWLEDGMENTS

We are grateful to QinetiQ staff for assistance in the design and construction of Alticycle. The pulse oximeter was loaned by Freelance Surgical, Bristol, UK, and the COLIN CBM-7000 monitor by ScanMed Medical Instruments, Moreton in the Marsh, UK. Margaret Richards provided invaluable secretarial assistance.

GRANTS

The work was supported by the Mount Everest Foundation.

REFERENCES

EXERCISE AND CEREBRAL PERFUSION AT HIGH ALTITUDE

