
Submitted 19 August 2003; accepted in final form 8 October 2003

Johan Ahlvqvist
Department of Pathology, University of Helsinki, FIN-00014 Helsinki; Aurora Hospital, FIN-00029 Helsinki; and Rheumatism Foundation Hospital, FIN-18120 Heinola, Finland

Address for reprint requests and other correspondence: Johan Ahlvqvist, Sibbvik, FIN-25830 Västanfjärden, Finland (E-mail: johan.ahlqvist@kolumbus.fi).

Equation for osmotic pressure of serum protein (fractions)

The colloid or protein osmotic pressure (II) is a function of protein molality (linear) and of Donnan and other effects. Albumin is the major osmotic protein, but also globulins influence II. Equations based on concentrations of albumin and nonalbumin (globulin concentration + fibrinogen concentration) protein approximate II better than albumin alone. Globulins have a wide range of molecular weights, and a 1956 diagram indicated that II of globulin fractions decreased in the order α1-, α2-, β-, and γ-globulin. The molecular weight of the serum protein fractions had been extrapolated, so van’t Hoff’s law and nonlinear regression analysis of the curves permitted expression of the diagram as an equation: II = x_{alb} (0.338C_{tot} + 0.00339C_{glob}) + x_{α1} (0.518C_{tot} + 0.0107C_{α1}) + x_{α2} (0.203C_{tot} + 0.00155C_{α2}) + x_{p1} (0.187C_{tot} + 0.000577C_{p1}) + x_{p2} (0.161C_{tot} + 0.000223C_{p2}), where II = osmotic pressure of serum (fractions). The late Arthur C. Guyton published a diagram (4) on (MW) of the molecules (1). The diagram initiated this discussion (5). Two versions were almost consistently slightly lower than computed "Ott" and readings from Ott’s curves. The result is in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

RESULTS

The result is

\[\Pi_{\text{serum}} \cdot \text{"Ott", } 2°C \cdot \text{cmH}_2\text{O} = x_{alb} (0.518C_{\text{tot}} + 0.0107C_{\text{glob}}) + x_{α1} (0.338C_{\text{tot}} + 0.00339C_{α1}) + x_{α2} (0.203C_{\text{tot}} + 0.00155C_{α2}) + x_{p1} (0.187C_{\text{tot}} + 0.000577C_{p1}) + x_{p2} (0.161C_{\text{tot}} + 0.000223C_{p2}) \]

in which II = osmotic pressure of serum at 2°C (in cmH2O); and x_{alb}, x_{α1}, x_{α2}, x_{p1}, and x_{p2} are the fractions of albumin, α1-, α2-, β-, and γ-globulin, respectively. At one and the same concentration of fractions, II_{"Ott"} decreases in the order α1-globulin, albumin, α2-globulin, β-globulin, and γ-globulin.

Fibrinogen has a higher MW than IgG and should influence II less than γ-globulin, but, as part of plasma total protein, C_{fratio} contributes to II of other proteins (Fig. 1). The error induced by relying on serum instead of plasma should, however, with few

The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
Clinical errors could be avoided by computing $\Pi_{\text{osm, Ott}}$ at fractionation of serum, a routine investigation. I restrict myself to a few examples of possible implications of $\Pi_{\text{osm, Ott}}$.

Filtration of fluid from plasma driven by capillary pressure (P_c) minus tissue pressure (P_t; $P_c - P_t = \Delta P$) is rather effectively opposed by Π_1 minus tissue pressure ($\Delta \Pi_1$) at capillary endothelial small pores, and increase of Π_1 tends to increase the volume of plasma (3–5). In acute phase reactions, $\Pi_{\text{osm, Ott}}$ increases because many reactants are α_1- and α_2-globulins (1).

The present author is less competent than Guyton’s (4) followers to evaluate the influence of increase of plasma volume on cardiac output, etc.

In humans, C_{alb} and concentration of γ-globulin correlate with their catabolism (3, 7), which takes place outside plasma, and high Π_1 is believed to downregulate hepatic albumin synthesis (3). Increase of C_{glob} may be followed by decrease of C_{alb} in states (3) generally associated with acute phase reactions, but Π_1 was calculated by an equation based on C_{tot} and C_{alb} (3). Might $\Pi_{\text{osm, Ott}}$ (Table 1) add theoretical credibility to findings that indicate autoregulation of Π_1, also by plasma protein extravasation and catabolism and prove helpful in making decisions about colloid substitution therapy?

The findings in humans could be explained by the fact that there are, in addition to small endothelial pores, very sparse pores so large that they permit passage of most plasma proteins (2, 7) and in which flow is opposed very weakly by $\Delta \Pi$. Increase of Π_1 and P_c (isogravimetry) and reabsorption by $\Delta \Pi$ of low-protein fluid through small pores have been suggested to enhance large-pore protein convection (Ref. 3 in Ref. 2). In this or other experimental studies on protein transfer familiar to me, little attention is paid to change of P_c at capillary pulsation.

Table 1. $\Pi_{\text{osm, Ott}}$ at 37°C, in cm H$_2$O, computed from albumin concentration and concentrations (g/l) of globulin fractions, and their sum C_{tot}

<table>
<thead>
<tr>
<th>C_{alb}</th>
<th>C_{α_1}</th>
<th>C_{α_2}</th>
<th>C_P</th>
<th>C_γ</th>
<th>C_{tot}</th>
<th>Influence of protein fractions</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>43</td>
<td>43</td>
<td>8.3</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>43</td>
<td>0</td>
<td>43</td>
<td>10.3</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>43</td>
<td>0</td>
<td>0</td>
<td>43</td>
<td>13.1</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>43</td>
<td>23.4</td>
<td></td>
</tr>
<tr>
<td>Influence of globulin fractions at constant albumin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>0</td>
<td>0</td>
<td>29.7</td>
<td>0</td>
<td>72.7</td>
<td>34.3</td>
</tr>
<tr>
<td>43</td>
<td>0</td>
<td>29.7</td>
<td>0</td>
<td>72.7</td>
<td>36.0</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>29.7</td>
<td>0</td>
<td>0</td>
<td>72.7</td>
<td>38.9</td>
<td></td>
</tr>
<tr>
<td>Increase of all globulins followed by albumin decrease*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>2.4</td>
<td>6.7</td>
<td>8.8</td>
<td>11.8</td>
<td>72.7</td>
<td>38.8</td>
</tr>
<tr>
<td>43</td>
<td>3.4</td>
<td>7.7</td>
<td>9.8</td>
<td>12.8</td>
<td>76.7</td>
<td>42.0</td>
</tr>
<tr>
<td>39</td>
<td>3.4</td>
<td>7.7</td>
<td>9.8</td>
<td>12.8</td>
<td>72.7</td>
<td>38.5</td>
</tr>
<tr>
<td>Increase of α-globulins followed by albumin decrease*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>2.4</td>
<td>6.7</td>
<td>8.8</td>
<td>11.8</td>
<td>72.7</td>
<td>38.8</td>
</tr>
<tr>
<td>43</td>
<td>3.4</td>
<td>7.7</td>
<td>8.8</td>
<td>11.8</td>
<td>74.7</td>
<td>41.1</td>
</tr>
<tr>
<td>39</td>
<td>3.4</td>
<td>7.7</td>
<td>8.8</td>
<td>11.8</td>
<td>72.7</td>
<td>39.3</td>
</tr>
</tbody>
</table>

*First line shows a clinical average distribution of fractions. Second and third lines show influence of change (in bold) of fraction concentration. C_{alb}, C_{α_1}, C_{α_2}, C_P, C_γ, and C_{tot}: concentration of albumin, α_1-globulin, α_2-globulin, β-globulin, γ-globulin, and total protein, respectively; $\Pi_{\text{osm, Ott}}$, protein osmotic pressure computed by the equation.

Fig. 1. Computed protein osmotic pressure at 2°C ($\Pi_{\text{osm, Ott}}$) of solutions of albumin (alb) and globulin fractions (α_1, α_2, β, and γ). The dashed line represents the van’t Hoff part of α_1-globulin Π. When serum Π_1 is calculated from these diagrams (4, 6), Π_1 of each fraction is read at the total protein of the sample, that Π is multiplied by the percentual (or fractional) concentration of the component, and the sum of the 5 pressures is calculated Π_1 of the sample (6).

exceptions, be smaller than that caused by omission of the effect of low-MW globulin fractions.

Does $\Pi_{\text{osm, Ott}}$ reflect Ott’s (6) diagram adequately? At $C_{\text{fraction}} > 55$ g/l, Ott’s curves for α_1-globulin and albumin seem straight, in contrast to the curves in Guyton’s modified (how?) version (4) of Ott’s diagram. If Ott’s curves were drawn by hand, it may be difficult to find equations that fit them exactly.

The difference between $\Pi_{\text{osm, Ott}}$ of serum fractions and readings from Ott’s (6) diagram was small. Computed $\Pi_{\text{osm, Ott}}$ may agree fairly well with Ott’s data.

Ott’s maximum $\pm 6.7\%$ difference between calculated and measured Π_1 was reduced to $\pm 4.5\%$ after exclusion of anabuminic and nephrotic sera (6). At strong increase of high (α_2- and β-lipoproteins, IgM) or low (monoclonal Ig heavy chains) MW globulins, the equation over- and underestimates, respectively, measured Π_1 (6, 7). If Ott’s data are checked, it may be worthwhile to pay attention to the influence of acidosis (5) on fraction Π_1.

Colloid osmometry has little place in clinical routine. The fact that C_{alb} is the main determinant of Π_1 in disease has led to the view (textbooks of clinical chemistry) that C_{alb} reflects change of Π_1 in disease. Because of the second-power terms, increase of C_{glob} (any globulin) increases the osmotic effect of C_{alb} by increasing C_{tot} (Fig. 1). In this respect, equations based on C_{tot} and C_{alb} (2) are correct. Neither approach indicates that C_{alb} may be low, despite (because of?) high Π_1; both ignore the effect of low-MW globulins (Table 1).
of maximal vasodilatation (4), and tissue II and protein catabolism. I have come across no attempts to copy, in intact laboratory animals, human diseases (1, 2) preceded by increase of \(\gamma \)-globulin concentration and associated with increase of \(\alpha \)-globulin concentration and decrease of \(\text{C}{\text{a}}_{\text{lb}} \).

What is relevant may be change of \(\Pi_{\text{Ort}} \) from the individual’s average in health. In Ott’s clinical series, a \(\Pi_{52^\circ \text{C}} > 40 \text{ cmH}_2\text{O} \) was, however, high (6). Methods for determination of protein are changing, but the changes of \(\text{C}{\text{ fraction}} \) in Table 1 are small compared with many met in clinical work. The clinical value of \(\Pi_{\text{Ort}} \) remains to be established.

ACKNOWLEDGMENTS

The author is no longer affiliated with institutions listed and is presently retired.

I am grateful to Jarmo Hallikainen for calculating the coefficients of the second-power terms, to Mikael Lampinen for adapting the equation to Excel, to Veikko Nääntö, Martti Lalla, and Georg Hintze for constructive criticism, and to Sune Backlund for checking the principles of calculation of \(\Pi \) and for brushing up a dilettante’s physical wording. The computed equation (Excel) can be sent to others by E-mail.

REFERENCES