In vivo rabbit hindquarter model for assessment of regional burn hypermetabolism

JI XU, ZHEWEI FEI, YONG-MING YU, WENYIN XU, ANDREW RHODES, RONALD G. TOMPKINS, AND JOHN T. SCHULZ
Shriners Burns Hospital, Burn and Trauma Service, Massachusetts General Hospital, Boston, Massachusetts 02114
Submitted 12 June 2002; accepted in final form 26 September 2002

Xu, Ji, Zhewei Fei, Yong-Ming Yu, Wen Yin Xu, Andrew Rhodes, Ronald G. Tompkins, and John T. Schulz. In vivo rabbit hindquarter model for assessment of regional burn hypermetabolism. J Appl Physiol 94: 135–140, 2003. First published September 27, 2002; 10.1152/japplphysiol.00513.2002.—Severe burn injury evokes hypermetabolism and muscle wasting, despite nominally adequate nutrition. Although there is much information on whole-organism and isolated tissue metabolism after burn injury, data examining regional burn hypermetabolism in vivo are lacking. Using surgically implanted (general anesthesia) regional vascular catheters and primed constant infusion of L-[1-13C]phenylalanine tracer, we have determined in vivo burn-induced alterations in rabbit hindquarter protein and energy metabolism. Burn injury evokes increased whole-body resting energy expenditure and phenylalanine turnover, accompanied by significantly increased hindquarter proteolysis, creating a negative protein balance in burned rabbit hindquarter. Hindquarter oxygen consumption showed an increase after burn injury, but it did not reach statistical significance. Burn-induced changes in hindquarter protein turnover account for approximately one-third of the whole animal hypermetabolism. This model offers a system for regional manipulation of postburn hypermetabolism.

burn injury; phenylalanine kinetics

SEVERE BURN INJURY RESULTS in a hypermetabolic and catabolic state characterized by increased energy expenditure, diminished capacity to resist infections, and erosion of muscle protein mass associated with muscle weakness (7, 9, 12, 24). Although nutritional support is partially successful in restoring nitrogen equilibrium, the net protein wasting continues for a prolonged period (9), causing debility and impeding prompt rehabilitation of the convalescent burn patient. Anabolic steroids have been employed in attempts to interdict muscle wasting after burn injury. The merits of this type of therapy await wide clinical confirmation.

The relationship between burn-induced changes in energy and protein metabolism has been studied in multiple animal models. Although at least one pathway implicated in stress-related proteolysis is ATP dependent (8), the precise relationship between burn-induced hypermetabolism and protein catabolism remains poorly defined (27, 28).

Both radioactive and stable isotope tracers are used to measure the rate of muscle protein turnover in various animal models. Large-animal models are not suitable for study of burn-induced metabolic changes, because induction of significant burn injury in larger mammals is ethically unacceptable. In smaller animals, such as rodents, muscle protein kinetics have mostly been quantified by postmortem analyses of muscle samples (6, 18) and by ex vivo muscle incubation or hindquarter perfusion (19). These studies have provided substantial quantitative data on myoskeletal protein and substrate dynamics under various pathophysiological conditions. However, the influence of a burn injury on regional energy consumption and amino acid metabolism remains poorly defined because accurate measurements cannot be accomplished in ex vivo perfusion models or in muscle biopsy specimens.

Having developed a rabbit model for whole animal metabolic studies after burn injury (11), we turned again to the rabbit in seeking a model for study of burn injury’s effect on the in vivo relationship between energy and protein metabolism in skeletal muscle. We expected the model to fulfill these criteria: 1) large enough to permit surgery for implantation of sampling devices, 2) small enough for easy care (including limited analgesic needs) after a full-thickness burn, and 3) possessing an assayable compartment made largely of muscle and preferably a large percentage of the whole animal muscle.

In this paper, we describe the development of a burned rabbit hindquarter model that satisfies these criteria, allowing the simultaneous quantitative evaluation of both energy and protein metabolism in vivo in a specific region with a large (by weight) skeletal muscle component.

MATERIALS AND METHODS

The studies were carried out in 14 male New Zealand white rabbits (weight 3–3.5 kg). They were arbitrarily divided into sham burn (n = 8) and burn (n = 6) groups. The

The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
animals were purchased through a commercial animal supplier (Millbrook Breeding Labs, Amherst, MA). On arrival, they were habituated to the environment for at least 48 h before use. All animals were kept in the Animal Farm of the Massachusetts General Hospital, under the care of veterinary staff. Water and food (Prolab Hi-Mass) were fed ad libitum. The study protocol was approved by the Subcommittee on Research Animal Care of Massachusetts General Hospital.

Surgical preparation of the hindquarter model. On the day of surgery, hair was clipped around the neck and the abdomen. All animal procedures were conducted under general anesthesia induced with intramuscular injection of a mixture of ketamine-xylazine-acepromazine (30, 10, and 0.5 mg/kg body wt, respectively). After induction of anesthesia, the animal was placed on the operating table in the supine position, and anesthesia was maintained by continuous inhalation of halothane (0.5–1%) through a face mask. Catheters (PE 90 with 3 cm of Silastic tip) were implanted into the left jugular vein and left carotid artery by use of aseptic procedures. Details of this surgical procedure have been described in our laboratory’s previous publications (11, 13). Postoperatively, the animals were allowed to recover for 3 days. They were monitored daily for general conditions.

On the third postoperative day, the animals were reanesthetized as described above. They were positioned supine atop a small roll to lift up the loin. A right paramedian skin incision in the neck, where they were secured with silk ligatures, was then made, and the right renal vein was encircled with a silk tie and severed. The right renal vein was encircled with a silk tie and then transected at its confluence with the inferior vena cava (IVC) and then at 3 mm distal to the confluence. A PE 50 polyethylene catheter with Silastic tip was inserted through a small venotomy into the right renal vein and then into the IVC – 3 cm below the confluence. The previously placed silk was then secured, and the right renal vein was transected at the venotomy after being tied off at the renal hilum. A similar technique was used to insert a catheter into the renal artery with the Silastic tip being manipulated into the abdominal aorta. The catheters were externalized through the muscle of the abdominal wall and tunneled subcutaneously to an exit skin incision in the neck, where they were secured with silk sutures. The right kidney was removed. The ends of the implanted catheters were carefully capped (Prepierced Re-seal Male Adapter Plug-Short, Abbott Laboratories, Abbott Park, IL). The abdominal incision was closed in three layers.

The animals recovered from anesthesia in ~1.5 h under oxygen inhalation and were placed under routine care for 7 days; if dictated by operative blood loss, crystalloid resuscitation was performed via the venous line. Fasting blood urea nitrogen (BUN) and creatinine levels were measured on the third postoperative day to confirm normal renal function. The implanted catheters were flushed with 1 ml of saline-heparin solution (1 ml saline: 100 IU heparin) daily. Postoperative pain was treated with buprenorphine (0.02 mg/kg every 12 h as needed).

Burn rabbit model. A full-thickness burn injury was induced ~60 h after right nephrectomy and implantation of aortic and IVC catheters, according to the method described in detail recently (11). Briefly, the animal was anesthetized and described above and then subjected to a full-thickness burn by immersing its dorsum along the mark made from an oval template (~25% total body surface area) into boiling water for 15 s, followed by fluid resuscitation and careful observation. Control (sham burn) animals were anesthetized but not burned. Details of anesthesia, the induction of thermal injury, the postburn care, and the metabolic characterization of the injured animals have been described before (11).

Tracer studies. Tracer studies were conducted on the third postburn (or sham burn) day after overnight fast. Each animal received a primed constant infusion of L-[1-13C]phenylalanine tracer with a targeted infusion rate of 0.182 µmol·kg⁻¹·min⁻¹ (0.03 mg·kg⁻¹·min⁻¹), and a priming dose of 11 µmol/kg for 6 h. Five pairs of blood samples, 2.5 ml each, were taken from the catheters placed in the carotid artery and IVC (via the right renal vein) before the tracer infusion was started (0 min), then at 300, 320, 340, and 360 min after the commencement of the tracer infusion. During the same period of time, para-aminohippurate (PAH, Merck Sharp, Dohme, West Point, PA) 1.5% was infused at 0.16 ml/min into the catheters in the abdominal aorta for the measurement of blood flow in the hindquarter by using the dilution principle (13, 29). For each blood sample, 0.1 ml of whole blood was immediately mixed with 1.4 ml of 10% trichloroacetic solution. After centrifugation, the supernatant was preserved at −20°C until analysis. The remaining blood in each sample was immediately cryopreserved at −70°C until analysis. During the study, three pairs of arterial and venous blood gas were also measured by use of a blood-gas analyzer. The total energy expenditure of the animal was calculated on the basis of oxygen consumption as described (11, 22).

Sample treatment and analysis. The blood enrichment of L-[1-13C]phenylalanine was determined by gas chromatography mass spectrometry (GC-MS, Hewlett-Packard, 5985B), and the concentration of blood phenylalanine was also determined simultaneously by using L-[ring-2H₅]phenylalanine (M = 5 phenylalanine) as internal standard, following the principles described before (2). Briefly, phenylalanine in blood was separated via ion-exchange column (Bio-Rad cat-ion ion exchange resin) and derivatized to form a trifluoroacetyl methyl ester. The analysis was carried out by using the electron impact ionization technique. The enrichments of L-phenylalanine, L-[1-13C]phenylalanine, and L-[ring-2H₅]-phenylalanine were monitored on a molecular mass (protons + neutrons)-to-protons ratio of 162.2 (nonisotopic phenylalanine), 163.2 (L-[1-13C]phenylalanine), and 167.2 (L-[ring-2H₅]-phenylalanine). Blood PAH concentrations were determined spectrophotometrically at λ = 530 nm on a microplate reader (THERMO max, Molecular Devices) against a standard curve. This method is a slight modification from that described before by Katz and Bergman (13).

Calculation of whole body and hindquarter blood flow rate, phenylalanine kinetics, and oxygen consumptions. The calculations of protein and amino acid metabolism in whole body and hindlimb were based on arterial-venous (A-V) differences of both tracer and tracee in whole blood. Details of the method have been described before (10, 26, 29).

Briefly, whole body phenylalanine turnover rate (Q_PHE) is measured by using the steady-state isotope tracer dilution approach (23)

\[
Q_{PHE} = \frac{i_{PHE}E_i}{E_P} - 1
\]

where \(i_{PHE}\) is the infusion rate of phenylalanine tracer, \(E_i\) is the isotopic enrichment of L-[1-13C]phenylalanine in the infused, \(E_P\) is the plateau level plasma L-[1-13C]phenylalanine enrichment. Insteady state, \(Q_{PHE} = \frac{i_{PHE}}{BPHE}\) (23), where \(Q_{PHE}\) is the rate of phenylalanine intake and \(BPHE\) is the rate of phenylalanine released from whole body proteolysis. In fasting state, \(Q_{PHE} = 0\); then, \(BPHE = Q_{PHE}\).

Because phenylalanine is not metabolized in the hindquarter, its only mode of incorporation into the hindquarter is as
phenylalanine residues in newly synthesized protein. Similarly, because phenylalanine is not synthesized in muscle, it can only be produced from muscle by proteolysis. Consequently, at isotopic steady state, the metabolic uptake (or disappearance) of the arterial blood phenylalanine tracer in passing through the hindquarter represents the rate of its utilization for protein synthesis. On the other hand, the release of the unlabelled phenylalanine from muscle, which dilutes the hindquarter L-[1-13C]phenylalanine enrichment, results strictly from proteolysis. Thus the fraction of the total arterial phenylalanine incorporated into hindquarter protein f_{SPHE} can be expressed as

\[
f_{SPHE} = \frac{[A_{PHE}]_{PAH}[V_{PHE}]}{[A_{PHE}]_{PAH}[V_{PHE}]} = 1 - \frac{[V_{PHE}][E_{PHE}][A_{PHE}]}{[A_{PHE}][E_{PHE}][A_{PHE}]}
\]

where \([A_{PHE}]\) and \([V_{PHE}]\) are concentration of phenylalanine in arterial and inferior venous blood and \([E_{PHE}]\) and \([V_{E_{PHE}}]\) are the arterial enrichments of the stable isotope-labeled L-[1-13C] phenylalanine in the arterial and venous blood, respectively; then, the rate of phenylalanine incorporation (\(S_{PHE}\)) into protein can be calculated as

\[
S_{PHE} = \frac{[A_{PHE}]_{PAH}[V_{PHE}]}{[A_{PHE}]_{PAH}[V_{PHE}]}F
\]

where \(F\) is the blood flow rate across the hindquarter during the study (ml·h⁻¹·kg body wt⁻¹).

The rate of phenylalanine from the hindquarter tissues (\(B_{PHE}\)) can be calculated as

\[
B_{PHE} = S_{PHE} - ([A_{PHE}] - [V_{PHE}])F
\]

The method for determining blood flow rate has been described earlier. Briefly, by using measurements of arterial and venous PAH concentrations, the flow rate is determined by the following relationship (13, 29)

\[
F = \frac{[V_{PAH}]}{[A_{PAH}]}
\]

where \(i_{PAH}\) is the rate of PAH infusion (mg·min⁻¹·kg body wt⁻¹) and \([V_{PAH}]\) and \([A_{PAH}]\) are PAH concentrations (mg·ml⁻¹) in the arterial and IVC blood.

The oxygen consumption in the hindquarter was estimated on the basis of the A-V difference (arterial vs. IVC) of blood gas content, by using a similar approach to that used in measuring oxygen consumption in the liver perfusion system (16, 25). Blood oxygen content (O₂, in ml/dl) is calculated as

\[
O_{2} = \frac{[Hgb \times 1.36 \times (\% Sat + P_{O2} \times 0.003)]}{(\text{arterial} - \text{venous}) \times \text{flow rate (ml·kg}^{-1} \cdot \text{min}^{-1})}
\]

The measurement of whole body energy expenditure has been described in detail before (11).

RESULTS

Rabbits tolerate the surgery and experimental protocol fairly well. The daily food intake for healthy rabbit was ~45 ± 3 g/kg, which contains protein 7.5 g/kg and total energy ~70 kcal/kg per day. Experimental rabbits began eating and drinking within 24 h of recovery from anesthesia and reached normal intake by ~48 h after induction of burn injury (24 h before the tracer experiments). Unilateral nephrectomy did not produce a significant alteration in serum creatinine and BUN levels (Fig. 1). Three days after burn injury, hemoglobin (sham burn vs. burn, means ± SE: 12.8 ± 0.5 vs. 12.3 ± 0.5 mg/dl, \(P > 0.1\)) and arterial oxygen saturation (0.99 vs. 0.99) are not significantly different between burned and sham burned rabbits (Table 1). In both sham and burned animals, the IVC and arterial hemoglobin concentration are the same. The oxygen saturation in IVC blood averaged 0.86 ± 0.05 in the sham rabbits and 0.84 ± 0.04 in the burned rabbits (\(P > 0.1\)). The whole body oxygen consumption shows a higher value 3 days after burn injury, in agreement with our previous observations in rabbits with the same total body surface area burn (11). The stable isotope enrichment reaches plateau level between 300 and 360 min (Fig. 2). On the basis of the data in Fig. 2, the kinetics of whole body and hindquarter protein metabolism were calculated by assuming isotopic steady-state conditions.

Burn injury induced accelerated whole animal protein catabolism. The metabolic parameters measured in the burn (\(n = 6\)) and the control (\(n = 8\)) animals are shown in Table 1. The resting energy expenditure measured in burned animal was ~26% higher than the control animals on the third postburn day (\(P < 0.05\)). Whole body phenylalanine turnover, which is an indicator of whole body protein breakdown, was signifi-

Table 1. Whole body energy expenditure and phenylalanine metabolism in sham burn and burn animals

<table>
<thead>
<tr>
<th>Measurements</th>
<th>Sham Burn</th>
<th>Burn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body weight, kg</td>
<td>2.80 ± 0.10*</td>
<td>2.92 ± 0.09</td>
</tr>
<tr>
<td>Energy expenditure, kcal·kg⁻¹·day⁻¹</td>
<td>49.3 ± 6.4</td>
<td>62.3 ± 11.0*</td>
</tr>
<tr>
<td>Tracer infusion rate</td>
<td>10.8 ± 0.7</td>
<td>11.0 ± 0.2</td>
</tr>
<tr>
<td>Whole body PHE turnover rate, μmol·kg⁻¹·h⁻¹</td>
<td>138.0 ± 12.4</td>
<td>229.4 ± 36.3*</td>
</tr>
<tr>
<td>Whole body proteolysis, g·kg⁻¹·d⁻¹</td>
<td>10.8 ± 1.0</td>
<td>18.0 ± 2.8*</td>
</tr>
</tbody>
</table>

Values are means ± SE; \(n = 8\) for sham burn group and \(n = 6\) for burn group. PHE, phenylalanine. *Significantly different from sham burn group; \(P < 0.05\), unpaired t-test (unequal variance).
significantly higher in the burned animals (Table 1). On the basis of the phenylalanine turnover rates shown in Table 1, and assuming an average phenylalanine content of 306 μmol/g protein (20), the whole body protein turnover was \(-11 \times 10^{-3}\) kg\(^{-1}\)day\(^{-1}\) in sham burn animal and \(-18 \times 10^{-3}\) kg\(^{-1}\)day\(^{-1}\) in burned animals, an increase of \(>60\%\). Because the rabbits are fasting and have no source of exogenous phenylalanine, phenylalanine turnover and the protein turnover deduced from it represent protein breakdown exclusively. Burn injury in the rabbits produces a large increase in protein turnover, consistent with a very accelerated protein catabolism.

Burn injury induced accelerated protein catabolism in the hindquarter. The rate of oxygen consumption in the hindquarter was measured in six sham burn and five burn animals on the basis of A-V difference of the blood oxygen content (16). The measured rates are (means ± SE) 0.8 ± 0.2 ml\(\cdot\)min\(^{-1}\)\(\cdot\)kg body wt\(^{-1}\) in sham burn animals and 1.0 ± 0.3 ml\(\cdot\)min\(^{-1}\)\(\cdot\)kg body wt\(^{-1}\) in burned animals. There was a tendency toward a higher rate of hindquarter oxygen consumption in the burned animals, although it failed to reach statistical significance (\(P > 0.2\) by unpaired \(t\)-test).

The various metabolic parameters measured in vivo in the hindquarter are shown in Table 2. There was no significant difference between sham and burned groups in the rate of hindquarter blood flow, the total rate of arterial phenylalanine delivery, or the fraction of phenylalanine extraction by the hindquarter. The rate of phenylalanine incorporated into hindquarter muscle showed an increase that did not reach statistical significance (\(P > 0.15\)). In contrast, the rate of hindquarter protein breakdown, as indicated by the rate of phenylalanine release from hindquarter protein, was more than doubled in the burn animals compared with the controls (Table 2). Comparing these data to the data from the whole animal (Table 1), it appears that burn-induced protein catabolism may be more severe in the hindquarter than in the whole body.

DISCUSSION

Burn injury continues to exact a high toll in morbidity and mortality, both of which are exacerbated by the intense metabolic storm that follows a large burn. Hallmark features of the postburn illness are altered energy and protein metabolism. Although there is much information on whole organism metabolism and isolated tissue metabolism after burn injury, the quantitative data on burn-induced changes in regional protein and energy metabolism in vivo are quite limited. In this paper, we have demonstrated a refinement of a burned-rabbit model that allows in vivo measurement of both whole body and regional (hindquarter) protein and energy metabolism. We have found that hindquarter accounts for approximately one-third of protein turnover. Burn injury produces a significant change in protein catabolism in hindquarter, a change that may

![Fig. 2. Isotopic plateau level \([13C]\)phenylalanine enrichments in whole blood in burn and sham burn animals.](image)

As a result, the net protein balance, as indicated by the difference between the rates of phenylalanine incorporated into and released from the hindquarter proteins, showed a significantly negative value in the burned group compared with the sham burn group. In addition, the data in Tables 1 and 2 indicate that the hindquarter accounts for approximately one-third of whole body protein turnover as well as about one-third of the whole body energy expenditure in rabbits.

Table 2. In vivo measurements of hindquarter phenylalanine metabolism in sham burn and burned animals

<table>
<thead>
<tr>
<th>Metabolic Parameters</th>
<th>Sham Burn</th>
<th>Burn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fasting PHE concentration, μM</td>
<td>87.5 ± 5.1</td>
<td>86.3 ± 2.5</td>
</tr>
<tr>
<td>Arterial blood [ArPHE]</td>
<td>86.5 ± 5.0</td>
<td>95.7 ± 2.3</td>
</tr>
<tr>
<td>Enrichments of ([13C])PHE (MPE) Arterial blood [Eα]</td>
<td>7.8 ± 0.8</td>
<td>5.2 ± 1.1*</td>
</tr>
<tr>
<td>Renal venous blood [Ev]</td>
<td>6.9 ± 0.7</td>
<td>4.2 ± 0.9*</td>
</tr>
<tr>
<td>Hindquarter blood flow rate, ml(\cdot)min(^{-1})</td>
<td>46.6 ± 6.1</td>
<td>42.7 ± 4.8</td>
</tr>
<tr>
<td>Total arterial delivery of PHE to hindquarter, μmol(\cdot)kg(^{-1})(\cdot)h(^{-1})</td>
<td>237.5 ± 25.3</td>
<td>221.3 ± 24.9</td>
</tr>
<tr>
<td>Fraction of total delivered PHE extracted by the hindquarter (ε(PHE)), %</td>
<td>15.7 ± 2.7</td>
<td>22.1 ± 4.7</td>
</tr>
<tr>
<td>PHE balance, μmol(\cdot)kg(^{-1})(\cdot)h(^{-1})</td>
<td>2.0 ± 3.8</td>
<td>-23.4 ± 3.2†</td>
</tr>
<tr>
<td>Rate of PHE to protein in hindquarter (S(PHE)), μmol(\cdot)kg(^{-1})(\cdot)h(^{-1})</td>
<td>35.4 ± 5.1</td>
<td>48.5 ± 12.7</td>
</tr>
<tr>
<td>Rate of PHE released via proteolysis (β(PHE)), μmol(\cdot)kg(^{-1})(\cdot)h(^{-1})</td>
<td>32.4 ± 5.8</td>
<td>71.9 ± 14.7</td>
</tr>
<tr>
<td>Hindquarter protein synthesis, g(\cdot)kg(^{-1})(\cdot)day(^{-1})</td>
<td>2.8 ± 0.4</td>
<td>3.8 ± 1.0</td>
</tr>
<tr>
<td>Hindquarter protein breakdown, g(\cdot)kg(^{-1})(\cdot)day(^{-1})</td>
<td>2.6 ± 0.5</td>
<td>5.6 ± 1.2*</td>
</tr>
<tr>
<td>Hindquarter protein balance, g(\cdot)kg(^{-1})(\cdot)day(^{-1})</td>
<td>0.2 ± 0.3</td>
<td>-1.8 ± 0.2†</td>
</tr>
</tbody>
</table>

Values are means ± SE; \(n = 8\) for sham burn group and \(n = 6\) for burn group. MPE, molar ratio percent excess. *Significantly different from sham burn group; \(P < 0.05\), unpaired \(t\)-test (unequal variance). †Significantly different from sham burn group; \(P < 0.01\), unpaired \(t\)-test (equal variance).
be proportionately larger than that seen in the whole animal.

A number of animal models have been established for exploring muscle protein metabolism in healthy and in diseased conditions. Ruderman et al. (19) first developed the ex vivo rat hindquarter perfusion model to study the metabolism of various substrates and the impact of various humoral factors on substrate metabolism. Because the hindquarter is mostly composed of muscle, this model has significantly contributed to the understanding of muscle metabolism. The ex vivo hindquarter perfusion model also provides information on the rate of protein turnover, but its relevance to in vivo protein metabolism is questionable and cannot be used to determine the metabolic effect of a distant injury (such as a torso burn) on hindquarter protein metabolism. In addition, an ex vivo preparation prevents an accurate assessment of regional energy expenditure.

Assessment of protein metabolism in rodent models has also depended on the analysis of tissue samples taken after death (6, 18). Information on proteolysis and energy metabolism is limited in these studies. Furthermore, the relationship between protein metabolism and energy metabolism in these postmortem tissues is of questionable relevance to the living organism. This is especially true after a burn injury, when all the inflammatory mediators and the altered hormonal milieu are available only in vivo. Many previous in vivo animal models for studying protein metabolism in specific regions with stable or radioactive isotope tracers have been described. In these models, the measurement of muscle protein metabolism has been based on muscle biopsy (5, 15) and/or the measurements of A-V difference of amino acid concentrations and isotopic abundance (1, 3, 4, 10, 21). These methods are applicable to larger animals, e.g., sheep (17), canine (1, 3, 10), and cow (14); however, the induction of burn injury in these animals is quite difficult, both technically and ethically, and we have consequently elected to avoid the use of larger mammals. For the purpose of simultaneous measurements of both energy and protein metabolism in a conscious animal, we used the present model. This method allows a way to explore the metabolic effect of a distant injury (such as a torso burn) on hindquarter protein metabolism. The ex vivo hindquarter perfusion model also provides information on the impact of various humoral factors on substrate metabolism. Because the hindquarter is mostly composed of muscle, this model has significantly contributed to the understanding of muscle metabolism. The ex vivo hindquarter perfusion model also provides information on the rate of protein turnover, but its relevance to in vivo protein metabolism is questionable and cannot be used to determine the metabolic effect of a distant injury (such as a torso burn) on hindquarter protein metabolism. In addition, an ex vivo preparation prevents an accurate assessment of regional energy expenditure.

In vivo animal models for studying protein metabolism are applicable to larger animals, e.g., sheep (17), canine (1, 3, 10), and cow (14); however, the induction of burn injury in these animals is quite difficult, both technically and ethically, and we have consequently elected to avoid the use of larger mammals. For the purpose of simultaneous measurements of both energy and protein metabolism in a conscious animal, we used the present model. This method allows a way to explore the metabolic effect of a distant injury (such as a torso burn) on hindquarter protein metabolism. The ex vivo hindquarter perfusion model also provides information on the impact of various humoral factors on substrate metabolism. Because the hindquarter is mostly composed of muscle, this model has significantly contributed to the understanding of muscle metabolism. The ex vivo hindquarter perfusion model also provides information on the rate of protein turnover, but its relevance to in vivo protein metabolism is questionable and cannot be used to determine the metabolic effect of a distant injury (such as a torso burn) on hindquarter protein metabolism. In addition, an ex vivo preparation prevents an accurate assessment of regional energy expenditure.

In summary, the animal model described above provides a chance to evaluate in vivo the burn-induced changes in protein turnover and energy metabolism in a compartment comprised mostly of muscle. Reasonable assumptions and empirical measurement of relative tissue mass in the analyzed compartment suggest that myoskeletal tissue accounts for 80% of the protein metabolism seen in the hindquarter model. In addition, this model can potentially be used to test the regional effect of metabolic modulators (e.g., cytokines, ATPase inhibitors) on protein metabolism and oxygen con-
sumption in a muscular compartment both with and without burn injury.

These studies were supported by a grant from the Shriners Burns Hospital for Children (grant no. 8540).

REFERENCES