Nitric oxide impairs Ca\(^{2+}\) activation and slows cross-bridge cycling kinetics in skeletal muscle

LEO M. A. HEUNKS,1 MARK J. CODY,2 PAIGE C. GEIGER,2 P. N. RICHARD DEKHUJazen,1 AND GARY C. SIECK2

1Department of Pulmonary Diseases, University Hospital Nijmegen, 6500 HB Nijmegen, The Netherlands; and 2Departments of Anesthesiology and Physiology and Biophysics, Mayo Clinic and Foundation, Rochester, Minnesota 55902

Received 12 January 2001; accepted in final form 15 June 2001

Heunks, Leo M. A., Mark J. Cody, Paige C. Geiger, P. N. Richard Dekhuijzen, and Gary C. Sieck. Nitric oxide impairs Ca\(^{2+}\) activation and slows cross-bridge cycling kinetics in skeletal muscle. J Appl Physiol 91: 2233–2239, 2001.—The effects of the nitric oxide (NO) donor spermine NONOate (Sp-NO, 1.0 mM) on cross-bridge recruitment and cross-bridge cycling kinetics were studied in permeabilized rabbit psoas muscle fibers. Fibers were activated at various Ca\(^{2+}\) concentrations (pCa, negative logarithm of Ca\(^{2+}\) concentration), and the pCa at which force was maximal (pCa 4.0) and ~50% of maximal (pC\(_{50}\) 5.6) were determined. Fiber stiffness was determined using 1-kHz sinusoidal length perturbations, and the fraction of cross bridges in the force-generating state was estimated by the ratio of stiffness during maximal (pCa 4.0) and submaximal (pCa 5.6) Ca\(^{2+}\) activation to stiffness during rigor (at pCa 4.0). Cross-bridge cycling kinetics were evaluated by measuring the rate constant for force redevelopment after quick release (by 15% of optimal fiber length, \(L_o\)) and restretch of the fiber to \(L_o\). Exposing fibers to Sp-NO for 10 min reduced force and the fraction of cross bridges in the force-generating state at optimal fiber length, \(L_o\). Sp-NO also reduced the rate constant for force redevelopment but only during submaximal Ca\(^{2+}\) activation. We conclude that Sp-NO reduces Ca\(^{2+}\) sensitivity by decreasing the number of cross bridges in the strongly bound state and also impairs cross-bridge cycling kinetics during submaximal activation.

IN SKELETAL MUSCLES, mechanical action results from the cyclic interaction between actin and myosin, which is regulated primarily by Ca\(^{2+}\) release from the sarcoplasmic reticulum and subsequent binding to troponin C (TnC). In the Huxley-Simmons model of muscle contraction, cross bridges cycle between two functional states: a force-generating state, in which cross bridges are strongly bound to actin, and a non-force-generating state, in which cross bridges are detached from or weakly attached to actin (16, 17). Two apparent rate constants, one for cross-bridge attachment (\(f_{app}\)) and another for cross-bridge detachment (\(g_{app}\)), describe the transitions between the two primary functional states of cross bridges.

Skeletal muscles express nitric oxide (NO) synthase (NOS), which is the primary source for NO in vivo (19, 20). It has been demonstrated that skeletal muscles generate NO at rest and that NO generation is enhanced by contractile activity (2, 19). Exposing skeletal muscle fibers to NO has been shown to impair contractile activity in vitro (19, 26). One of the proposed mechanisms by which NO might affect contractility is a reduction in Ca\(^{2+}\) sensitivity of force generation (1, 26). A reduction in Ca\(^{2+}\) sensitivity may be due to impaired Ca\(^{2+}\) activation of the thin filaments. Indeed, in single permeabilized psoas fibers, our laboratory demonstrated that exposure to a NO donor, sodium nitroprusside, caused a rightward shift in the force-negative logarithm of Ca\(^{2+}\) concentration (pCa) curve (26). In intact single fibers from the mouse flexor brevis, Andrade et al. (1) also observed that exposure to an NO donor caused a rightward shift in the force-Ca\(^{2+}\) relationship.

The effect of NO on cross-bridge cycling kinetics remains more controversial. Some studies have reported that exposing fibers to an NO donor causes a slowing of maximum shortening velocity (13, 26), but in the study by Andrade et al. (1), exposure of intact fibers to an NO donor did not affect maximum shortening velocity. The effect of NO on cross-bridge cycling kinetics has also been evaluated by measuring the rate of force redevelopment (\(k_{fr}\)) (1, 13). Andrade et al. found that exposure to an NO donor had no effect on \(k_{fr}\) in intact fibers, whereas Galler and colleagues (13) reported that exposure to an NO donor caused a slowing of \(k_{fr}\). In both of these studies, \(k_{fr}\) was measured only during maximum activation, and it is possible that the effect of NO on cross-bridge cycling kinetics is more pronounced during submaximal Ca\(^{2+}\) activation. Accordingly, in the present study, we hypothesize that the depressant effects of NO on muscle fiber force and

The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
\(k_{tr} \) are more pronounced during submaximal Ca\(^{2+}\) activation.

METHODS

Permeabilized Rabbit Psoas Single-Fiber Preparation

Permeabilized single fibers were prepared from glycerinated rabbit psoas muscle (Ward's Natural Scientific Establishment). A 1-cm strip of muscle tissue was excised and placed in a relaxing solution of the following composition: 7.0 mM ethylene glycol-bis(\(\beta\)-aminoethyl ether)-N\(\cdot\)N\(\cdot\)N\(\cdot\)N\(\cdot\)tetraacetic acid, 1 mM free Mg\(^{2+}\), 4.42 mM MgATP\(^{2-}\), 20 mM imidazole, 15 mM creatine phosphate, 1 mg/ml creatine phosphokinase, and sufficient KCl to adjust the ionic strength to 150 mM. The pH was adjusted to 7.0 with KOH. The pCa of the relaxing solution was 9.0. Single fibers were then dissected using fine forceps under a microscope. These fibers were kept for 30 min in a skinning solution that was of the same composition as the pCa 9.0 solution, except 1% Triton X-100 was added. The temperature of the skinning solution was 15°C to thermoequilibrate the fibers before measurements.

The composition of the activating solutions was the same as that of the relaxing solution, except the pCa was adjusted to range between 7.0 and 4.0 with the following steps: 7.0, 6.5, 6.2, 6.1, 6.0, 5.9, 5.8, 5.7, 5.6, 5.5, 5.4, 5.3, 5.2, 5.1, 5.0, 4.5, and 4.0. The composition of the solution for maximum rigor activation was the same as that of the pCa 4.0 solution, except MgATP was omitted. The final concentrations of free Ca\(^{2+}\), ligand, and Ca\(^{2+}\)-ligand complexes were calculated by using a computer program described by Fabiato and Fabiato (11) and the formation constant of Godt and Lindley (14).

Measurement of Fiber Mechanical Properties

Fibers were mounted in a temperature-controlled flow-through acrylic chamber (120-\(\mu\)l volume) with a glass cover-slip bottom. Fixation of fiber ends with glutaraldehyde reduced compliance at the attachment points, and two stainless steel hooks were used to mount the fiber horizontally in the chamber with aluminum foil T clips. One end of the fiber was attached to a force transducer (model AE-801, Aksjeselskabets, Norway) with a resonant frequency of 5 kHz; the other end was attached to a servomotor (model G120DT, General Scanning) with a step of 800 \(\mu\)s. First-order laser (He-Ne laser; model 1270, Spectra-Physics) was used to determine sarcomere length, which was held constant at 2.5 \(\mu\)m. Signals were recorded using Labview-based software and a data acquisition board.

Fiber stiffness was determined using 1-kHz sinusoidal length perturbations [0.5% of optimal length (\(L_o\))] and normalized for fiber cross-sectional area. If it is assumed that the stiffness per cross bridge does not vary, stiffness provides an estimation of the number of strongly bound cross bridges at any given level of Ca\(^{2+}\) activation (12). Stiffness was measured when fibers were in relaxing solution, during submaximal (pCa 5.6) and maximal (pCa 4.0) Ca\(^{2+}\) activation, and during maximum rigor activation (pCa 4.0). It was assumed that, during rigor activation, all cross bridges were in the strongly bound state; therefore, the ratio of stiffness during Ca\(^{2+}\) activation to rigor activation provided an estimate of the fraction of cross bridges in the strongly attached state (\(\alpha_k\)).

During submaximal (pCa 5.6) and maximal (pCa 4.0) Ca\(^{2+}\) activation, \(k_{tr}\) was measured according to the method described by Brenner and Eisenberg (7). In this procedure, fibers were rapidly released by \(-15\%\) of \(L_o\), and after \(-50\) ms, fiber length was restretched to \(L_o\). With the rapid release and restretch, cross bridges detach and force drops to zero. Thereafter, cross bridges reattach and force redevelops. For each fiber, \(k_{tr}\) was determined using a computer algorithm for least squares fit of a first-order exponential.

NO Donor

The NO donor spermine NONOate (Sp-NO; 1,3-propanediamine,\(N\)-[4-[1-(3-aminopropyl)-2-hydroxy-2-nitroso-hydrazino]butyl]; Calbiochem, La Jolla, CA) was used to study the effects of NO on Ca\(^{2+}\) sensitivity and cross-bridge cycling kinetics. Sp-NO was stored at \(-80^\circ\)C as a stock solution (50 mM) in degassed Trizma base solution (Sigma Chemical), pH 8.80. The stock solution was thawed just before use. In pilot experiments, using aerquinor luminescence to measure free Ca\(^{2+}\) concentrations in the bath, we found that Sp-NO chelates Ca\(^{2+}\). Therefore, during the Ca\(^{2+}\) testing portions of the experiments, no Sp-NO was present in the bathing medium. Accordingly, fibers were exposed to Sp-NO for 10 min while they were perfused with relaxing solution, and before Ca\(^{2+}\) activation, Sp-NO was washed from the chamber for 60 s using standard relaxing solution.

Chemiluminescence analysis was used to estimate NO concentration induced by Sp-NO. Sp-NO (1 mM) was dissolved in pCa 9.0 solution at 15°C. After 10 min, this solution was rapidly frozen to \(-80^\circ\)C. NO was measured using chemiluminescence (model 270B NO analyzer, Sievers, Boulder, CO). Chemiluminescence analysis showed that the control solutions contained 3.7 \(\mu\)M NO\(_x\). However, in pCa solutions incubated with 1 mM Sp-NO for 10 min, the NO\(_x\) concentration increased to 892 \(\pm\) 58 \(\mu\)M. This method is not specific for free NO; it also measures other oxidative products of NO such as NO\(_2\) and NO\(_3\) (NO\(_x\)). Details on the measurement of NO have been published elsewhere (22).

Experimental Protocols

Determination of Ca\(^{2+}\) concentration generating 50% of maximal force. After measurement of baseline force (pCa 9.0), fibers were successively perfused with solutions containing incremental concentrations of Ca\(^{2+}\) (see Permeabilized Rabbit Psoas Single-Fiber Preparation). Each time a clear plateau was reached, the next pCa solution was perfused through the fiber chamber. From the resulting force-pCa curve, the Ca\(^{2+}\) concentration generating 50% of maximal force (pCa\(_{50}\)) was determined using sigmoid regression analysis (SigmaPlot; Fig. 1). The calculated pCa\(_{50}\) was 5.6 (see RESULTS) and was used in subsequent experiments for submaximal Ca\(^{2+}\) activation.

Measurement of dose-response relationship of Sp-NO. In preliminary studies, the dose-response relationship of Sp-NO on force generation was tested. This relationship was only assessed on submaximal force. Testing of the dose-response relationship on the other experimental measurements (maximal force, \(k_{tr}\), and stiffness) as well would require numerous additional experiments, since repeated determination of all these measurements results in significant rundown in force in control fibers. Accordingly, after measurement of force at pCa 4.0 and pCa 5.6, the fibers were successively exposed for 10 min to a range of Sp-NO concentrations (100, 500, and 1,000 \(\mu\)M) dissolved in relaxing solution. Between the different concentrations, force generation at pCa 5.6 was determined. A similar protocol was used for time controls, with Sp-NO omitted from the relaxing solution. These experiments revealed that 1,000 \(\mu\)M Sp-NO reduced submaximal force to 81 \(\pm\) 7% of baseline value. No reduction in force generation was observed at lower concentration of Sp-NO.
Therefore, in all subsequent experiments using Sp-NO, the final concentration was 1.0 mM. Although this concentration seemed to be high, all experiments had to be performed at 15°C. This low temperature reduced the rate of release of NO from Sp-NO.

Effect of Sp-NO on cross-bridge recruitment and cycling kinetics. To determine baseline properties, the fiber chamber was successively perfused with pCa 9.0, pCa 4.0 rigor, pCa 9.0, pCa 5.6, pCa 4.0, and pCa 9.0. Subsequently, the fiber was exposed to pCa 9.0 containing 1 mM Sp-NO for 10 min. Then Sp-NO was washed out and the force measurements repeated, although the order of introducing the solutions was different (pCa 9.0, 5.6, 4.0, 9.0, 4.0 rigor, and 9.0, respectively). The order of activation after exposure to Sp-NO was changed, since pilot experiments revealed that pCa 4.0 rigor activation significantly reduced force at pCa 5.6 in time controls. Consequently, rigor force was measured after measurement of submaximal force.

Fiber stiffness was measured at pCa 9.0, before submaximal and rigor activation, and during all subsequent activations (pCa 5.6, 4.0, and 4.0 rigor). The k_t was determined at pCa 5.6 and pCa 4.0. A similar protocol was used in time controls, but Sp-NO was omitted.

A potential issue with use of NO donors is whether the observed effects are mediated via NO or via the parent compound and degradation products. To verify that NO was the mediator of changes in force production, 100 μM oxyhemoglobin (HbO$_2$) was used to scavenge NO in the presence of Sp-NO. HbO$_2$ was prepared by mixing 330 mg of bovine hemoglobin (Sigma Chemical) in 5 ml of phosphate buffer solution. Hemoglobin was reduced to HbO$_2$ by the addition of 35 mg of sodium hydrosulfite (Sigma Chemical) and passed through a 250-ml Sephadex G50 column. A CO-oximeter (Instrumentation Laboratory, Lexington, MA) was used to determine the concentration of the HbO$_2$. In addition, experiments were conducted using degraded Sp-NO, which was obtained by maintaining the Sp-NO stock solution for 6 h at room temperature. Degraded Sp-NO was used in similar experimental protocols as described above.

Statistics

Data were analyzed with SPSS/PC+ (version 9.0, SPSS, Chicago, IL). Between-group data were compared using the independent variable t-test (e.g., difference in baseline force between time control and Sp-NO-treated fibers). Within-group data were compared using two-tailed dependent variables t-test (e.g., difference in force due to Sp-NO treatment within group). Statistical significance was accepted at $P < 0.05$. Values are means ± SE.

RESULTS

Measurement of pCa$_{50}$

Force-pCa$_{5+}$ characteristics of psoas fibers were determined to identify the pCa$_{50}$ (Fig. 1). At pCa 4.0, force reached a clear plateau. Therefore, in subsequent experiments, pCa 4.0 was used for measuring maximal force. Furthermore, calculated pCa$_{50}$ was 5.62 (coefficient of variation = 1.7%). Accordingly, in subsequent experiments, pCa 5.6 was used for measuring submaximal force.

Effects of Sp-NO on Maximal and Submaximal Force

Exposure to Sp-NO significantly reduced force generated at pCa 4.0 and pCa 5.6 (Table 1). The ratio of force generated by pCa 5.6 to maximal force was significantly reduced in Sp-NO-treated fibers (44 ± 2% preexposure vs. 36 ± 2% postexposure, $P < 0.05$) but not in time controls (39 ± 4 vs. 40 ± 4%, $P > 0.05$), indicating that Sp-NO reduced Ca$_{5+}$ sensitivity of force generation. Preexposure force tended to be lower in the Sp-NO group than in time controls. In addition, significant rundown in force generation was observed at pCa 4.0 and pCa 4.0 rigor. Therefore, forces were also expressed as percentage of preexposure value (Fig. 2). Exposure to Sp-NO did not affect force generated at pCa 4.0 rigor compared with time control. Force generation at pCa 5.6 was significantly reduced after exposure to Sp-NO compared with time controls (75 ± 4 vs. 99 ± 4%, $P < 0.05$). Similarly, exposure to Sp-NO reduced maximal force compared with time controls (91 ± 1% vs. 97 ± 1%, $P < 0.05$). Exposure to degraded Sp-NO did not affect force generation at any level of activation ($n = 7$; Fig. 2). Furthermore, the effect of Sp-NO on submaximal force generation was abolished in the presence of HbO$_2$ (results not shown).

Table 1. Effect of Sp-NO on force generation in permeabilized rabbit psoas single fibers

<table>
<thead>
<tr>
<th>Time Control (n = 9)</th>
<th>Sp-NO (n = 8)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Preexposure</td>
</tr>
<tr>
<td>pCa 5.6</td>
<td>2.87 ± 0.46</td>
</tr>
<tr>
<td>pCa 4.0</td>
<td>5.84 ± 0.76</td>
</tr>
<tr>
<td>pCa 4 rigor</td>
<td>6.05 ± 0.83</td>
</tr>
</tbody>
</table>

Values are means ± SE expressed in N/cm2. Sp-NO, spermine NONOate; pCa, negative logarithm of Ca$_{5+}$ concentration. *Significantly different from preexposure; †significantly different from time control ($P < 0.05$).
Effect of Sp-NO on α_{fs}

The α_{fs} was measured to determine actomyosin filament overlap. At pCa 4.0, $\sim 75\%$ of the available cross bridges were in the strongly attached state, whereas this percent was lower during submaximal activation (Fig. 3). At pCa 4.0 and pCa 5.6, α_{fs} was significantly lower in Sp-NO-treated fibers than in time controls. Degraded Sp-NO did not affect α_{fs} at (sub)maximal activation ($n = 7$, data not shown).

Effect of Sp-NO on k_{tr}

The k_{tr} was measured to study cross-bridge cycling kinetics. A representative trace is shown in Fig. 4A, and grouped data are shown in Fig. 4B. Figure 4B clearly shows the Ca$^{2+}$ dependency of the k_{tr}. Exposure to Sp-NO significantly reduced k_{tr} during submaximal, but not maximal, Ca$^{2+}$ activation. Degraded Sp-NO did not significantly affect k_{tr} at pCa 5.6 or pCa 4.0 (96 ± 2 and 106 ± 6% of initial value, respectively, $n = 7$).

DISCUSSION

The present study demonstrates that, in permeabilized rabbit psoas fibers, Sp-NO reduces force generation at submaximal Ca$^{2+}$ activation, reduces α_{fs}, and slows cross-bridge cycling kinetics (reflected by a slower k_{tr} during submaximal activation). The effect of Sp-NO on force generation is consistent with a number of previous studies using different preparations and different NO donors (13, 19, 26, 29). Similarly, the more pronounced effects of Sp-NO on force generation at submaximal Ca$^{2+}$ activation are in general agreement with previous studies (1, 26). Together, these results indicate an NO-induced reduction in the Ca$^{2+}$ sensitivity of cross-bridge recruitment. The effect of NO on cross-bridge cycling kinetics is more controversial, with one study indicating no effect (1) and another reporting a significant slowing (13). The results of the present study indicate that the effect of Sp-NO on k_{tr} is relatively modest and is limited to submaximal Ca$^{2+}$ activation. Thus these observations may partially reconcile the discrepancies in these previous observations.
Sp-NO, a nucleophilic type of NO donor with the general structure $[XN(O)NO]^-$, spontaneously releases NO (21). The rate of NO release is only dependent on pH, temperature, and the nucleophilic residue (23), and it is therefore easy to control. The rate of release of NO from Sp-NO is ∼30 times lower than release from the frequently used NO donor diethylamine NONOate (21). Therefore, a higher concentration of Sp-NO is required to obtain similar biological effects (15). It is important to consider that the effects of NO donors can be independent of the release of NO. In the present study, these potential independent effects were controlled by demonstrating that degraded Sp-NO did not affect the mechanical properties of psoas fibers. The absence of an effect of degraded Sp-NO is consistent with a previous report demonstrating no effect of degraded Sp-NO on smooth muscle mechanical properties (15). This previous study also showed that HbO2 abolished the depressant effects of Sp-NO on smooth muscle force generation, indicating that NO release mediates the effects of Sp-NO (15). Similarly, the results of the present study in skeletal muscle supported these findings, inasmuch as HbO2 abolished the effects of Sp-NO on submaximal force generation.

In the present study, chemiluminescence measurements of NOx were used to approximate changes in NO concentration induced by Sp-NO at various concentrations (100, 500, and 1,000 μM). As noted above, the chemiluminescence method is not specific for free NO, but it detects other oxidative products of NO as well (e.g., NO2 and NO3, NOx) (22). However, these chemiluminescence measurements did verify that NOx concentration increased as Sp-NO concentration increased, strongly indicating that NO concentration also increased. In addition, it was shown that the reduction in force generation at submaximal Ca2+ activation (pCa 5.6) was dependent on Sp-NO concentration. At 1,000 μM Sp-NO, the concentration inducing the greatest reduction in force, NOx concentration was 892 μM, and it is likely that the NO concentration was even less. However, it is difficult to determine the physiological relevance of the Sp-NO concentration used in the present study, since the local concentration of NO in skeletal muscle fibers remains unknown. Although NO release has been measured from intact skeletal muscle tissue in vitro (2), no data are available concerning the NO concentrations within subcellular compartments. This is important, since within muscle fibers, NOS expression is not uniform (19, 20), suggesting that localized areas of higher NO concentration may exist.

In the present study, we found that Sp-NO reduced the ratio of stiffness during Ca2+ activation to maximal rigor activation (α_{fs}), indicating an effect on the number of cross bridges in the strongly bound state (12, 17, 18). The parallel changes in α_{fs} and force induced by Sp-NO indicate that NO influences cross-bridge recruitment, rather than the force generated per cross bridge.

Brenner and colleagues (4, 5, 7) presented an analytic framework based on the Huxley two-state model of cross-bridge cycling (with f_{app} and g_{app}) that showed the relationship between the number of strongly bound cross bridges (α_{fs}) and cross-bridge cycling kinetics at any given level of Ca2+ activation

$$\alpha_{fs} = f_{app}/(f_{app} + g_{app})$$ \hspace{1cm} (1)$$

Brenner and colleagues utilized measurements of k_{tr} to derive the components of cross-bridge cycling kinetics

$$k_{tr} = f_{app} + g_{app}$$ \hspace{1cm} (2)$$

The results of the present study demonstrated that Sp-NO reduces k_{tr} at submaximal (pCa 5.6) but not maximal (pCa 4.0) Ca2+ activation. These results are consistent with the effects of Sp-NO on force and α_{fs} and suggest an influence on cross-bridge recruitment (f_{app}) at submaximal Ca2+ activation. The effects of NO donors on k_{tr} in single skeletal muscle fibers have been previously studied with various outcomes (1, 13). Galler et al. (13) found that S-nitroso-N-acetylpenicillamine slowed k_{tr}, whereas Andrade et al. (1) found no...
effect of S-nitroso-N-acetylcysteine on \(k_{tr} \). Both studies evaluated \(k_{tr} \) during maximal activation. Moreover, the methods used to determine \(k_{tr} \) in both studies did not include controlling sarcomere length and restretching fibers to original length, both of which might affect \(k_{tr} \) (7). In addition, Andrade et al. evaluated the effect of S-nitroso-N-acetylcysteine on only a very small number of intact fibers (\(n = 3 \)).

A key issue is the potential site of action of NO. The results of the present study are not consistent with a direct effect of NO on the force generated per cross bridge, since Sp-NO did not influence fiber mechanics at maximum \(Ca^{2+} \) activation (\(pCa \) 4.0). However, the Sp-NO-induced reductions in force \(\alpha_{fs} \) and \(k_{tr} \) during submaximal \(Ca^{2+} \) activation indicate a decrease in the \(Ca^{2+} \) sensitivity of cross-bridge recruitment, which could result from a number of underlying mechanisms including altered \(Ca^{2+} \) binding to TnC. Binding of \(Ca^{2+} \) to TnC induces a conformational change in the troponin complex, resulting in an increase in the availability of myosin-binding sites on actin (30). However, there is no direct evidence that NO affects \(Ca^{2+} \) binding to TnC. TnC (and troponin I) contain cysteine residues, which are known to be susceptible to reactive oxidants (10, 27). Biochemical studies showed that disulfide cross-linking of these residues decreased \(Ca^{2+} \) sensitivity of TnC (25). In fact, after disulfide cross-linking of cysteine residues, the troponin complex was no longer able to regulate actomyosin ATPase activity in a \(Ca^{2+} \)-dependent manner. Although no direct biochemical evidence exists that NO is able to alter troponin function, a change is likely to occur when NO modifies the cysteine residues. Such a modification would be consistent with the results of the present study. First, the dependence of force and \(k_{tr} \) on \(Ca^{2+} \) is mediated through TnC and thin-filament regulation (9, 28). Second, force and \(k_{tr} \) can be dissociated by modifying TnC characteristics (9, 28). Alternatively, the depressant effect of NO on force and \(k_{tr} \) could be mediated through modification of the hyperreactive thios SH-1 and SH-2 on the myosin head (26). However, the absence of an effect of Sp-NO during maximum \(Ca^{2+} \) would be inconsistent with such a mechanism.

We thank Dr. V. Miller (Dept. of Surgery and Physiology, Mayo Foundation) for the NO measurements and Dr. Y. S. Prakash (Dept. of Anesthesiology, Mayo Foundation) for providing scientific input into the studies and revising the manuscript.

This study was financially supported by Dutch Asthma Foundation Grants 97.34 and National Heart, Lung, and Blood Institute Grants HL-34817 and HL-37680 to G. C. Sieck.

REFERENCES

