Decrease of O_2 deficit is a potential factor in increased time to exhaustion after specific endurance training

ALEXANDRE P. DEMARLE,1,2 JEAN J. SLAWINSKI,1,2 LAURENT P. LAFFITE,1,2 VALERY G. BOCQUET,2,3 JEAN P. KORALSZTEIN,2 AND VERONIQUE L. BILLAT1,2
1Laboratoire d’Etude de la Motricité Humaine, Faculté des Sciences du Sport, Université de Lille 2, 59790 Ronchin, 3Laboratoire de Statistiques Médicales, Université de Paris 5, 75006; and 2Centre de Médecine du Sport CCAS, 2 Ave. Richerand, 75010 Paris, France

Received 10 April 2000; accepted in final form 2 October 2000

Oxygen uptake kinetics; fatigue; interval training; running; oxygen uptake kinetics; fatigue; interval training program.

When a supralactate threshold constant-load exercise is dependent on exercise intensity, to lower the V_O_2 by decreasing the excess V_O_2 associated with the slow component. Nevertheless, the efficacy of such a strategy to improve the work tolerance in patients or sedentary or endurance-trained subjects remains to be firmly established.

Therefore, the special purpose of this study was to investigate the effects of an 8-wk severe interval training program on the parameters of V_O_2 kinetics, such as the oxygen deficit and the slow component, and their potential consequences on the time until exhaustion in a severe run performed at the same absolute velocity before and after training. Six endurance-trained runners performed, on a 400-m synthetic track, an incremental test and an all-out test, at 93% of the velocity at maximal oxygen consumption, to assess the time until exhaustion. These tests were carried out before and after 8 wk of a severe interval training program, which was composed of two sessions of interval training at 95% of the velocity at maximal oxygen consumption and three recovery sessions of continuous training at 60–70% of the velocity at maximal oxygen consumption per week. Neither the oxygen deficit nor the slow component were correlated with the time until exhaustion ($r = 0.300, P = 0.24, n = 18$ vs. $r = -0.420, P = 0.09, n = 18$, respectively). After training, the oxygen deficit significantly decreased ($P = 0.02$), and the slow component did not change ($P = 0.44$). Only three subjects greatly improved their time until exhaustion by 10, 24, and 101%. The changes of oxygen deficit were significantly correlated with the changes of time until exhaustion ($r = -0.911, P = 0.01, n = 6$). It was concluded that the decrease of oxygen deficit was a potential factor for the increase of time until exhaustion in a severe run performed after a specific endurance-training program.

It is commonly reported that the parameters of V_O_2 kinetics may be modified after a short-term endurance training program (11, 18, 20, 21, 35, 37). When the same absolute work rate is taken into account before and after training, the time constant of the V_O_2 response (τ), defined as the time required to attain 63% of the $V_{\text{O}_2,ss}$ may be diminished (20, 21, 37). It may, therefore, result in a smaller oxygen deficit, which is equal to $\tau \times V_{\text{O}_2,ss}$ (32), reflecting a lesser anaerobic contribution at the onset of exercise (20). Such adaptation to training is thought to be important. For example, Poole et al. (28) have suggested that the decrease of oxygen deficit may be conducive to the increase of time until exhaustion, especially in a supralactate threshold constant-load exercise. Furthermore, for the same absolute work rate, the slow component is generally reduced after 6–8 wk of an endurance-training program (11, 18, 35). Such adaptation to training may also be important. Indeed, Poole et al. (27) have suggested that the only way to improve the work tolerance in patients who perform a supralactate threshold constant-load exercise is to lower the V_O_2 by decreasing the excess V_O_2 associated with the slow component. Nevertheless, the efficacy of such a strategy to improve the work tolerance in patients or sedentary or endurance-trained subjects remains to be firmly established.

Therefore, the special purpose of this study was to investigate the effects of an 8-wk severe interval training program on the parameters of V_O_2 kinetics, such as...
the oxygen deficit and the slow component, and their potential consequences on the time until exhaustion in a severe run performed at the same absolute velocity before and after training. It was hypothesized that 1) the oxygen deficit and the slow component could be reduced after a specific endurance training program, and 2) these adaptations could be, in part, responsible for the improvement of time until exhaustion at a given supralactate threshold velocity.

METHODS

Subjects. Six endurance-trained subjects volunteered to participate in this study. These subjects were specialized in middle- and long-distance running. Their mean (±SE) age, height, and weight were, respectively, 27.0 ± 2.1 yr, 174.2 ± 1.2 cm, and 68.5 ± 2.2 kg. Before participation, all subjects were informed of the risks and stress associated with the training program and gave written voluntary informed consent in accordance with the guidelines of the University of Lille II.

Experimental design. Before and after training, the subjects performed 1) an incremental test to determine the maximal oxygen uptake (V\textsubscript{O\textsubscript{2}} max inc), the velocity associated with the achievement of V\textsubscript{O\textsubscript{2}} max inc (v\textsubscript{LTD}), the velocity at the lactate threshold (v\textsubscript{LT}), the median velocity between v\textsubscript{LTD} and v\textsubscript{O\textsubscript{2} max inc} (v\textsubscript{A50}) and the running economy (RE); and 2) an all-out test (at pretraining v\textsubscript{A50}) to determine the time until exhaustion (T\textsubscript{max}). After training, the subjects also completed an additional all-out test (at the postrunning v\textsubscript{A50}). The tests were performed by a given subject at the same time of day in a climate-controlled environment. All training and test sessions were completed on a 400-m covered synthetic track. Throughout the tests, the subjects adopted the required velocity, thanks to an audiovisual system. This system included guide marks set at 25-m intervals along the track (inside the first lane), and audio signals determining the speed needed to cover 25-m intervals. The velocity of locomotion was strictly controlled throughout the tests with photoelectric cells (Brower Timing Systems, Salt Lake City, UT).

Procedures. Throughout the tests, the respiratory and pulmonary gas-exchange variables were measured using a breath-by-breath portable gas analyzer (Cosmed K4b2, Rome, Italy), which was calibrated before each test according to the manufacturer’s instructions (21, 23). Breath-by-breath data were later reduced to 30-s stationary averages (Data Management Software, Cosmed). Fingertip capillary blood samples were collected into a capillary tube and were analyzed for lactate concentration using a Doctor Lange (Berlin, Germany). This lactate analyzer was calibrated before the test. Blood samples were collected before the test and immediately and 3 min after the test.

The initial velocity was set at the average velocity maintained over 3,000 m, which has been described as being close to v\textsubscript{O\textsubscript{2} max inc} (4). −6 km/h, for exhaustion to occur for each subject within 20 min. The velocity increments between the stages were set at 1 km/h. All stages were followed by a 30-s period of rest. During this period, a fingertip capillary blood sample was collected. In addition, other fingertip capillary blood samples were collected before the test and immediately and 3 min after the test. Each subject was encouraged to give a maximum effort. V\textsubscript{O\textsubscript{2} max inc} was defined as the highest 30-s V\textsubscript{O\textsubscript{2}} value reached in this incremental test. V\textsubscript{O\textsubscript{2} max inc} was defined as the minimal velocity at which V\textsubscript{O\textsubscript{2} max inc} occurred (7). When v\textsubscript{V\textsubscript{O\textsubscript{2} max inc}} was maintained for one-half rather than for all of the last stage, it was then considered as the median velocity maintained during the last two stages (25). v\textsubscript{LT} was defined as the velocity for which an increase in lactate concentration corresponding to 1 mmol/l occurs between 3.5 and 5 mmol/l (1). v\textsubscript{LTD} was determined by two independent reviewers. The v\textsubscript{A50} was defined as the median velocity between v\textsubscript{V\textsubscript{O\textsubscript{2} max inc}} and v\textsubscript{LTD}. The v\textsubscript{A50} has been described as being a velocity for which the slow component of VO\textsubscript{2} may lead the VO\textsubscript{2} to its maximum (V\textsubscript{O\textsubscript{2} max inc}) (10, 15).

The running economy was defined as the rate of VO\textsubscript{2} for a given submaximal work rate (12). In this study, the rate of VO\textsubscript{2} was averaged between the 2nd and the 3rd min of the stage run at 13 km/h (<v\textsubscript{LTD}) and was taken as reference for the running economy.

The subjects subsequently performed an all-out test (at the pre- or postraining v\textsubscript{A50}) to determine the time until exhaustion. After a 15-min period of warm-up at 60% v\textsubscript{V\textsubscript{O\textsubscript{2} max inc}} followed by a 5-min period of rest, the subjects were instructed to run at the required velocity within a 5-s period of transition until they were unable to sustain the fixed velocity. Each subject was encouraged to give maximum effort. A fingertip capillary blood sample was collected before the test and immediately and 3 min after the test.

Training program. Before participation, the subjects were already well trained in endurance. They generally performed a continuous training, 3–5 times/wk, consisting of 45–60 min at an exercise intensity (60–70% v\textsubscript{O\textsubscript{2} max inc}) below the lactate threshold. The subjects completed an 8-wk severe interval training program including two sessions of interval training and three sessions of continuous training per week. The training program was elaborated, according to recent studies (6, 15, 31), by taking into account an individualized exercise intensity (v\textsubscript{LTD}) and an individualized exercise duration (25–50% of the time until exhaustion at v\textsubscript{A50}) for each runner. The sessions of interval training consisted of (n\textsubscript{max} − 2) or (n\textsubscript{max} − 1) repetitions, including a severe run at v\textsubscript{A50}, during 50% T\textsubscript{max} at v\textsubscript{A50}, and a recovery run at 50% v\textsubscript{V\textsubscript{O\textsubscript{2} max inc}} during 25% T\textsubscript{max} at v\textsubscript{A50}. The value of n\textsubscript{max} was defined as the individual number of repetitions achieved by a given subject when the exhaustion occurs. The n\textsubscript{max} was recorded during the first and the eighth sessions of interval training; thus, if the training intensity remained unchanged, the training volume was adjusted to the progress achieved by the subjects and consequently could be increased through the 8 wk of training. For example, a subject who was able to perform four repetitions during the first session of interval training would be able then to perform five or six repetitions during the eighth session of interval training. The sessions of continuous training were run at 60–70% v\textsubscript{V\textsubscript{O\textsubscript{2} max inc}} for 45–60 min. All sessions were controlled by a professional trainer to ensure that these instructions were respected.

VO\textsubscript{2} kinetics. The breath-by-breath VO\textsubscript{2} data were reduced to 5-s stationary averages. These data were then smoothed, using a three-step average filter, to reduce the noise so as to enhance the underlying characteristics (Data Management Software, Cosmed). These data were finally fitted to three exponential models comprising two exponential terms that start at two distinct times delay from the onset of exercise (Eq. 1) and two double-exponential models, the first comprising two exponential terms that start at a common time delay from the onset of exercise (Eq. 2) and the second comprising two exponential terms that start at two distinct time delays from the onset of exercise (Eq. 3). The Fisher test, which was performed with the Sigma Plot software, was used.
that predicted from the sublactate threshold $\dot{V}O_2$-work rate elevates the oxygen consumption above, rather than toward, the fast component asymptote corresponds to the oxygen deficit

$$DO_2 = (A_1 \times TD_1) + (A_1 \times \tau_1)$$

(4)

where DO_2 is the oxygen deficit (ml), A_1 is the (fast component) asymptotic amplitude (ml/s), τ_1 is the (fast component) time constant(s), and TD_1 is the (fast component) time delay from the onset of exercise(s).

Oxygen consumed. The aerobic component of the total energy requirement for the all-out tests was computed by integrating the area under the curve $\dot{V}O_2$-time until exhaustion (32). For example, considering a double-exponential model (Eq. 3)

$$\dot{V}O_2 = \int_{TD_1}^{T_{\text{max}}} A_1 \times \left\{1 - e\left[-\frac{(t - TD_1)}{\tau_1}\right]\right\}dt$$

$$+ \int_{TD_2}^{T_{\text{max}}} A_2 \times \left\{1 - e\left[-\frac{(t - TD_2)}{\tau_2}\right]\right\}dt$$

(5)

i.e., total oxygen consumed = expected oxygen consumed + excess oxygen consumed, where $\dot{V}O_2$ is the oxygen consumed (ml), and T_{max} is the time(s) until exhaustion.

Time to attain and time sustained at $\dot{V}O_2_{\text{max}}$. When an exercise is performed at work rates associated with the severe exercise intensity domain, the slow component may lead to the attainment of $\dot{V}O_2_{\text{max inc}}$ (19, 28). According to T. J.

\[A\]

\[B\]

\[C\]

\[D\]

\[E\]

\[F\]

\[G\]

\[H\]

\[I\]

\[J\]

\[K\]

\[L\]

\[M\]

\[N\]

\[O\]

\[P\]

\[Q\]

\[R\]

\[S\]

\[T\]

\[U\]

\[V\]

\[W\]

\[X\]

\[Y\]

\[Z\]
Barstow (personal communication), it was considered that a given subject was able to attain VO_{2max} when the sum of A_{1}, A_{2}, and A_{3} was \geq 98\% of VO_{2max}, admitting an error of 2\% in the determination of VO_{2max}. Then, when a double-exponential model (Eq. 3) is considered

\begin{equation}
\text{TD VO}_{2\text{max}} = \text{TD}_2 - \tau_2
\end{equation}

\begin{equation}
\times \ln \left\{1 - \left[\left(0.98 \times \text{VO}_{2\text{max inc}} - A_0 - A_1\right)/A_2\right]\right\}
\end{equation}

where VO_{2max} inc is ml/min, TD VO_{2max} inc is the time to attain VO_{2max} inc in (s), \tau_2 is the (slow component) time constant(s), and TD_2 is the (slow component) time delay from the onset of exercise(s) and

\begin{equation}
T_{max} \text{VO}_{2\text{max inc}} = (T_{max} - TD \text{VO}_{2\text{max inc}})
\end{equation}

where T_{max} VO_{2max} inc is the time sustained at VO_{2max} inc (s), and T_{max} is the time (s) until exhaustion.

Test-to-test reproducibility of VO_{2} kinetics parameters. To determine the confidence intervals over which the parameters of VO_{2} kinetics were accurate, a voluntary subject completed 1) three 6-min tests at vLT and 2) three 6-min tests at v\Delta50. The VO_{2} data were fitted to two distinct models: 1) a single-exponential model (derived from Eq. 1) and 2) a double-exponential model (Eq. 3).

Statistics. One-way analysis of variance with repeated measures and paired t-test were used for data analysis. Simple and multiple correlations were used for correlation analysis. The level of significance was set at 5\% (P \leq 0.05). All results are presented as means \pm SE.

RESULTS

Test-to-test reproducibility of VO_{2} kinetics parameters. The mean values (± SD) of A_0, TD_1, \tau_1, A_1, and A_2, obtained in the tests at vLT (16 km/h), were equal to 550 ± 16 ml/min, 7.3 ± 0.5 s, 27.1 ± 1.5 s, 3.125 ± 24 ml/min, and 1.791 ± 67 ml, and the coefficients of variation were equal to 3.0, 6.8, 5.5, 0.8, and 3.8\%. The mean values (± SD) of A_0, TD_1, \tau_1, A_1, TD_2, \tau_2, A_2, and A_3, obtained in the tests at v\Delta50 (17 km/h) were equal to 567 ± 20 ml/min, 8.9 ± 0.4 s, 19.8 ± 0.9 s, 3.351 ± 45 ml/min, 84.3 ± 4.1 s, 83.7 ± 7.1 s, 357 ± 34 ml/min, and 1.606 ± 26 ml, and the coefficients of variation were equal to 3.6, 4.5, 4.6, 1.3, 4.8, 8.4, 9.7, and 1.6\%.

Fitting of VO_{2} responses. The VO_{2} responses were fitted to a double-exponential model (Eq. 3), which provided the best fits among the three models used (Figs. 1 and 2).

Relationships between the parameters of VO_{2} kinetics and the time until exhaustion. Neither the oxygen deficit nor A_2 were correlated with the time until exhaustion (r = -0.300, P = 0.24, n = 18; r = -0.420, P = 0.09, n = 18, respectively).

Training program parameters. The sessions of interval training consisted of several repetitions, including a severe run at 17.0 ± 0.4 km/h for 294 ± 20 s and a recovery run at 9.1 ± 0.1 km/h for 147 ± 10 s. If the training intensity did not change throughout the training period, the training volume was significantly increased from 3.1 ± 0.3 to 4.3 ± 0.3 repetitions (P = 0.01) on account of the progress achieved by the subjects. The sessions of continuous training were run at 11.8 ± 0.2 km/h for 45–60 min.

Training effects on the indexes of aerobic fitness. Eight weeks of severe interval training program significantly improved 1) \text{vVO}_{2\text{max inc}} without change of VO_{2max inc}, on account of the significant decrease of RE and 2) v\Delta50 (Table 1).

Training effects on the indexes of aerobic fitness. Relationships between the changes of VO_{2} kinetics parameters and the changes of time until exhaustion. The changes of oxygen deficit were significantly correlated with the changes of time until exhaustion (r = -0.991, P = 0.01, n = 6; Fig. 3). Furthermore, the two subjects who, contrary to before training, were not able to attain their VO_{2max inc} after training improved their time until exhaustion.

Table 1. Training effects on the indexes of aerobic fitness

<table>
<thead>
<tr>
<th>Indexes</th>
<th>Before Training</th>
<th>After Training</th>
<th>P Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body mass, kg</td>
<td>68.5 ± 2.2</td>
<td>68.5 ± 2.2</td>
<td>NS</td>
</tr>
<tr>
<td>VO_{2max inc}, ml·min^{-1}·kg^{-1}</td>
<td>61.2 ± 2.7</td>
<td>61.6 ± 2.2</td>
<td>NS</td>
</tr>
<tr>
<td>VO_{2max inc} ml/min</td>
<td>4.177 ± 151</td>
<td>4.207 ± 121</td>
<td>NS</td>
</tr>
<tr>
<td>\text{vVO}_{2\text{max inc}} km/h</td>
<td>18.2 ± 0.3</td>
<td>18.7 ± 0.4</td>
<td>\leq 0.01</td>
</tr>
<tr>
<td>vLT, km/h</td>
<td>15.7 ± 0.4</td>
<td>16.1 ± 0.4</td>
<td>NS</td>
</tr>
<tr>
<td>v\Delta50, km/h</td>
<td>17.0 ± 0.4</td>
<td>17.4 ± 0.4</td>
<td>\leq 0.01</td>
</tr>
<tr>
<td>RE at 13 km/h, ml·min^{-1}·kg^{-1}</td>
<td>44.2 ± 1.5</td>
<td>42.6 ± 1.2</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Values are means ± SE; n = 6. NS, not significant; VO_{2max inc}, incremental test of maximal oxygen uptake (\text{VO}_{2\text{max inc}}); \text{vVO}_{2\text{max inc}}, velocity at VO_{2max inc}; vLT, velocity at lactate threshold; v\Delta50, median velocity between vLT and v\text{VO}_{2\text{max inc}}; RE, running economy.
DISCUSSION

The main findings of this study are as follows. 1) Neither the oxygen deficit nor the slow component (A_2) are related to the time until exhaustion in a severe run. 2) Significant adaptations and performance improvements, which are not represented by the VO$_2$ max, can occur in well-trained subjects after a specific endurance training program. When the same absolute velocity is taken into account before and after training, the oxygen deficit decreases after 8 wk of a severe interval training program. The slow component (A_2) remains, however, unchanged. Three subjects, in a population comprising six subjects, improved their time until exhaustion. 3) The decrease of oxygen deficit is related to the increase of time until exhaustion in a severe run performed after a specific endurance training program.

Previous studies have shown a positive relationship between the accumulated oxygen deficit and the time to fatigue at the velocity at VO$_2$ max, thus demonstrating that the anaerobic contribution is not negligible in such exercise (17, 30). Nevertheless, no study, to our knowledge, has investigated the relationship between the oxygen deficit and the time to fatigue at submaximal work rates. Although the determination of oxygen deficit at supralactate threshold work rates remains a subject for discussion on account of the slow-component phenomenon (32), our study shows that the oxygen deficit is not related to the time until exhaustion in a severe run, thus disproving the hypothesis that a low oxygen deficit may be associated with a great work tolerance.

Using the same absolute work rate before and after training, early studies have shown that VO$_2$ increases more rapidly toward its steady state in the trained state compared with the untrained state, with a half-time that can be reduced by 18–25% (20, 21). Recent studies have also shown that the time constant, defined as the time required to attain 63% of the VO$_2$ sat, can be reduced by 27–57% (26, 37). Correspondingly, in our study, the time constant (τ_1) is reduced by 46%.

Hagberg et al. (20) have shown that the heart rate, like the VO$_2$, increases more rapidly toward its steady state in the trained state compared with the untrained state, with a half-time that can be reduced by 50–58%. Accordingly, Yoshida et al. (37) have recently shown that the heart rate time constant can be reduced by 49%. Because the heart rate response is speeded and, hypothetically, the stroke volume is increased (16), it is speculated that oxygen delivery to the active muscles can be improved at the onset of exercise (20, 26, 37). The early attenuation of phosphocreatine depletion and blood lactate accumulation that can be seen after training may provide an alternative argument, demonstrating thus that oxygen utilization by the active muscles can also be improved at the onset of exercise (13, 14, 26, 37). Nevertheless, the decrease of A_1 may also provide a valid argument for the decrease of τ_1 (3).

Using the same absolute work rate before and after training, Hagberg et al. (20) have shown that the decrease of half-time of VO$_2$ response by 25%, without change of VO$_2$ sat, leads to the decrease of oxygen deficit by 21%. Correspondingly, in our study, the oxygen deficit is reduced by 34% on account of the decreases of both τ_1 and A_1. Karlsson et al. (24) have shown that the decrease of muscle high-energy phosphate (phosphocreatine and ATP) concentrations is less marked after an endurance training program. Furthermore, blood lactate accumulation, which is an indicator of anaerobic glycolysis functioning, is reduced at the same absolute work rate. It may, therefore, lower the intracellular...
lar perturbation at the onset of exercise. Such adaptation to training is thought to be important. For example, Poole and Richardson (28) have suggested that the decrease of oxygen deficit may lead to the increase of time until exhaustion, especially in a supralactate threshold constant-load exercise. Accordingly, our study shows that the decrease of oxygen deficit is a potential factor for the increase of time until exhaustion in a severe run performed after a specific endurance training program, with the other factors remaining, however, to be elucidated.

The link between the slow component and the work tolerance remains unclear (19, 27). Although the attainment of VO₂ max and the progressive increase of blood lactate may lower the work tolerance (29), Billat et al. (9) have recently shown that the slow component, defined as the increase of VO₂ between the 3rd min and the end of exercise (34), is not related to the time to fatigue in a severe running or cycling exercise. Correspondingly, in our study, the slow component (A₂) is not related to the time until exhaustion in a severe run, disproving thus the hypothesis that a slow component of small amplitude may be associated with a great work tolerance.

For the same absolute work rate before and after training, the slow component, as defined by Whipp and Wasserman in 1972 (34), may be reduced by 50–65% after 6–8 wk of an endurance training program (11, 18, 35). Nevertheless, the mechanisms responsible for such adaptation to training are not firmly established. Studies have shown that the slow component arises predominantly from the exercising limbs (27). It is likely that the slow component is mainly due to the glycolytic-twitch fibers’ recruitment at supralactate threshold work rates, with the fast-twitch fibers being less energetically efficient than the slow-twitch fibers (19, 27). It is thus possible, if not probable, that the adaptations to training in the motor-unit recruitment pattern and in the fast- and slow-twitch fibers’ mitochondrial content may account for the slow-component attenuation (19, 27, 35).

Our study shows, however, that, in well-trained subjects, the slow component (A₂) does not change after a specific endurance training program, which, hypothetically, allows the fast- and slow-twitch fiber’s recruitment. It raises the difficulty of investigating such adaptation to training in well-trained subjects, who, moreover, perform a supralactate threshold running exercise in which the slow component is generally small, if not nonexistent (5, 9).

Poole et al. (27) have suggested that the only way to improve the work tolerance in cardiac- and ventilatory-limited patients is to lower the VO₂ by removing or decreasing the excess VO₂ associated with the slow component. Such adaptation to training may be obtained by improving the lactate threshold or the critical power (18, 29). Nevertheless, the efficacy of such a strategy to improve work tolerance in patients or sedentary or endurance-trained subjects remains to be firmly established. In our study, two subjects who, contrary to before training, were not able to attain their VO₂ max after training, improved their time until exhaustion. It is likely that, by increasing their critical velocity and, consequently, decreasing their slow component (A₂), they improved their work tolerance. Indeed, the critical power represents the upper limit for which the VO₂, blood lactate, and blood pH can be stabilized. On the other hand, an exercise performed above the critical power is characterized by a steadily increasing VO₂ and blood lactate, a decreasing blood pH, and consequently, an imminent fatigue (29).

To conclude, this study shows that significant adaptations and performance improvements, which cannot be assessed by a single incremental test, can occur in well-trained subjects after a specific endurance training program. It also shows that, for the same absolute supralactate threshold work rate before and after training, significant adaptations concerning the VO₂ kinetics may lead to performance improvements in well-trained subjects.

REFERENCES

