Effects of marked hyperthermia with and without dehydration on \(V\dot{O}_2 \) kinetics during intense exercise

LARS NYBO,1 THORBJØRN JENSEN,1 BODIL NIELSEN,1 AND JOSÉ GONZÁLEZ-ALONSO2

1Department of Human Physiology, Institute of Exercise and Sport Sciences, University of Copenhagen, and 2The Copenhagen Muscle Research Centre, Rigshospitalet, DK-2100 Copenhagen, Denmark

Received 28 December 1999; accepted in final form 20 September 2000

Nybo, Lars, Thorbjørn Jensen, Bodil Nielsen, and José González-Alonso. Effects of marked hyperthermia with and without dehydration on \(V\dot{O}_2 \) kinetics during intense exercise. J Appl Physiol 90: 1057–1064, 2001.—This study determined whether marked hyperthermia alone or in combination with dehydration reduces the initial rate of rise in \(O_2 \) consumption (\(V\dot{O}_2 \) on-kinetics) and the maximal rate of \(O_2 \) uptake (\(V\dot{O}_2 \) max) during intense cycling exercise. Six endurance-trained male cyclists completed four maximal cycle ergometer exercise tests (402 ± 4 W) when euhydrated or dehydrated (4% body wt) with normal (starting esophageal temperature, 37.5 ± 0.2°C; mean skin temperature, ~31°C) or elevated (+1 and +6°C, respectively) thermal strain. In the euhydrated and normal condition, subjects reached \(V\dot{O}_2 \) max (4.7 ± 0.2 l/min) in 228 ± 34 s, with a mean response time of 42 ± 2 s, and fatigued after 353 ± 39 s. Hyperthermia alone or in combination with dehydration reduced mean response time (17–23%), \(V\dot{O}_2 \) max (16%), and performance time (51–53%) (all \(P < 0.01 \)) but did not alter the absolute response time (i.e., the time to reach 63% response in the control trial, 3.2 ± 0.1 l/min, 42 s). Reduction in \(V\dot{O}_2 \) max was accompanied by proportional decline in \(O_2 \) pulse and significantly elevated maximal heart rate (195 vs. 190 beats/min for hyperthermia vs. normal). Preventing hyperthermia in dehydrated subjects restored \(V\dot{O}_2 \) max and performance time by 65 and 50%, respectively. These results demonstrate that impaired high-intensity exercise performance with marked skin and internal body hyperthermia alone or in combination with dehydration is not associated with a diminished rate of rise in \(V\dot{O}_2 \) max but decreased \(V\dot{O}_2 \) on-kinetics.

During exercise in the heat, pronounced dehydration and hyperthermia can, in some conditions, reduce cardiac output, skin blood flow, visceral blood flow, skeletal muscle blood flow, mean arterial pressure (9, 11, 12, 17, 23, 26, 28, 34), as well as maximal \(O_2 \) consumption (\(V\dot{O}_2 \) max) (6, 25). It is unclear, however, whether the initial rate of rise in \(O_2 \) consumption (\(V\dot{O}_2 \) on-kinetics) is also compromised in conditions of marked dehydration and hyperthermia. The possibility exists that \(V\dot{O}_2 \) on-kinetics is either attenuated, unaltered, or potentially increased, depending on the effects of high body temperature and dehydration on tissue and organ blood flow, \(O_2 \) extraction, and enzyme activity (\(Q_{10} \) effect). Evidence during moderate-intensity exercise suggests that noticeable muscle and core hyperthermia has no effect on either \(V\dot{O}_2 \) on-kinetics (22) or \(V\dot{O}_2 \) slow component (9, 10), due largely to the compensatory increase in exercising muscle \(O_2 \) extraction (9, 10). However, during high-intensity exercise, \(V\dot{O}_2 \) on-kinetics could change with hyperthermia and/or dehydration if \(O_2 \) delivery to contracting skeletal muscle is substantially altered, as suggested by studies manipulating inspiratory \(O_2 \) fraction, exercise position, or blood volume distribution (applying lower body negative pressure; for recent review see Ref. 15). On the other hand, the relative contribution of dehydration and hyperthermia to the decline in \(V\dot{O}_2 \) max with marked dehydration and hyperthermia remains elusive, as results in this area are controversial. \(V\dot{O}_2 \) max has been shown to be reduced (21, 25, 32), unaltered (26, 29, 37), or increased (3) when subjects exercise under different levels of hyperthermia with and without dehydration, and it appears that dehydration in the absence of thermal stress induces only minor (4) or no reductions in \(V\dot{O}_2 \) max (1, 5, 18, 31, 35).

Therefore, the purpose of this study was twofold: 1) to determine whether \(V\dot{O}_2 \) on-kinetics would be blunted in conditions of marked dehydration and hyperthermia [i.e., 4% body wt loss; esophageal temperature (\(T_{es} \) = +1°C and mean skin temperature (\(T_{sk} \) = +6°C)] expected to impair \(V\dot{O}_2 \) max, and 2) to determine to what extent the hampered maximal aerobic capacity is related to the independent effects of dehydration and hyperthermia. We speculated that the \(V\dot{O}_2 \) on-response could be attenuated when hyperthermic and dehydrated subjects initiate an intense exercise bout. Furthermore, we hypothesized that the impairment of high-intensity exercise performance with dehydration and hyperthermia is largely related to effects of hyperthermia on reducing \(V\dot{O}_2 \) max. There are many possible heat strain conditions resulting from different levels of dehydration and hyperthermia. We chose to study

Address for reprint requests and other correspondence: J. González-Alonso, Copenhagen Muscle Research Centre, Rigshospitalet, section 7652, Blegdamsvej 9, DK-2100 Copenhagen Ø, Denmark (E-mail: jga@cmrc.dk).

The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
large differences in hydration status and body temperature, which could represent physiological conditions experienced by athletes performing in hot environments without fluid replacement, compared with cool environments with full fluid replacement.

METHODS

Subjects. Six endurance-trained male cyclists participated in this study. They had a mean (± SD) age of 24 ± 2 yr, body weight of 73.3 ± 6.9 kg, and height of 182 ± 5 cm. Maximal heart rate (HR$_{\text{max}}$) and VO$_2$$_{\text{max}}$ determined during an incremental protocol were 189 ± 8 beats/min and 4.69 ± 0.46 l/min (64.5 ± 3.0 ml·kg$^{-1}$·min$^{-1}$), respectively. The subjects were fully informed of the risks and discomforts associated with the experiments before they gave their informed written consent to participate. All subjects completed six practice trials to adapt to the maximal tests and the hot environment. On the last practice day, the subjects performed two maximal tests separated by 1 h, revealing the same VO$_2$$_{\text{max}}$, HR$_{\text{max}}$, and performance time when environmental and hydration conditions were unchanged. Furthermore, VO$_2$$_{\text{max}}$ and HR$_{\text{max}}$ attained during the tests with constant workload were similar to the values determined during the tests with incremental protocol.

Experimental design. On two occasions separated by 5–7 days, the subjects completed four counterbalanced maximal exercise tests on a cycle ergometer (Monark 829E) (see Fig. 1). Each maximal test was separated from previous exercise by a 1-h interval consisting of 45 min of rest, 12 min of light cycling (~50% VO$_2$$_{\text{max}}$), and 3 min of rest while the subject was seated on the cycle ergometer. The maximal tests were performed with either a normal [starting T_{sk} = 37.5 ± 0.2°C (± SE) and T_{sk} = 30.8 ± 0.6°C; normal] or a hyperthermic (T_{sk} = 38.5 ± 0.2°C and T_{sk} = 37.0 ± 0.2°C; hyper) condition. Core and skin temperatures were manipulated by changing the temperature of the water perfusing a jacket that was in contact with the skin of the trunk and arms (water temperature: 14°C in normal and 44°C in hyper). The subjects wore the perfused jacket throughout the last 15 min of the resting period, during the 12 min of light cycling, and during the maximal tests. In addition, to lower the elevated body temperature from previous exercise and to ensure a normal starting body temperature in normal trials, subjects were immersed in 15°C water for 15 min. In the hyper trials, heat stress was increased during the resting and light exercise periods by having the subjects wear rain trousers. The exercise condition in the present study. Mean response time (τ) was calculated by dividing VO$_2$ by heart rate.

Core and skin temperature. T_{sk} was measured with a thermocouple (MOV-A, Ellab, Copenhagen, Denmark) inserted through the nasal passage at a distance equal to one-fourth of the subject’s height (33). T_{sk} was calculated from the skin temperatures (thermocouple A-H3, Ellab) measured at six sites (i.e., back, chest, upper arm, forearm, thigh, and calf) using the weighting method of Hardy and DuBois (16). The esophageal and skin thermocouples were connected to a recorder (CTF 9008 Precision Thermometer and F-Value)

Experimental protocol

<table>
<thead>
<tr>
<th>Condition</th>
<th>Exercise Duration</th>
<th>Rest Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>DH-trial</td>
<td>2 h exercise at ~50% VO$2$${\text{max}}$ in 37°C</td>
<td>1 h rest-light exercise</td>
</tr>
<tr>
<td>Dehydration (4% of body weight)</td>
<td>normal</td>
<td></td>
</tr>
</tbody>
</table>

| **EU-trial** | 2 h exercise at ~50% VO$_2$$_{\text{max}}$ in 37°C | 1 h rest-light exercise |
| Euthydrated (fluid replacement) | normal |

Fig. 1. Sequence of the experimental protocol whereby subjects first cycled for 2 h to become dehydrated (DH) or remain euhydrated (EU, by fluid replacement) and then performed 2 intense cycle ergometer exercise tests until exhaustion: 1 with normal and the other with elevated thermal strain (hyperthermia (hyper)). The maximal tests were performed from previous exercise by 1-h interval consisting of 45 min of rest, 12 min of light cycling [50% maximal VO$_2$ consumption (VO$_2$$_{\text{max}}$)], and 3 min of seated rest on the cycle ergometer.
Computer, Ellab), and temperatures were registered every 30 s with an accuracy of 0.1°C. Muscle temperature was measured in the vastus lateralis in one subjects with a needle probe (model MKA-A, Ellab) inserted 3 cm into the muscle.

Blood analysis. All resting blood samples were withdrawn from an antecubital vein after the subject had been seated for at least 15 min. Hemoglobin and hematocrit were determined in duplicate using an ABL 510 analyzer (Radiometer, Copenhagen, Denmark). Percent changes in blood volume and plasma volume were calculated by using the equations of Dill and Costill (7). Lactate and blood glucose concentrations were measured by using a glucose and lactate YSI model 2700 analyzer (Yellow Springs Instruments). Plasma osmolality was determined by the freezing point-depression technique (advanced osmometer model 3D3, Advanced Instruments), whereas plasma norepinephrine and epinephrine were determined by using a RIA kit (KatCombi RIA, Biotech-IgG, Copenhagen, Denmark).

Statistical analysis. One- and two-way ANOVA with repeated measures were performed to test significance among the different trials. After a significant F test, pairwise differences were identified by using Tukey’s honestly significant difference post hoc procedure. When appropriate, significant differences were also identified by using Student’s paired t-test. The significance level was set at \(P < 0.05 \). Data are presented as means \(\pm \) SE.

RESULTS

Hydration status. Hydration status at the beginning of the 2 testing days (DH vs. EU) was not different, as indicated by similar body weights (73.3 ± 3.0 vs. 73.2 ± 2.9 kg, respectively), plasma osmolality (285 ± 1 vs. 286 ± 1 mosmol/kgH\(_2\)O, respectively), and hemoglobin concentration (14.8 ± 0.3 g/dl on both days). In DH, body weight declined to 70.7 ± 2.8 kg (4.0 ± 0.3% body wt loss), whereas plasma osmolality rose to 297 ± 3 mosmol/kgH\(_2\)O, and hemoglobin concentration increased to 15.3 ± 0.3 g/dl, reflecting a 4.1 ± 1.1% blood volume reduction. In EU, body weight, plasma osmolality, and hemoglobin concentration remained unchanged (Table 1). No differences in hydration were detected between hyper and normal trials on the respective days (Table 1).

Core and skin temperature. During the four maximal trials, \(T_{sk} \) increased progressively throughout exercise, whereas \(T_{sk} \) remained constant (Fig. 2). The rate of increase in \(T_{es} \) was similar in the four trials (0.18°C/min), thereby maintaining the ~1°C higher \(T_{es} \) in hyper vs. normal. However, because of the longer exercise times in normal, \(T_{es} \) rose over a longer period, and at exhaustion the difference in \(T_{es} \) between EU-normal and EU-hyper, therefore, decreased to 0.3°C (38.7 ± 0.3 vs. 39.0 ± 0.2°C) and was no longer significant, whereas the difference between DH-normal and DH-hyper declined to 0.5°C (38.5 ± 0.2 vs. 39.0 ± 0.2°C; \(P < 0.05 \)). \(T_{sk} \) was at all time points ~6°C higher (\(P < 0.01 \)) in the hyper trials compared with the normal trials (see Fig. 2B).

\(V_{O2} \) and performance time. \(V_{O2} \) before (baseline) and during the first 60 s of exercise was similar in all trials (Fig. 3A and Fig. 4). However, after 60 s of exercise, \(V_{O2} \) was significantly lower in EU-hyper and DH-hyper compared with EU-normal (\(P < 0.05 \); Fig. 3A). At 156 ± 17 s (exhaustion in the shortest trial), \(V_{O2} \) was reduced by 0.44–0.45 l/min in the hyper trials, and the total amount of O\(_2\) consumed until this time was 0.6 liter lower in EU-hyper and DH-hyper compared with EU-normal (\(P < 0.01 \); Table 2). \(V_{O2} \) was equally reduced by 16 ± 1% in the two hyper trials, and performance time was shortened by approximately one-half compared with that in EU-normal (51 ± 6% reduction in EU-hyper and 53 ± 6% in DH-hyper; both \(P < 0.01 \)). Preventing hyperthermia in dehydrated subjects (DH-normal) restored two-thirds of the decline in \(V_{O2} \) and almost one-half of the reduction in performance time. However, compared with EU-normal, both \(V_{O2} \) and performance time with dehydration alone were significantly reduced by 5 ± 2 and 26 ± 8% (\(P < 0.05 \)), respectively (Table 2).

\(V_{O2} \) on-kinetics. \(V_{O2} \), defined as the time necessary to reach 63% of the rise in \(V_{O2} \) between baseline and the maximal response, was significantly shorter in the two hyper trials compared with EU-normal (Table 3). However, this was due to the reduced \(V_{O2} \) and not to a faster rise in \(V_{O2} \) in the hyper trials (63% response was reduced from 3.2 ± 0.1 l/min in EU-normal to 2.7 ± 0.1 l/min in the hyper trials, \(P < 0.05 \); see Fig. 3A). Therefore, the time to reach the same \(V_{O2} \) as the 63% response in EU-normal (3.2 ± 0.1 l/min) was calculated, showing no statistically significant differences among the four trials (absolute response time; Table 3).

Heart rate and \(O_2 \), pulse. Heart rate was 15–25 beats/min higher throughout exercise in the hyper trials compared with EU-normal (\(P < 0.05 \); Fig. 3B).
Furthermore, HR\textsubscript{max} was elevated by 5 ± 1 beats/min in the hyper trials compared with the respective trials with normal body temperatures (P < 0.01; Table 2). Dehydration without hyperthermia did not alter HR\textsubscript{max}. However, the attainment of HR\textsubscript{max} occurred faster in the DH condition compared with EU-normal (Fig. 3B).

O\textsubscript{2} pulse followed the same general pattern of response as V\textsubscript{O2}. However, O\textsubscript{2} pulse reached a maximum within 100 s of exercise in all trials. O\textsubscript{2} pulse was reduced by 17 ± 2% in the hyper trials compared with EU-normal (P < 0.01, Fig. 3C), which is highly correlated to the reductions in V\textsubscript{O2}\textsubscript{max} (r2 = 0.95–0.98). Preventing hyperthermia in the DH condition restored most of the decline in O\textsubscript{2} pulse (see Table 2).

Blood and plasma variables. Blood glucose and lactate concentrations both at the beginning of the maximal tests and at exhaustion were similar in all four conditions (Table 1). Furthermore, at exhaustion, no differences were detected in forearm venous plasma concentrations of epinephrine and norepinephrine (Table 1).

![Graph A: Esophageal temperature response](image)
![Graph B: Skin temperature response](image)
![Graph C: O2 pulse response](image)

Fig. 2. Esophageal temperature (A) and mean skin temperature (B) responses during maximal cycle ergometer exercise at constant power output when subjects were euhydrated or dehydrated with normal or elevated thermal strain (EU-normal, EU-hyper, DH-normal, DH-hyper). Values are means ± SE for 6 subjects. *Significantly higher than EU-normal, P < 0.05.

Fig. 3. O\textsubscript{2} consumption (V\textsubscript{O2}; A), heart rate (B), and O\textsubscript{2} pulse (C) responses during maximal cycle ergometer exercise at constant power output when subjects were euhydrated or dehydrated with normal or elevated thermal strain. Values are means ± SE for 6 subjects. In EU-normal, it looks as if a plateau in V\textsubscript{O2} is not obtained; however, this is due to the averaging effect, because all subjects maintained a plateau over the last 125 ± 23 s (range 60–230 s) of the exercise period (see Fig. 4). *Significantly different from EU-normal, P < 0.05.
with dehydration led to an augmented HRmax, suggesting that pronounced hyperthermia alone or in combination with dehydration is associated with hyperthermia. We also observed the finding of this study is that marked hyperthermia alone or combined dehydration and hyperthermia do not alter VO2 on kinetics, despite the fact that they drastically reduce VO2 max. The observations that hyperthermia with or without dehydration resulted in similar reductions in VO2 max and that prevention of hyperthermia in dehydrated subjects restored most of the decline in VO2 max indicate that most of the decline in VO2 max with combined dehydration and hyperthermia is associated with hyperthermia. We also observed that pronounced hyperthermia alone or in combination with dehydration led to an augmented HRmax, suggesting that reduced maximal aerobic capacity was primarily related to a lowering in stroke volume and/or arteriovenous O2 difference.

Despite marked reductions in the maximal response, the initial rate of rise in VO2 was unaltered with either hyperthermia alone or combined hyperthermia and dehydration. The same interpretation of the data is reached when either a single- or a two-exponential model is used to describe the VO2 kinetics (both \(r = 0.94 \pm 0.01 \), as both reveal the same absolute response time (i.e., time to reach 3.2 ± 0.1 l/min, ~42 s). In the face of an unchanged VO2 during the initial phase of exercise, it appears that the significant reduction in \(\tau \) from 42 to 33–35 s in the hyper trials compared with control only reflected the reduction in maximal response. The unaltered initial rate of rise in pulmonary VO2 in the hyper trials implies that the rate of muscle mitochondrial respiration was unchanged at the onset of exercise and that any possible reductions in O2 delivery to the exercising leg muscles during the first minute of exercise were adequately counteracted. It is also clear that the higher muscle temperature (~1°C; see Ref. 10) in the hyper trials did not accelerate the oxidative reactions in the active muscles, corroborating previous findings during submaximal exercise (10, 11, 14, 22). However, VO2 was only similar during the initial 60 s of exercise, being thereafter significantly reduced by hyperthermia alone and combined dehydration and hyperthermia during the plateau phase.

The relative decline in VO2 max (16%) with hyperthermia alone or in combination with dehydration is in agreement with the 27% VO2 max reduction previously observed with hyperthermia alone (25) or combined dehydration and hyperthermia (6), but it is greater than the 3–10% VO2 max decline found by others (21, 26, 32). The present observation, however, is in sharp contrast to four studies reporting that hyperthermia has no effect or increases VO2 max (3, 27, 29, 37). Interestingly, Bergh and Ekbom (3) found a 2% rise in VO2 max with elevated core temperature (<31°C). The main reason for this discrepancy appears to be the difference in thermal stress between the hyper and control conditions, spe-

Table 2. Oxygen consumption, heart rate, and performance during intense cycle ergometer exercise with euhydration and dehydration under normal or elevated thermal strain

<table>
<thead>
<tr>
<th>Variables</th>
<th>Euvhydration</th>
<th>Dehydration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance time, s</td>
<td>353 ± 39</td>
<td>251 ± 21†</td>
</tr>
<tr>
<td>VO2max, l/min</td>
<td>4.74 ± 0.21</td>
<td>3.96 ± 0.12*</td>
</tr>
<tr>
<td>Ventilation, l/min</td>
<td>179.8 ± 6.1</td>
<td>167.0 ± 6.9</td>
</tr>
<tr>
<td>RER</td>
<td>1.13 ± 0.03</td>
<td>1.23 ± 0.01*</td>
</tr>
<tr>
<td>Maximal HR, beats/min</td>
<td>190 ± 3</td>
<td>194 ± 5</td>
</tr>
<tr>
<td>O2 pulse, ml O2/beat</td>
<td>25.0 ± 1.2</td>
<td>20.8 ± 0.6*</td>
</tr>
<tr>
<td>VO2 at 156 ± 17 s, l/min</td>
<td>4.41 ± 0.14</td>
<td>3.96 ± 0.12*</td>
</tr>
<tr>
<td>Total VO2 at 156 ± 17 s, liters</td>
<td>8.1 ± 1.2</td>
<td>7.5 ± 1.1*</td>
</tr>
<tr>
<td>HR at 156 ± 17 s, beats/ min</td>
<td>177 ± 3</td>
<td>194 ± 5*</td>
</tr>
</tbody>
</table>

Values are means ± SE for 6 subjects. VO2, O2 consumption; VO2max, maximal VO2; RER, respiratory exchange ratio; HR, heart rate. *Significantly different from euhydration-normal (\(P < 0.05 \)). †Significantly different from dehydration-hyperthermia (\(P < 0.05 \)).
The present experimental intervention that resulted in large differences in hydration level and body temperature could represent the best and worst case scenarios (full vs. no fluid replacement) that endurance athletes could encounter during events requiring high-power outputs for several minutes during competition in hot environments. For instance, this could be the case for endurance cyclists having to sprint during or

Table 3. Maximal oxygen uptake mean response time and absolute response time during intense cycle ergometer exercise with euhydration and dehydration under normal or elevated thermal strain

<table>
<thead>
<tr>
<th>Subject No.</th>
<th>Normal</th>
<th>Hyperthermia</th>
<th>Dehydration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>τ</td>
<td>τ’</td>
<td>τ’</td>
</tr>
<tr>
<td>1</td>
<td>41.5</td>
<td>33.1</td>
<td>41.5</td>
</tr>
<tr>
<td>2</td>
<td>39.2</td>
<td>34.9</td>
<td>38.7</td>
</tr>
<tr>
<td>3</td>
<td>35.8</td>
<td>37.9</td>
<td>45.6</td>
</tr>
<tr>
<td>4</td>
<td>47.5</td>
<td>33.2</td>
<td>41.7</td>
</tr>
<tr>
<td>5</td>
<td>50.3</td>
<td>37.3</td>
<td>41.2</td>
</tr>
<tr>
<td>6</td>
<td>39.0</td>
<td>33.8</td>
<td>40.2</td>
</tr>
</tbody>
</table>

Mean ± SE: 42.2 ± 2.3, 35.0 ± 0.9^a, 41.5 ± 1.0, 32.6 ± 2.0^a, 41.6 ± 2.0, 39.4 ± 0.9^a

Values are expressed in s. Mean response time (τ) is defined as the time to reach 63% of the increase in \(V\dot{O}_2 \) from baseline to the maximal response. Absolute response time (τ’^a) is defined as the time necessary to reach the same \(V\dot{O}_2 \) as the 63% response in euhydration-normal (i.e., 3.2 ± 0.1 l/min). *Significantly shorter than euhydration-normal \(P < 0.05 \).
at the end of a race. It is evident from the present results that dehydration and especially the concomitant hyperthermia have a great potential for impairing “sprinting” performance in hot environments. However, it is clear that impaired initial rate of rise in VO₂ is not a limiting factor. Rather, the limitation appears to result primarily from substantial reductions in the maximal rate of aerobic ATP production, which could largely reside in the contracting skeletal muscles. During heavy exercise, it is reasonable to expect that marked hyperthermia and dehydration reduce blood flow and O₂ delivery to the active skeletal muscles (9, 10). In the hyper trials, the total amount of O₂ consumed after 156 ± 17 s of exercise (exhaustion in the shortest trial) was reduced by 0.6 liter, implying that ATP resynthesis from oxidative phosphorylation was impaired with hyperthermia alone or in combination with dehydration. Because power output was maintained constant, a proportionally greater reliance on nonoxidative ATP production might have occurred if total energy turnover had been preserved. The similar forearm venous lactate values in all conditions, despite vast differences in exercise time, suggests that glycolytic ATP production was elevated at exhaustion in the hyper compared with normal trials, which is consistent with our laboratory’s recent findings during prolonged exercise in the heat (10). However, glycolytic ATP generation might have not totally compensated for the substantial reductions in VO₂ in the hyper trials. In support of this, our laboratory recently observed that, despite significantly elevated muscle lactate production, total leg energy turnover was somewhat reduced when skeletal muscle blood flow and O₂ delivery declined with combined hyperthermia and dehydration during submaximal exercise (10). Whether or not early fatigue is due to reduced exercising muscle energy turnover in the hyper trials in the present study requires further elucidation. However, it is apparent that the attainment of a critically high internal body temperature was not the main factor, given that core temperature at exhaustion was 38.5–39.0°C in all trials, which is much lower than the ~40°C associated with fatigue during submaximal exercise in hot environments (14).

In conclusion, these results demonstrate that marked skin and internal body hyperthermia in the absence or presence of dehydration do not alter the initial rate of rise in VO₂. Yet hyperthermia with and without dehydration markedly impairs VO₂ max and high-intensity performance, despite the fact that HR max is significantly elevated. Preventing hyperthermia in dehydrated subjects restored most of the reductions in maximal aerobic capacity. The impairment of high-intensity exercise performance with dehydration and hyperthermia appears to be largely related to the effects of hyperthermia on reducing VO₂ max.

Special thanks are given to the subjects in this study.

J. González-Alonso was supported by grants from Team Danmark and European Commission (Marie Curie Research Training Grant FMBICT950007).

REFERENCES

