Effect of carbohydrate ingestion on glucose kinetics during exercise in the heat

DAMIEN J. ANGUS,1 MARK A. FEBBRAIO,1 DAVID LASINI,2 AND MARK HARGREAVES2
1Exercise Physiology and Metabolism Laboratory, Department of Physiology, The University of Melbourne, Parkville, Victoria 3052; and 2School of Health Sciences, Deakin University, Burwood, Victoria 3125, Australia

Received 6 March 2000; accepted in final form 6 September 2000

Angus, Damien J., Mark A. Febbraio, David Lasini, and Mark Hargreaves. Effect of carbohydrate ingestion on glucose kinetics during exercise in the heat. J Appl Physiol 90: 601–605, 2001.—Six endurance-trained men [peak oxygen uptake (V̇O₂peak) = 4.58 ± 0.50 (SE) l/min] completed 60 min of exercise at a workload requiring 68 ± 2% peak V̇O₂ in an environmental chamber maintained at 35°C (<50% relative humidity) on two occasions, separated by at least 1 wk. Subjects ingested either a 6% glucose solution containing 1 μCi [3-3H]glucose/g glucose (CHO trial) or a sweet placebo (Con trial) during the trials. Rates of hepatic glucose production [HGP = glucose rate of appearance (Ra) in Con trial] and glucose disappearance (Rd), were measured using a primed, continuous infusion of [6,6-2H]glucose, corrected for gut-derived glucose (gut Ra) in the CHO trial. No differences in heart rate, V̇O₂, respiratory exchange ratio, or rectal temperature were observed between trials. Plasma glucose concentrations were similar at rest but increased (P < 0.05) to a greater extent in the CHO trial compared with the Con trial. This was due to the absorption of ingested glucose in the CHO trial, because gut Ra after 30 and 50 min (48.0 ± 5.5 vs 34.6 ± 3.8 μmol·kg⁻¹·min⁻¹, CHO vs. Con, respectively). These results indicate that ingestion of carbohydrate, at a rate of 1.0 g/min, increases glucose Ra but does not blunt the rise in HGP during exercise in the heat.

The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
laboratory in a 10- to 12-h postabsorptive state. Our laboratory has previously found that these pretrial exercise and lifestyle controls result in reproducible metabolite and hormonal levels in subjects before each experimental trial (4).

Experimental trials. Each subject was studied on two separate occasions, separated by at least 7 days. All trials were performed in an environmental chamber maintained at 35°C, with a relative humidity of ~50%. In addition, an electric fan circulated air to facilitate evaporative cooling and to ensure a uniform temperature within the chamber. On arrival at the laboratory, subjects voided and were weighed nude, and a rectal thermistor probe (Monotherm, Mallenckrodt Medical, St. Louis, MO) was positioned 10–15 cm beyond the anal sphincter. Subjects rested supine, and catheters were inserted into an antecubital vein of one forearm for the collection of blood samples and in the contralateral arm for tracer infusion. The catheter for blood sampling was kept patent by flushing with 0.9% saline every 30 min during rest and after each blood sample. An initial blood sample was obtained, after which a primed (3.3 mmol), continuous (54.3 μmol/min) infusion of [6,6-2H]glucose (Cambridge Isotope Laboratories, Cambridge, MA) was commenced and maintained during 2 h of rest and 60 min of exercise. Subjects sat in a chair at 20–25°C for the 2-h rest period before entering the chamber and commencing cycle ergometer exercise at 68 ± 2% VO2 peak. Subjects ingested either a 6% (wt/vol) glucose solution containing 1 μCi [3-2H]glucose/g glucose (CHO) or a sweet placebo (Con) during the exercise trials. At the onset of exercise, subjects consumed a 400-ml bolus of the test beverage, with an additional 150 ml ingested after 10, 20, 30, and 40 min of exercise for a total ingested volume of 1,000 ml during each trial. The beverages were administered in opaque containers in a randomized order, and the subject was unaware of the beverage type. Every 15 min during exercise, expired gas was collected into Douglas bags for measurement of ventilation rate, oxygen uptake (V̇O2), and respiratory exchange ratio (RER). Heart rate (Electro, Polar, Finland) and rectal temperature were monitored continuously and recorded every 10 min throughout exercise. Venous blood samples were obtained 10 and 5 min before exercise, immediately before exercise, and at 10-min intervals during exercise for analysis of plasma glucose and [6,6-2H]glucose enrichment and for [3H]glucose specific activity in the CHO trial. Additional blood samples were obtained before exercise and after 30 and 60 min of exercise for analysis of plasma lactate, insulin, glucagon, cortisol, epinephrine, and norepinephrine.

Analytic techniques. Dried expirate was analyzed for oxygen and carbon dioxide (Applied Electrochemistry S-3A/II and CD-3A, Ametek, Pittsburgh, PA) concentration. These analyzers were calibrated using commercial gases of known composition. The volume of expired air was measured on a gas meter (Parkinson-Cowan, Manchester, UK). Ten milliliters of blood were collected at each sampling time, an aliquot of which was placed into a tube containing fluoride heparin and spun in a centrifuge. The plasma was extracted and stored at −80°C for later analysis of plasma glucose and lactate using an automated method (EML-105, Electrolyte Metabolite Laboratory, Radiometer, Copenhagen, Denmark). From the same aliquot, plasma insulin (Inestar, Stillwater, MN), cortisol (Orion, Espoo, Finland), and glucagon (1) were measured by radioimmunoassay. A further aliquot (~1.5 ml) of the whole blood sample was placed into a tube containing a preservative (EGTA and reduced glutathione). The plasma was separated by centrifugation and was frozen at ~80°C for later analysis of catecholamine concentrations using a single-isotope radioenzymatic method (TRK995, Amersham).

Plasma [6,6-2H]glucose enrichment was measured as described previously (10). Briefly, 500 μl of each plasma sample were deproteinized by addition of 500 μl of 0.5 M ZnSO4 and 500 μl of 0.3 M Ba(OH)2 and subsequent mixing, preceding centrifugation. To remove charged metabolites, the supernatant was passed down an ion-exchange column (Dowex 2 × 8, 200–400 mesh, Bio-Rad, Richmond, CA). The columns were washed with distilled water, and the resultant eluant was oven dried overnight to remove any deuterated water. The samples were then redissolved in 1.0 ml of distilled water. To determine the [3H]glucose specific activity in the plasma samples in the CHO trials, 100-μl aliquots of the reconstituted eluant were placed in scintillation vials and dried overnight, with the remaining 900 μl retained for evaluation of [6,6-2H]glucose enrichment. In addition, samples of the ingested [1H]glucose beverage were dehydrated. The resulting dry residues from both plasma and beverage samples were dissolved in 0.5 ml of distilled water and 10 ml of scintillation cocktail (Ready Value, Beckman, Fullerton, CA) before refrigeration for 60 min. The samples were counted in a liquid scintillation counter (model LS 3801, Beckman), and the specific activity of each sample calculated. The remaining 900 μl of the reconstituted eluant were placed in glass vials, dehydrated, and derivatized to the pentaacetate derivative by the addition of a pyridine and acetic anhydride cocktail. The derivatized-glucose level was measured with a gas chromatograph-mass spectrometer (5890 series 2 gas chromatograph, 5971 mass spectrometer detector, Hewlett-Packard, Avondale, PA). Glucose kinetics at rest and during exercise were calculated with a modified one-pool, non-steady-state model (15), assuming a pool fraction of 0.65 and estimating the apparent glucose space as 25% of body weight. Glucose rate of appearance (Ra) and glucose rate of disappearance (Rd) were determined from changes in the percent enrichment in the plasma of [6,6-2H]glucose. In the Con trial, glucose Ra measures total endogenous glucose Rg, although the kidney is capable of gluconeogenesis, during exercise the liver is likely to be the predominant, if not sole, source of the increase in glucose production (16). Thus, in the Con trial, HGP was equal to total Rg, whereas, in the CHO trial, HGP was calculated as the difference between the measured total Rg and the glucose Rg from the ingested beverage (gut Rg; Ref. 14). The metabolic clearance rate (MCR) of glucose was calculated by dividing glucose Ra by the prevailing plasma glucose concentration.

Statistical analysis. The data from the Con and CHO trials were compared using a two-factor (time and treatment) ANOVA with repeated measures with significance at the P < 0.05 level. Specific differences were located using the Student-Newman-Keul’s post hoc test when ANOVA revealed a significant interaction. All data are reported as means ± SE.

RESULTS

During 60 min of exercise at 68 ± 2% of VO2 peak, there were no differences between trials in average VO2, RER, and heart rate (Table 1). The increase (P < 0.05) in rectal temperature during exercise was similar in the two trials (Table 1).

Plasma glucose concentrations were similar at rest and increased during exercise in both trials (Fig. 1). After 40 min of exercise, plasma glucose was higher (P < 0.05) in the CHO trial, compared with the Con trial, whereas, at 60 min, it tended (P = 0.06) to be higher in the CHO trial. HGP was similar at rest and increased during exercise in both trials (Fig. 1). There
were no differences, however, in HGP between trials. Total glucose R_a increased during exercise and was higher ($P < 0.05$) during the last 30 min in the CHO trial compared with the Con trial. The elevated glucose R_a in the CHO trial was not due to changes in HGP but rather the appearance of glucose from the ingested beverage. Gut R_a increased throughout exercise in the CHO trial, reaching a peak value of $16 ± 5 \mu\text{mol} \cdot \text{kg}^{-1} \cdot \text{min}^{-1}$ in the final 10 min of exercise (Fig. 1). Glucose R_d increased in both trials; however, during the last 30 min of exercise, it was higher ($P < 0.05$) in the CHO than in Con trial (Fig. 2).

MCR during exercise was similar in the two trials (Fig. 2). There were no differences between trials in plasma lactate, insulin, glucagon, cortisol, epinephrine, or norepinephrine during exercise (Table 2), although all except plasma insulin increased during exercise (Table 2).

DISCUSSION

The major finding of the present study was that, during exercise in a hot environment, glucose ingestion at the rate of $\sim 1 \text{ g/min}$ did not attenuate HGP even though it significantly elevated plasma glucose. This finding is in contrast with previous observations (8, 10).
The inhibitory effects of increased blood glucose availability on liver glucose output during exercise may be due to a direct effect on the liver (12) and/or alterations in the plasma levels of various glucoregulatory hormones thought to regulate liver glucose output. Our laboratory has previously observed that glucose ingestion or infusion increases plasma insulin levels (10) and attenuates the increases in plasma glucagon (10) and catecholamines (6, 10) during strenuous exercise. Furthermore, our laboratory has suggested that higher plasma levels of catecholamines, cortisol, and growth hormone could contribute to the greater liver glucose output during exercise in the heat (4). In the present study, there were no differences in plasma hormone levels between trials (Table 2), despite the higher plasma glucose levels when carbohydrate was ingested (Fig. 1). Thus the combination of exercise and heat stress results in greater activation of the neuroendocrine pathways responsible for liver glucose output and renders blood glucose less effective in modifying these responses. Our laboratory has previously suggested that the balance between neuroendocrine feed-forward activation and humoral feedback inhibition of liver glucose output depends on the interaction between motor center activity, as determined by exercise intensity, and the prevailing glucose and insulin levels (6). Our present results suggest that the addition of heat stress at a given exercise intensity shifts this balance in favor of activation. We are not able to ascertain the exact signal responsible for this exaggerated feed-forward activation with heat stress. Core temperature is higher during exercise in the heat (3, 4), although our laboratory has observed differences in perceived exertion after only 5–10 min of exercise in the heat at a time when rectal temperatures are not yet significantly different (4). One possibility is that the increased skin temperature contributes to the greater “stress” experienced during exercise in the heat.

Glucose R_d, a measure of skeletal muscle glucose uptake during exercise, was increased during the latter stages of exercise when the subjects were fed carbohydrate (Fig. 2), consistent with previous observations (8, 10). This is most likely a consequence of increased plasma glucose because MCR was similar in the two trials (Fig. 2). The functional significance of this small increase in glucose R_d is small. The slight increase in total carbohydrate oxidation we observed in the CHO trial was not statistically significant. If we assume that all of the glucose R_d was taken up and oxidized by contracting skeletal muscle, we can derive a minimal estimate of total glycogen oxidation, which was not different between trials (data not shown).

In summary, in contrast to studies conducted in comfortable ambient conditions, carbohydrate feeding at a rate of ~ 1 g/min does not attenuate liver glucose output during exercise in the heat, despite relative hyperglycemia. Thus the stress associated with exercise in the heat results in marked feed-forward stimulation of liver glucose output, which renders feedback mechanisms less effective.
We thank Prof. Terry Seedsman from Victoria University of Technology (Footscray, Victoria) for the use of the environmental chamber and acknowledge the subjects for their participation. This study was supported by a grant from the Gatorade Sports Science Institute.

REFERENCES

