Role of the spleen in the exaggerated polycythemic response to hypoxia in chronic mountain sickness in rats

H. Y. KAM, 1 L. C. OU, 1 C. D. THRON, 2 R. P. SMITH, 2 AND J. C. LEITER 1, 3
Departments of 1 Physiology, 2 Pharmacology and Toxicology, and 3 Medicine, Dartmouth Medical School, Lebanon, New Hampshire 03756-001

Kam, H. Y., L. C. Ou, C. D. Thron, R. P. Smith, and J. C. Leiter. Role of the spleen in the exaggerated polycythemic response to hypoxia in chronic mountain sickness in rats. J. Appl. Physiol. 87(5): 1901–1908, 1999.—In a rat model of chronic mountain sickness, the excessive polycythemic response to hypoxic exposure is associated with profound splenic erythropoiesis. We studied the uptake and distribution of radioactive iron and red blood cell (RBC) morphology in intact and splenectomized rats over a 30-day hypoxic exposure. Retention of 59Fe in the plasma was correlated with 59Fe uptake by both spleen and marrow and the appearance of 59Fe-labeled RBCs in the blood. 59Fe uptake in both the spleen and the marrow paralleled the production of nucleated RBCs. Splenic 59Fe uptake was ~10% of the total marrow uptake under normoxic conditions but increased to 60% of the total marrow uptake during hypoxic exposure. Peak splenic 59Fe uptake and splenomegaly occurred at the most intense phase of erythropoiesis and coincided with the rapid appearance of 59Fe-labeled RBCs in the blood. The bone marrow remains the most important erythropoietic organ under both resting and stimulated states, but inordinate splenic erythropoiesis in this rat strain accounts in large measure for the excessive polycythemia during the development of chronic mountain sickness in chronic hypoxia.

interaction of splenic and medullary erythropoiesis; high altitude; splenomegaly; splenectomy; leukocytosis; thrombocytosis; thromboctopenia

WE HAVE CHARACTERIZED a rat model of human chronic mountain sickness (CMS). As in the human disease, the rats manifest excessive polycythemia and hypervolemia (16). In our investigations, we studied two strains of Sprague-Dawley rats: the Hilltop strain is hypoxia sensitive and develops CMS, whereas the Madison strain is relatively resistant to hypoxia and does not develop CMS. Splenic erythropoiesis contributes significantly to the overall polycythemic response to hypoxia in the Hilltop strain (17, 18). In contrast, the polycythemic response to the identical hypoxic conditions is only moderate in the Madison strain, and splenic erythropoiesis plays a minimal role (17).

Splenic erythropoiesis has been well documented in rodents, particularly in mice (5). The prominence of splenic erythropoiesis in adult rodents during erythropoietic stimulation was attributed to the limited marrow space, which might restrict the production of red blood cells (RBCs) (3). Thus splenectomy reduced the polycythemic response after bleeding or led to death when medullary erythropoiesis was chemically ablated (23). On the other hand, a normal and complete polycythemic response to chronic hypoxia was found in splenectomized mice (13) and rats (24), suggesting that splenic erythropoiesis serves only an accessory function. Hence, there is an intricate relationship between splenic and medullary erythropoiesis that remains to be investigated. The goal of the present study was to determine the relative contributions of splenic and medullary erythropoiesis in the development of the excessive polycythemic response to chronic hypoxia in the CMS-susceptible, Hilltop rat strain. The temporal patterns of splenic and medullary erythropoiesis were followed in intact and splenectomized animals over a period of 30 days of hypoxic exposure by means of radioactive-iron uptake and morphological analyses of the marrow and spleen. The effect of splenectomy and hypoxia on other formed elements of the blood during hypoxic exposure was also examined.

MATERIALS AND METHODS

Radioactive-iron uptake studies. Adult male Sprague-Dawley rats weighing 270–290 g were purchased from the Hilltop Breeding Laboratories (Scottsdale, PA). Six separate groups of rats were exposed to a simulated altitude of 18,000 ft (5,500 m or an inspired PO2 = 73 Torr) for 0, 1, 3, 5, 10, or 30 days in a large environmental chamber (24). Each group of 10 animals consisted of 2 subgroups with equal numbers of intact and splenectomized rats. Splenectomy was performed while the rats were under ether anesthesia. After surgery, the rats were treated with penicillin (10,000 U daily im) for 5 days, although exposure to high altitude began after a 2- to 3-day postsurgical recovery period. In the intact group, one or two animals received sham operations for each time subgroup. No significant effect of the sham operation was observed in any of the measured variables, and the data from animals with and without sham operations were pooled to form the intact subgroup.

After altitude exposure, the animals were given 15 µCi 59Fe (29 µCi/mg) via the jugular vein under ether anesthesia and returned to room air [sea-level (SL) controls] or to the hypoxic environment (experimental groups). Sixty minutes after isotope injection, the animals were killed while under ether anesthesia by exsanguination via the vena cava. The half-life of 59Fe incorporation is 40 min in rats (22). A sampling time of 60 min allowed adequate 59Fe incorporation and was consistent with previous studies. Radioactivity was assayed in tissue samples (~1 g) from spleen, liver, femur, whole blood, and plasma (Beckman Gamma Counter, Irvine, CA). Radioactivity was expressed as counts per minute (cpm) per unit volume in the case of whole blood, plasma, and RBCs. Radioactive counts were consistently >10,000 cpm/sample, and background activity was low. For the organ-uptake data, radioactivity was expressed per whole spleen or femur per 100 g body weight. The marrow distribution of 59Fe radioactivity has been studied in rats (9), and the ratio of femur 59Fe
uptake to total marrow 59Fe uptake remained constant under a variety of conditions, although the effect of hypoxia was not studied. Each femur represented 9.6% of the total 59Fe uptake; therefore, the total marrow radioactivity in each animal was calculated as the product of the radioactivity of 1 femur multiplied by 10.6 (9). The total marrow radioactivity in each animal was corrected for differences in body weight and expressed as total medullary radioactivity per 100 g body weight. Normalization by body weight was used to correct for treatment-related body weight differences and to facilitate comparison with past work. Identical results were obtained with and without body weight normalization.

Tissue radioactivity that was due to the residual blood 59Fe was determined by using 51Cr as described previously (20), and the net tissue uptake of 59Fe was calculated after subtraction of radioactivity attributable to residual blood in tissue.

Morphological studies. At the end of the exposure period, animals were killed under ether anesthesia by exsanguination via the vena cava. Blood samples were collected in EDTA-treated tubes, and complete cell and platelet counts were made in a Coulter s-plus IV (Coulter Electronics, Hialeah, FL). Blood smears were prepared for differential cell counts. Reticulocytes were counted by using new methylene blue.

The spleen was removed intact, weighed, fixed in 10% Formalin (4% formaldehyde gas dissolved in water), embedded in paraffin, sectioned at 6 mm, and stained with hematoxylin and eosin. Slides containing these sections were labeled with a code number to blind the evaluator to the treatment. Hematopoietic activity in sections of the spleen was quantified by measuring the relative numbers of nucleated RBCs (NRBCs). Slides of splenic sections were ranked according to their erythropoietic activity in side-by-side comparisons, and "ties" were not included. The rank orders were used in two statistical tests: Wilcoxon's one-way comparison of all possible pairs of treatments and Wilcoxon's one-way comparison of several treatments with a control (26).

The femur was cleaned of surrounding tissue, and bone mass was determined before and after demedullation. The weight of the total femoral marrow was calculated from the difference between the total mass before and after demedullation. For demedullation, the femur was split along its main axis, and ~20-µg samples of bone marrow were taken; the remainder was removed by swabbing the bone cavity clean with lens paper. The samples of bone marrow were drawn into a 100-µl disposable pipette. The mass of this marrow was determined by weighing the pipette before and after drawing in the marrow sample. The bone marrow was expelled from the pipette onto the center of a small piece of 100-mesh stainless steel sheet set in a petri dish containing 1 ml of bovine serum. The sample was quantitatively transferred onto the sheet by repeatedly drawing serum in and out of the pipette. The stainless steel mesh sheet was folded up with the marrow sample inside, and a cell suspension was made by quickly applying pressure to the screen. This technique of preparing cell suspensions minimized damage to the cells. Bovine serum was used instead of homologous serum because of the limited amount of serum available in the high-altitude rats. Comparison of the cell suspensions obtained from both the homologous serum and bovine serum revealed no major differences in preservation of the morphological integrity of the cells. The percentage of damaged cells ranged from 5 to 15% in both cases. NRBC counts of the SL, control rats obtained by this procedure were similar to those reported by Fruhman and Gordon (6) and Donohue et al. (4). Total cell counts and NRBC counts were made in a hematocytometer (Improved Neubauer, Philadelphia, PA). Marrow smears were made from the other femur. Marrow smears were examined for numbers of NRBCs and total RBCs and for other cell types. The absolute numbers of each cell type in one femur were calculated from the percentage of various cell types in the smears and the total cell numbers in the whole femur and were expressed per 100 g body weight.

Statistical analysis. Comparisons between measurements in the intact and splenectomized animals at various durations of high-altitude exposure was performed by using a two-way analysis of variance. Comparisons were reported as statistically significant when the level of probability for rejecting the null hypothesis was $p < 0.05$. Data were reported as means ± SD and P values as $p < 0.05$ or 0.01.

RESULTS

Body weight was significantly less ($p < 0.001$) in the splenectomized animals compared with intact animals when considered across all study times. However, the profile of body weight as a function of time (an initial drop in body weight at the onset of hypoxic exposure with a nadir on day 3 followed by steady growth and recovery of body weight) was similar in both treatment groups. There was no significant interaction between treatment group and altitude-exposure time.

Kinetics of 59Fe uptake during hypoxia. The temporal patterns of the changes in 59Fe activity of whole blood, plasma and packed RBCs 1 h after 59Fe injection are shown in Fig. 1. After a latency of 24 h, the radioactivity of the whole blood increased slightly, but significantly, at 72 and 120 h of hypoxia and then returned to normal control values (Fig. 1A). Retention of injected 59Fe in the plasma dropped precipitously after 72 h of hypoxia and remained low throughout the entire period of exposure (Fig. 1B). The 59Fe retained in the plasma in intact animals was consistently lower than in splenectomized animals, indicating that removal of the injected 59Fe was more rapid in the intact group. The 59Fe uptake of the packed RBCs measured 1 h after injection increased greatly after 72 h of hypoxia, then declined somewhat, but remained significantly elevated above the SL control values (Fig. 1C). More rapid removal of injected 59Fe from the plasma was associated with a more rapid increase in the RBC 59Fe in intact animals. In contrast, 59Fe radioactivity persisted longer in the plasma of the splenectomized rats, and RBC 59Fe rose more slowly and to a lesser extent.

The net total tissue 59Fe uptake for the marrow, spleen, and liver are summarized in Fig. 2. The total marrow 59Fe uptake 1 h after injection in splenectomized animals (Fig. 2A) exceeded total marrow 59Fe uptake in intact, control animals at SL. Subsequently, there was a dip in 59Fe uptake at 24 h, after which marrow activity increased ~40% over the SL control values. Furthermore, 59Fe uptake in splenectomized animals remained significantly greater than in the SL controls even after 30 days of hypoxia. In the intact animals (Fig. 2A), marrow 59Fe uptake, measured 1 h after injection, increased immediately, reached a maximum uptake (50% increase over the SL control level) by the third day, and then gradually decreased toward the control values. Except for the first 24 h of hypoxia, the
mean marrow 59Fe uptake values were consistently higher in the splenectomized than in the intact animals. Most strikingly, hypoxic exposure greatly stimulated splenic 59Fe uptake in the intact animals (Fig. 2B). The 59Fe uptake increased ~2-fold after 24 h of hypoxia, reached a value 10-fold greater than the SL control level at the end of 72 h, and declined slowly to ~5-fold the control value after 30 days. Under SL conditions, splenic 59Fe uptake was ~10% (49×10^3 vs. 545×10^3 cpm/100 g body wt) of the total marrow uptake, but it increased to ~60% (500×10^3 vs. 750×10^3 cpm/100 g body wt) of the total marrow uptake after hypoxic exposure. There was a hypoxia-related decrease in 59Fe uptake, measured 1 h after injection, in the liver that was greater in the intact rats compared with the splenectomized animals (Fig. 2C).

We assume that the marrow and the spleen represent the primary erythropoietic organs, and 59Fe uptake by these organs relates directly to erythropoietic activity. Hence, the total marrow 59Fe uptake represents the total erythropoietic activity in the splenectomized animals, and the combined 59Fe uptake of the spleen and marrow represents the total erythropoietic activity in the intact animals. The changes in the total erythropoietic activity with time of hypoxic exposure in intact and splenectomized animals are shown in Fig. 3. The temporal patterns of total erythropoietic activity were similar to those of the packed-RBC 59Fe activity on the one hand (Fig. 1C), but mirror images of the 59Fe retained in the plasma on the other hand (Fig. 1B). The uptake and disposition of exogenous 59Fe in plasma are best revealed in Fig. 4. The concentration of injected 59Fe retained in the plasma was inversely related to the total erythropoietic organ 59Fe uptake (Fig. 4A), but the appearance of the 59Fe-labeled RBCs in the blood was linearly related to the total erythropoietic organ 59Fe uptake (Fig. 4B).

In the intact animals (Fig. 5), splenic erythropoietic activity was linearly correlated with the packed-RBC 59Fe activity. The comparable relationship for the medullary component, however, was not linear; a second-order polynomial fit the points significantly better than did a straight line. The initial component of the marrow relationship paralleled the splenic relationship; marrow activity increased as the packed-RBC 59Fe activity increased, but, at the most intense phase of erythropoiesis, the increased 59Fe content of packed RBCs was not reflected by increased 59Fe uptake by the marrow. The splenic erythropoietic activity correlated more closely with the release of young RBCs into the circulation at this time. The two-component marrow.

Fig. 1. Changes in 59Fe distribution in whole blood (A), plasma (B), and packed red blood cells (RBCs) (C) in intact (●) and splenectomized (○) rats during exposure to a simulated altitude of 5,500 m. Values are means ± SD from at least 5 animals. HA, high altitude; SL, sea level; cpm, counts/min. *P < 0.05 compared with SL controls of either intact or splenectomized rats. †P < 0.05 in comparisons between intact and splenectomized rats at the same time point.

Fig. 2. 59Fe uptake in various organs in intact (●) and splenectomized (○) rats during exposure to a simulated altitude of 5,500 m. A: marrow. B: spleen. C: liver. Values are means ± SD from at least 5 animals. BW, body wt. *P < 0.05 compared with SL controls.
response occurred, however, only in intact animals. Medullary erythropoietic activity in splenectomized animals was linearly correlated with the packed-RBC 59Fe activity. This observation suggests that spleen was the major erythropoietic organ providing new RBCs during the early phase of intense hypoxia-stimulated erythropoiesis.

Morphological changes in the spleen and marrow during hypoxia. Figure 6 depicts the morphological changes in the spleen as a function of the time of hypoxic exposure. The spleen became significantly hypertrophied after 72 h of hypoxia and remained so for the rest of the exposure period except at the 10th day of hypoxia, when the splenic weight did not differ significantly from the SL control value. Increased numbers of NRBCs in splenic sections demonstrated that splenic erythropoic activity was also significantly increased after 72 h of hypoxia. This increase was sustained throughout the subsequent course of the hypoxic exposure. The histological evaluation was based on the NRBC population density, and the twofold increase in splenic volume further augmented the total NRBC population.

Figure 7 summarizes the morphological changes in the marrow. On exposure to hypoxia, the NRBC population of both the intact and splenectomized rats increased rapidly and reached maximal and constant levels after 72 h of hypoxia (Fig. 7A). The increase in NRBC populations in both intact and splenectomized rats was more than twice the SL control values. Although the mean increase in the NRBCs was consistently higher in the splenectomized than in the intact animals, the differences were not statistically significant. Total bone marrow cellularity in intact and splenectomized animals followed strikingly different patterns (Fig. 7B). In the intact rats, the total cell counts decreased after 24 h of hypoxia but then increased linearly up to twice the control value. In contrast, the total cell counts in splenectomized animals increased immediately and reached a peak after 5 days of hypoxia. Thereafter, they declined slightly. Thus the total cell counts in the splenectomized animals were higher in the early phase and lower in the later phase of hypoxic exposure compared with intact animals. The mature RBC count in the marrow of intact animals dipped initially (Fig. 7C) but increased steadily to a level significantly above both the SL controls and marrow RBC counts in splenectomized animals at 30 days of exposure. There were no significant changes in the mature RBC counts in splenectomized animals over the period of hypoxic exposure.

Changes in circulating RBCs during hypoxia. The whole blood hemoglobin concentration (Fig. 8A) and the hematocrit (Fig. 8B) increased over the time of hypoxic exposure in both intact and splenectomized rats as expected. In most cases, the mean values for these variables were significantly higher in the intact than in the splenectomized animals. The circulating reticulocyte numbers (Fig. 8C), after a 24-h latency, increased rapidly and reached peak values in both

Fig. 3. Changes in total 59Fe uptake of erythropoietic organs in intact (marrow and spleen) and in splenectomized (marrow only) rats during exposure to a simulated altitude of 5,500 m. Values are means ± SD from at least 5 animals. *P < 0.05 compared with SL controls within each treatment group. †P < 0.05 in comparisons between intact and splenectomized rats at same time point.

Fig. 4. Correlation between 59Fe retained in plasma and total erythropoietic organ 59Fe uptake (A) and relationship between circulating packed-RBC 59Fe and total 59Fe uptake of erythropoietic organs (B) in intact (○) and splenectomized (●) rats. Correlation coefficient (r2) between 59Fe retained in plasma and total erythropoietic 59Fe uptake was 0.834 (P < 0.01), and r2 between packed-RBC 59Fe and erythropoietic organ 59Fe uptake was 0.891 (P < 0.01). Mean values of total 59Fe uptake of erythropoietic organs of intact (marrow and spleen) and splenectomized (marrow only) animals in Fig. 3 and mean values of the packed-RBC 59Fe in Fig. 1 were used to generate this plot, and curves were fitted by linear regression.
groups of animals after 120 h of hypoxia. The reticulocyte count rapidly declined in the intact animals, but the decline was delayed in the splenectomized animals, and reticulocyte counts were significantly higher in splenectomized compared with intact rats after 10 days of hypoxia.

The mean corpuscular volume increased by ~15% after 72 h of hypoxia and remained elevated throughout the entire period of exposure in intact and splenectomized animals. The mean corpuscular hemoglobin content increased along with the increase in cell size so that the mean corpuscular hemoglobin concentration remained unchanged during the hypoxic exposure. The temporal pattern of changes in mean corpuscular volume and mean corpuscular hemoglobin content were similar in the intact and splenectomized rats (data not shown). Electrophoretic analysis of the hemoglobin species in circulating RBC showed no differences between the intact and splenectomized animals.

Changes in other blood cells during hypoxia. As shown in Fig. 9A, hypoxic exposure resulted in differing early responses in marrow white blood cell (WBC) counts between the intact and splenectomized animals. WBC counts decreased in intact rats, but increased in the splenectomized animals. The transient decrease in marrow WBC counts in the intact animals was primarily due to a fall in lymphocytes (data not shown). The increase in marrow WBC in the splenectomized animals, however, was due to increased lymphocytes and polymorphonucleocytes (data not shown). Both circulating WBC (Fig. 9B) and platelet counts (Fig. 9C) increased during the first few days of hypoxic exposure. Thereafter, WBC counts declined, and platelet counts fell below the SL control values. Splenectomy significantly increased both the circulating WBC and platelet counts under SL normoxic conditions and augmented the hypoxia-induced transient leukocytosis and thrombocytosis.

Fig. 5. Relationship between organ-specific 59Fe uptake of spleen and bone marrow and production of young RBCs in intact (● and ▲) and splenectomized (○) animals. Mean values of Fig. 1 (packed-RBC 59Fe) and Fig. 2 (marrow and splenic 59Fe uptake) were used to generate this plot. Lines for splenectomized animals and splenic 59Fe uptake were fitted by linear regression ($r^2 = 0.910$ and 0.982, respectively). Marrow response in intact animals was fitted by using a second-order polynomial ($r^2 = 0.822$).

DISCUSSION

Flow of exogenous 59Fe in rats during hypoxic exposure. The present study demonstrates that 59Fe was rapidly used by the erythropoietic organs for the synthesis of hemoglobin and returned to the circulation in the form of newly released young RBCs. The evidence for this is that, first, the rapid disappearance of plasma 59Fe was closely associated with a rapid increase in 59Fe uptake by the erythropoietic organs (marrow and spleen; Figs. 1, 2, and 4). In fact, the retention of plasma 59Fe was linearly and inversely related to 59Fe uptake by the erythropoietic organs (Fig. 4). Second, the appearance of newly formed RBCs in the circulation correlated well with either the total 59Fe uptake of the erythropoietic organs (bone marrow and spleen) in the intact animals or with the marrow 59Fe uptake in the splenectomized animals (Fig. 5).

Relative roles of splenic and medullary erythropoiesis in the polycythemia response to hypoxia. Under normoxic conditions the total splenic 59Fe uptake represents only 10% of the total marrow uptake (49 × 103 vs. 550 × 103 cpm/100 g body wt). Hypoxic exposure increased the splenic uptake by >10-fold, but increased the medullary uptake by <50%. The maximum increase in 59Fe uptake occurred after 3 days of hypoxia in both the spleen and marrow. Because the basal uptake in the marrow was much higher than in the spleen, the absolute 59Fe uptake remained significantly higher in the marrow than in the spleen during the entire period of hypoxic exposure. Consistent with these ferrokinetic findings, the studies of splenic and marrow morphology showed that nucleated RBC numbers increase mark-

Fig. 6. Changes in total splenic mass (A) and relative number of nucleated RBCs (NRBC; B) of spleen during exposure to a simulated altitude of 5,500 m. In A, values are means ± SD from at least 5 animals, and *$P < 0.05$ compared with SL control values. Effect of hypoxic exposure on NRBC density is plotted in B. There were 30 samples (6 study times, each with 5 rats), and NRBC density was ranked from 1 (no NRBC) to 30 (maximal NRBC density) within this population of 30 rats. Ranked score for each animal (ordinate) is plotted as a function of duration of altitude exposure (abscissa).
edly at the onset of hypoxic exposure, reached a peak after 3 days of hypoxia, and remained elevated in both the spleen and the bone marrow throughout the remainder of the 30-day hypoxic exposure. Thus the present study demonstrated that hypoxic exposure rapidly and simultaneously stimulated both splenic and medullary erythropoiesis. As expected, the polycythemic response to hypoxia was consistently greater in the intact compared with the splenectomized animals (Fig. 8). As mentioned earlier, Hilltop rats develop CMS, which is characterized by excessive polycythemia and profound splenic erythropoiesis. In contrast, Madison rats are resistant to CMS and develop only moderate polycythemia and minor splenic erythropoiesis (17). These previous observations suggest that the inordinate splenic erythropoiesis seen in the Hilltop rats during chronic hypoxia may account for the excessive polycythemic response seen in this rat strain, and the finding in the present work that splenectomy significantly reduced the polycythemic response to chronic hypoxia appears to support this conclusion. The inordinate splenic erythropoiesis in the Hilltop strain may originate from enhanced gene expression and production of erythropoietin (EPO) during chronic hypoxic exposure that was not seen in Madison rats (19). In the absence of the spleen, which is a strong competitor for EPO, circulating EPO levels may be higher in splenectomized animals compared with intact animals. Indeed, the medullary erythropoiesis, evident by the medullary 59Fe uptake and NRBC population, increased in splenectomized animals. However, the polycythemic response to hypoxia was lower in the splenectomized animals. Madison rats do develop mild polycythemia and splenic erythrocytosis. But the total splenic erythropoietic activity was fivefold greater in Hilltop rats compared with Madison rats. Inordinate levels of circulating EPO alone cannot account for the excessive polycythemia seen in the Hilltop rat strain; the spleen is necessary as an additional erythropoietic site that facilitates full expression of the polycythemic response to hypoxia. This conclusion is consistent with the notion of a limited marrow space in rodents (3).

Interaction between splenic and medullary erythropoiesis in chronic hypoxia. In the murine model of CMS, both splenic and medullary erythropoiesis were stimulated concomitantly during hypoxic exposure in these rats (as shown by the radioactive-iron uptake and the increased population of NRBCs). There is less evidence...
of splenic erythropoiesis in adult humans with CMS. Nonetheless, the relative contribution of the spleen and marrow to the increased circulating RBC count remains an issue, particularly the mechanism(s) of coordination between these two sites of erythropoiesis. During early hypoxia, the rapid release of young RBCs into the circulation correlated more with the increase in 59Fe uptake in the spleen than with 59Fe uptake in the marrow (Figs. 1, 2, and 5). The spleen may be the primary immediate source of new RBCs on exposure to hypoxia. A similar correlation between the rapid appearance of new RBCs in the circulation and medullary 59Fe uptake was established in the splenectomized animals (note the surge in 59Fe uptake in the marrow; Fig. 2). Augmented 59Fe uptake by the marrow in splenectomized animals could result simply from the absence of competition for the available 59Fe or from an inhibitory influence of the spleen over medullary erythropoiesis. Furthermore, medullary 59Fe uptake increased steadily during hypoxic exposure in the intact animals, but fell below the control level on the first day of hypoxia in the splenectomized animals (Figs. 2 and 3). The conspicuous fall in medullary 59Fe uptake in splenectomized animals was associated with a parallel fall in the number of the labeled RBCs in the circulation (Fig. 1). This observation seems to indicate a depletion of some precursor cells that normally take up iron, become mature RBCs, and are released into the circulation in response to erythropoietic stimulation, as was seen in the intact animals. The apparent depletion of this particular stage of the precursor cells in splenectomized animals may be the consequence of accelerated maturation of these precursors in the marrow in the absence of the spleen. Finally, the number of mature RBCs in the marrow, after a slight fall, accumulated during the time of hypoxic exposure in the intact animals, whereas counts of mature RBCs in the splenectomized animals remained constant (Fig. 7). Because hypoxic exposure increased the NRBC population comparably in both the intact and splenectomized animals, the gradual accumulation of mature RBCs with time of exposure in the intact animals probably reflects decreased release of mature RBCs in the presence of the spleen. The cause of the accelerated maturation of the precursor cells and the increased release of mature RBCs from the marrow in the absence of the spleen is not known. However, EPO is known to accelerate both the maturation and release of the RBCs from the marrow (8), and one of the characteristic responses of Hilltop rats to hypoxia is inordinate expression of the EPO gene, leading to exaggerated production and sustained high titers of EPO (19). It is conceivable that elevated EPO might influence both the marrow and spleen to stimulate erythropoietic activity. In addition, it has long been known that the spleen can influence various aspects of hematopoiesis, including the erythropoiesis in the marrow (5, 11, 21), and, therefore, some other unknown mechanisms cannot be excluded.

Another characteristic of the polycythemic response to hypoxia of both the intact and splenectomized animals was a sustained macrocytosis associated with a higher mean corpuscular hemoglobin content after 24 h of hypoxic exposure. Because there was also a sustained reticulocytosis under these conditions in both groups of animals (Fig. 8), and reticulocytes have a greater average diameter than the average circulating RBC (8, 22), the persistent reticulocytosis may account for the sustained macrocytosis. In addition, reticulocytes released under severe stress (such as high EPO titers or severe anemia) are considerably larger than ordinary reticulocytes, and these larger reticulocytes will also have greater hemoglobin content (22). Thus the abnormal and persistently elevated level of EPO seen in the Hilltop strain of rats during hypoxic exposure (17, 19) may contribute to the morphological features of the hematologic responses to hypoxia in this particular rat strain.

The present observations of normal circulating WBC levels and the development of thrombocytopenia after prolonged hypoxia in intact animals corroborated our early findings (17). Splenectomy appeared not to affect this chronic hypoxic effect. The transient leukocytosis and thrombocytosis during the acute phase of the hypoxic exposure are also consistent with observations.
in humans and animals (1, 25). The causes of these changes remain unclear. Blood volume contracts during acute hypoxia (25) and expands during chronic hypoxia (16). These blood volume changes could conceivably affect the blood cell counts. The life span of WBC and platelets remains unchanged under hypoxic conditions (1, 14). The transient circulating leukocytosis coexisted with a decrease in WBC population in the marrow, suggesting that increased release of marrow leukocytes contributed to the circulating leukocytosis in intact animals. The rate of thrombocyte production increases in acute hypoxia and decreases during chronic hypoxia (2). Thus it seems likely that the transient early thrombocytosis during hypoxia resulted from increased production, and the thrombocytopenia during chronic hypoxia resulted from depressed platelet production.

Splenectomy augmented both the hypoxia-induced transient leukocytosis and thrombocytosis. Because there was a conspicuous transient rise in the marrow WBC population after splenectomy (Fig. 9), increased production and release are likely involved, at least for the WBC. Splenectomy induces prolonged leukocytosis and thrombocytosis under SL conditions (7, 11, 15), whereas leukocytosis and thrombocytosis were short lived under hypoxic conditions. All blood cells are derived from multipotent stem cells (12). Competition among different cell lines occurs under conditions when a particular cell line is specifically stimulated (2, 10). Thus, when erythropoiesis is stimulated under hypoxic stress, the common stem cells are directed toward production of other cell lines rather than erythroid differentiation and maturation. In: Hematology. Basic Principles and Practice. New York: Churchill Livingstone, 1995, p. 242–254.

