Developmental change in magnesium sulfate-induced relaxation of rabbit pulmonary arteries

JEAN-FRANCOIS TOLSA, YUANSHENG GAO, AND J. USHA RAJ
Department of Pediatrics, Harbor-UCLA Medical Center, University of California, Los Angeles, School of Medicine, Torrance, California 90502

Tolsa, Jean-Francois, Yuansheng Gao, and J. Usha Raj. Developmental change in magnesium sulfate-induced relaxation of rabbit pulmonary arteries. J. Appl. Physiol. 87(5): 1589–1594, 1999.—Magnesium causes a variety of vascular smooth muscle to relax. The present study was designed to determine whether there is a developmental change in the magnesium-induced response of pulmonary vasculature. Isolated pulmonary arteries (PA) of newborn (1- to 3-day-old) and juvenile (4- to 6-wk-old) rabbits were suspended in organ chambers filled with modified Krebs-Ringer bicarbonate solution (95% O2-5% CO2, 37.0°C), and their isometric tension was recorded. In arteries precontracted with endothelin-1 to a similar tension level, MgSO4 caused greater relaxation of juvenile rabbit PA than that of the newborn rabbit PA. Verapamil, a voltage-dependent Ca2+ channel blocker, attenuated magnesium-induced relaxation in juvenile rabbit PA but not in newborn PA. The uptake of Ca2+ of juvenile rabbit PA was inhibited by MgSO4, and the inhibition was attenuated by verapamil. The uptake of Ca2+ of newborn rabbit PA was smaller than that of the juvenile PA and was not significantly affected by MgSO4 and verapamil. These results demonstrate that there is a developmental increase in the dilator effect of MgSO4 in rabbit PA. In newborn rabbit PA, an incomplete maturation of the voltage-dependent Ca2+ channels may contribute to the smaller vasodilation induced by MgSO4.

perinatal pulmonary circulation: verapamil; voltage-dependent calcium channels; vasorelaxation

MAGNESIUM IS THE SECOND most plentiful cation of the intracellular fluid. It plays an important role in neuronal transmission, muscular excitability, and regulation of vascular tone (3, 4, 6–8, 34). Agonists may stimulate the opening of voltage-dependent Ca2+ channels (12, 24) for the newborns and 1.54 ± 0.03 for the juveniles. The lungs were removed immediately and placed in a cold modified Krebs-Ringer bicarbonate solution of the following composition (mM): 118.3 NaCl, 4.7 KCl, 2.5 CaCl2, 1.2 MgSO4, 1.2 KH2PO4, 25.0 NaHCO3, and 11.1 glucose. As defined by Weibel and Taylor (38), who designated the left and right main branches of pulmonary arteries as the first, third, and fourth generation, pulmonary arteries were dissected from the lungs, cleaned of visible connective tissue, and cut into rings. The diameters of the rings were 0.62 ± 0.02 mm (n = 24) for the newborns and 1.54 ± 0.09 mm (n = 22) for the juveniles.

Organ chamber studies. Rings of pulmonary arteries were suspended in organ chambers filled with 10 ml of the modified Krebs-Ringer solution described in Tissue preparation, maintained at 37.0°C, and aerated with 95% O2-5% CO2 (pH 7.4). Each ring was suspended by two stirrups passed through the lumen. One stirrup was anchored to the bottom of the organ chamber, and the other was connected to a force displacement strain-gauge transducer (model FT03C, Grass Instruments, Quincy, MA) for the measurement of isometric force (15). A permanent record of the force developed by each ring was obtained by using a multichannel recorder. At the beginning of every experiment, pulmonary artery rings were brought to their optimal resting tension by stretching the tissues progressively until their contractile response to 100 mM KCl was maximal. The optimal resting tensions of the vessel rings were 0.50 ± 0.05 g/mm2 smooth muscle cross-sectional area.
MAGNESIUM AND PULMONARY VASORELAXATION

(1590) Restricted with different concentrations of endothelin-1 (3 x 10^-10 to 3 x 10^-7 M) was also determined. Endothelin causes vasoconstriction not only by stimulating the influx of extracellular Ca^{2+} but also by mobilizing the intracellular Ca^{2+}, sensitizing of myofilaments to Ca^{2+}, and by other mechanisms (27).

To determine the vasodilator effect of magnesium, pulmonary vessels of newborn and juvenile rabbits were preconstricted with different concentrations of endothelin-1 (3 x 10^-9 to 10^-8 M) to a similar tension level. After the contraction became stable, the effect of MgSO_4 (2-8 mM) was determined.

To evaluate the role of voltage-dependent Ca^{2+} channels in the vasorelaxant effect of magnesium, pulmonary vessels of newborn and juvenile rabbits were pretreated with verapamil [10^-5 M; a voltage-dependent Ca^{2+} channel blocker (29)] or solvent (distilled water, 0.58% of organ chamber volume). These vessels were contracted with different concentrations of endothelin-1 (3 x 10^-9 to 2 x 10^-8 M) to a similar tension level, and then the effect of MgSO_4 was evaluated.

To eliminate a possible involvement of prostanooids and endothelium-derived nitric oxide (14, 15), all the experiments mentioned above were performed in the presence of indomethacin (3 x 10^-5 M) and nitro-L-arginine (10^-4 M), inhibitors of cyclooxygenase (36) and nitric oxide synthase (22), respectively. These inhibitors had no significant effect on the resting tension and endothelin-induced contraction of pulmonary arteries of newborn and juvenile rabbits (data not shown).

Data analysis. Contractions are expressed in grams per millimeter CSA_{tot}. Relaxations were expressed as percentage of tension elicited by pretreatment with endothelin-1. Data are shown as means ± SE. When mean values of two groups were compared, Student’s t-test for unpaired observations was used. When the mean values of the same group before and after stimulation were compared, Student’s t-test for paired observations was used. Comparison of mean values of more than two groups was made with one-way ANOVA test, with Student-Newman-Keuls test for post hoc testing of multiple comparison. Statistical significance was accepted when the P value (2 tailed) was <0.05. In all experiments, n represents the number of rabbits studied.

RESULTS

Organ chamber studies. The wet weights, optimal length, and CSA_{sm} of vessel rings used in the study were significantly different between pulmonary arter-
ies of newborn rabbits and those of juvenile rabbits. There is no significant difference in the tissue densities and in the CSA\textsubscript{sm}/CSA\textsubscript{tot} ratio between these two vessel types (Table 1).

KCl (20–100 mM) and endothelin-1 (10-10 M to 3 × 10-7 M) caused a greater increase in tension in pulmonary arteries of juvenile rabbits than in those of newborn rabbits. In pulmonary arteries of the newborn rabbits, the maximal contraction induced by KCl was ∼30% of that induced by endothelin-1. For the vessels of juvenile rabbits, there is no significant difference in the maximal contraction between that induced by KCl and that by endothelin-1 (Fig. 1).

The effect of MgSO\textsubscript{4} was examined in arteries precontracted with different endothelin-1 concentrations (3 × 10-9 M to 10-8 M) to a similar tension level (1.14 ± 0.18 g/mm2 CSA\textsubscript{sm} and 1.28 ± 0.22 g/mm2 CSA\textsubscript{sm} for the vessels from newborn and juvenile rabbits, respectively; n = 6–7, P < 0.05). After the contraction became stable, the administration of MgSO\textsubscript{4} induced a concentration-dependent relaxation. The relaxation was significantly greater in arteries of juvenile rabbits than in those of newborn rabbits (Fig. 2).

Verapamil [10-5 M; a voltage-dependent Ca2+ channel blocker (29)] had no significant effect on the basal tension of pulmonary arteries of newborn and juvenile rabbits. After a 45-min exposure to verapamil, the vessels were contracted with endothelin-1 (3 × 10-9 to 3 × 10-8 M) to a tension similar to vessels that were not treated with verapamil (data not shown, n = 6 for each group; P < 0.05). In pulmonary arteries of juvenile rabbits, pretreatment with verapamil significantly reduced the vasodilator effect of MgSO\textsubscript{4} (8 mM), whereas verapamil had no significant effect on the relaxation induced by MgSO\textsubscript{4} in pulmonary arteries of the newborns (Fig. 3).

Ca2+ uptake. Under control conditions (1.2 mM MgSO\textsubscript{4}), the Ca2+ uptake of pulmonary arteries of newborn and juvenile rabbits for 45 min was 0.23 ± 0.02 mmol/kg wet wt tissue (n = 7) and 0.34 ± 0.03 mmol/kg wet weight tissue (n = 8), respectively. These values are significantly different (P < 0.05). MgSO\textsubscript{4} induced a concentration-dependent inhibition in the Ca2+ uptake of newborn and juvenile rabbits.

Table 1. Morphological data for pulmonary arteries of newborn and juvenile rabbits

<table>
<thead>
<tr>
<th></th>
<th>Newborn Rabbit</th>
<th>Juvenile Rabbit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vessel wet wt, mg</td>
<td>1.69 ± 0.09 (24)</td>
<td>4.95 ± 0.34 (22)*</td>
</tr>
<tr>
<td>Density, mg/mm2</td>
<td>1.02 ± 0.02 (6)</td>
<td>1.03 ± 0.02 (6)</td>
</tr>
<tr>
<td>L\textsubscript{o}, mm</td>
<td>0.97 ± 0.03 (24)</td>
<td>2.42 ± 0.15 (22)*</td>
</tr>
<tr>
<td>CSA\textsubscript{tot}, mm</td>
<td>0.68 ± 0.04 (24)</td>
<td>0.95 ± 0.05 (22)*</td>
</tr>
<tr>
<td>CSA\textsubscript{sm}/CSA\textsubscript{tot}</td>
<td>0.38 ± 0.03 (6)</td>
<td>0.46 ± 0.04 (7)</td>
</tr>
<tr>
<td>Van Giesson stain</td>
<td>0.39 ± 0.02 (6)</td>
<td>0.45 ± 0.05 (7)</td>
</tr>
</tbody>
</table>

Values are means ± SE. Nos. in parentheses are no. of animals. L\textsubscript{o}, optimal length of vessel ring; CSA\textsubscript{sm}, cross-sectional area occupied by smooth muscle. CSA\textsubscript{sm}/CSA\textsubscript{tot}, ratio of CSA\textsubscript{sm} to total cross-sectional area determined by using transverse histological section treated with hematoxylin and eosin (H&E) or Van Giesson stain. *Significantly different from pulmonary arteries of the newborn rabbits; P < 0.05.

Fig. 1. Contractions of pulmonary arteries of newborn and juvenile rabbits evoked by KCl and endothelin-1. Values are means ± SE; n = 6 for each group. SMA, smooth muscle area. *Significant difference between vessels from newborn and juvenile rabbits, P < 0.05.

Fig. 2. Relaxations of pulmonary arteries of newborn and juvenile rabbits induced by MgSO\textsubscript{4}. Experiments were performed during contraction to endothelin-1. Values are means ± SE; n = 6–7 for each group. *Significant difference between vessels from newborn and juvenile rabbits, P < 0.05.

Fig. 3. Relaxations of pulmonary arteries of newborn and juvenile rabbits induced by MgSO\textsubscript{4} at 8 mM under control conditions or in presence of verapamil (10-5 M). Experiments were performed during contraction to endothelin-1. Values are means ± SE; n = 6 for each group. *Significantly different from newborn, P < 0.05. †Significantly different from control, P < 0.05.
of the juvenile pulmonary arteries but had no significant effect on the Ca$^{2+}$ uptake of the newborn pulmonary arteries (Fig. 4).

In vessels pretreated with verapamil (10^{-5} M), the Ca$^{2+}$ uptake of pulmonary arteries of newborn and juvenile rabbits was similar [0.21 ± 0.01 mmol/kg wet weight tissue ($n = 7$) and 0.24 ± 0.02 mmol/kg wet wt tissue ($n = 8$), respectively]. In the presence of verapamil, the reduction in the Ca$^{2+}$ uptake of pulmonary arteries of juvenile rabbits caused by MgSO$_4$ (8 mM) was significantly attenuated. Verapamil had no significant effect on the Ca$^{2+}$ uptake of pulmonary arteries of newborn rabbits (Fig. 5).

DISCUSSION

Magnesium as a vasodilator has been reported in a variety of vessel types (6). However, few studies have been done in isolated pulmonary vessels. Villamor et al. (37) found that, in 10- to 17-old-day piglets, magnesium is a weak dilator of isolated pulmonary arteries. The maximal reduction in tension of preconstricted pulmonary arteries is <20%. Such an observation is in line with our present finding in pulmonary arteries of newborn rabbits. In contrast, magnesium caused marked relaxation of pulmonary arteries of juvenile rabbits. These results demonstrate that there is a developmental increase in the vasorelaxant effect of magnesium in the rabbit lungs.

A rise in intracellular Ca$^{2+}$ in smooth muscle cells is thought to be one of the key events for the initiation and the maintenance of contraction, with the inverse being true for relaxation (35). When stimulated with a variety of vasoconstrictors, extracellular Ca$^{2+}$ may enter into the cell through voltage-dependent Ca$^{2+}$ channels and receptor-operated Ca$^{2+}$ channels (26, 29). In airway smooth muscle, electrophysiological studies have shown that magnesium inhibits voltage-dependent Ca$^{2+}$

channel current. The inhibition is quantitatively similar to MgSO$_4$-induced relaxation of trachea smooth muscle strips (28). In the present study, MgSO$_4$-induced relaxation of pulmonary arteries of juvenile rabbits was attenuated by verapamil, a voltage-dependent Ca$^{2+}$ channel blocker (29). Furthermore, the inhibition of Ca$^{2+}$ uptake caused by MgSO$_4$ in the juvenile pulmonary arteries was attenuated by verapamil. Hence, inhibition of Ca$^{2+}$ entry through voltage-dependent Ca$^{2+}$ channels may contribute to vasodilation of pulmonary arteries of juvenile rabbits caused by magnesium.

The voltage-dependent Ca$^{2+}$ channels seem to be less well developed in pulmonary arteries of newborn rabbits in comparison to those of the juveniles. A similar suggestion was advanced earlier for newborn piglet arteries (17). It is well known that contraction of smooth muscle evoked by potassium results predominantly from extracellular Ca$^{2+}$ entry via the voltage-dependent channels (26). In our study, the maximal contraction of pulmonary arteries of the newborn rabbits to KCl was only 15% of that of pulmonary arteries of the juveniles. Furthermore, verapamil reduced the Ca$^{2+}$ uptake of the vessels from juvenile rabbits but had no significant effect on the Ca$^{2+}$ uptake of the vessels from newborn rabbits. In addition, verapamil attenuated MgSO$_4$-induced relaxation of the arteries from juvenile rabbits but had no significant effect on MgSO$_4$-induced relaxation of the arteries from newborn rabbits. These observations indicate that the difference in the vasodilation effect of magnesium between the pulmonary arteries of the newborn rabbits and those of the juveniles is likely due to a difference related to the voltage-dependent Ca$^{2+}$ channels.

Magnesium modulates the influx of extracellular Ca$^{2+}$ into the cell not only via the voltage-dependent channels but also via the other pathways (5, 23, 31). For instance, in rat cultured aortic smooth muscle, magnesium inhibits receptor-mediated Ca$^{2+}$-permeable nonselective cation channels (23). It is interesting to note

Fig. 4. Effect of MgSO$_4$ on Ca$^{2+}$ uptake of pulmonary arteries of newborn and juvenile rabbits. Values are means ± SE; $n = 7–8$ for each group. *Significantly different from newborn, $P < 0.05$. †Significantly different from control (1.2 mM MgSO$_4$), $P < 0.05$. ‡Significantly different from vessels treated with 4.0 mM MgSO$_4$, $P < 0.05$.

Fig. 5. Effect of MgSO$_4$ (8 mM) on Ca$^{2+}$ uptake of pulmonary arteries of newborn and juvenile rabbits under control conditions or in the presence of verapamil (10^{-5} M). Values are means ± SE; $n = 7–8$ for each group. *Significantly different from control, $P < 0.05$. †Significantly different from vessels treated with 4.0 mM MgSO$_4$, $P < 0.05$.
that the relative role of the voltage-dependent and receptor-operated Ca\(^{2+}\) channels in the effect of magnesium differs in vascular smooth muscle of Wistar-Kyoto rats and spontaneously hypertensive rats. In Wistar-Kyoto rats, extracellular magnesium modulates cytosolic Ca\(^{2+}\) concentration primarily through the voltage-dependent Ca\(^{2+}\) channels. In spontaneously hypertensive rats, extracellular magnesium affects cytosolic Ca\(^{2+}\) concentration through voltage-dependent Ca\(^{2+}\) channels, non-voltage-dependent Ca\(^{2+}\) channels, and the intracellular Ca\(^{2+}\) stores (3, 7, 31). The roles of the latter two mechanisms in magnesium-induced vasodilatation in the lungs are not clear.

Clinical studies have shown that MgSO\(_4\) infusion, to achieve a magnesium blood concentration between 3.5 and 5.5 mmol/l, can be an effective therapy for persistent pulmonary hypertension in preterm and term neonates (1, 30, 39). However, and under similar magnesium concentrations, results obtained from isolated animal newborn pulmonary arteries of our present study and those of others show that magnesium has only a moderate vasodilator effect (37). In in vivo studies, the observed effects of magnesium reflect the actions of magnesium on the whole pulmonary vascular tree. In contrast, our present results and those of others are obtained from mid-sized isolated pulmonary arteries (1, 37). It is possible that the effect of magnesium on the whole pulmonary vascular tree differs in vascular smooth muscle of Wistar-Kyoto rats and spontaneously hypertensive rats. In Wistar-Kyoto rats, extracellular magnesium modulates cytosolic Ca\(^{2+}\) concentration primarily through the voltage-dependent Ca\(^{2+}\) channels. In spontaneously hypertensive rats, extracellular magnesium affects cytosolic Ca\(^{2+}\) concentration through voltage-dependent Ca\(^{2+}\) channels, non-voltage-dependent Ca\(^{2+}\) channels, and the intracellular Ca\(^{2+}\) stores (3, 7, 31). The roles of the later two mechanisms in magnesium-induced vasodilatation in the lungs are not clear.

We thank J. van Morris for technical assistance.

This study was supported by National Heart, Lung, and Blood Institute Grants HL-38438 and HL-59435. J.-F. Tolsa was sponsored by Swiss grants (les Fonds du Département de Pédiatrie et de Perfectionnement du Centre Hospitalier Universitaire Vaudois, la Société Académique Vaudoise, and la Fondation Emma Mushamp, Lausanne, Switzerland).

Address for reprint requests and other correspondence J.-F. Tolsa, Div. of Neonatology, Dept. of Pediatrics, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland (E-mail: J. van-Francois.Tolsa@chuv.hospvd.ch).

Received 12 March 1997; accepted in final form 30 June 1999.

REFERENCES

