Negative interstitial pressure in the peritendinous region during exercise

HENNING LANGBERG,1,2 DORTHE SKOVGAARD,1 JENS BÜLOW,2 AND MICHAEL KJÆR1
1Sports Medicine Research Unit, Department of Rheumatology H, Bispebjerg Hospital, and
2Department of Clinical Physiology, Bispebjerg Hospital, DK-2400 Copenhagen, Denmark

Langberg, Henning, Dorthe Skovgaard, Jens Bülow, and Michael Kjaer. Negative interstitial pressure in the peritendinous region during exercise. J. Appl. Physiol. 87(3): 999–1002, 1999.—In the present study, tissue pressure in the peritendinous area ventral to the human Achilles tendon was determined. The pressure was measured during rest and intermittent isometric calf muscle exercise at three torques (56, 112, and 168 Nm) 20, 40 and 50 mm proximal to the insertion of the tendon in 11 healthy, young individuals. In all experiments a linear significant decrease in pressure was obtained with increasing torque [e.g., at 40 mm: −0.4 ± 0.3 mmHg (rest) to −135 ± 12 mmHg (168 Nm)]. No significant differences were obtained among the three areas measured. On the basis of these observations, microdialysis was performed in the peritendinous region with a colloid osmotic active substance (Dextran 70, 0.1 g/ml) added to the perfusate with the aim of counteracting the negative tissue pressure. Dialysate volume was found to be fully restored (100 ± 4%) during exercise. It is concluded that a marked negative tissue pressure could lead to fluid shift and could be involved in the increase in blood flow previously noted in the peritendinous space ventral to the human Achilles tendon during exercise in humans. Negative tissue pressure occurs (2). To test the latter hypothesis, the present study determined the pressure in the peritendinous space ventral to the human Achilles tendon at rest and during graded workloads. This was done during intermittent isometric contractions with the triceps surae muscles. Furthermore, it was hypothesized that, if tissue pressure was found to decrease during exercise, the addition of colloid osmotic substances to the perfusion fluid would result in counteracting fluid loss when microdialysis is performed during muscle contraction.

METHODS

Subjects

A group of healthy volunteers with no previous history of Achilles tendon symptoms or injuries were included in the present study. The group consisted of 11 subjects (4 women and 7 men) with a median age of 28 yr (range 23–35 yr) and a median body weight of 78 kg (range 55–93 kg). All but one volunteer participated in recreational endurance sports (mean training: 6 h/wk). Subjects were told not to undertake any kind of exercise 24 h before the experiment, except for ordinary daily working activities. The study was approved by The Ethical Committee of Copenhagen (KF) 01-164/97.

Procedures

In all subjects, both pressure measurements and microdialysis were performed. At least a 2-wk period was allowed between the measurements to ensure that the results were not influenced by a potential previous trauma due to insertion.

Pressure measurements. To measure the pressure in the peritendinous space, the subjects were positioned in a specially constructed experimental setup (Fig. 1), with the trunk perpendicular to the seat and the knee extended. The extension of the knee ensured that the torque moment registered was generated by the calf muscles only and that activity in the extensor muscles of the thigh was excluded. One foot at the time was positioned on a vertical sheet with the axis of the sheet aligned with the axis of flexion in the ankle joint. The torque moment developed by the triceps surae muscle in the plantar direction could be registered by a precalibrated range 0–2,000 N) strain gauge (lever arm: 280 mm). The torque was amplified by a custom-made instrumental alternating-current amplifier and displayed online to the subject (Fig.
determined when the torque had stabilized, and the same strain gauge corresponded to 200 N. Interstitial pressure was generated by which the force at the plantar flexor torque by which the force at the position was ready to register, the subject was asked to generate a minor torque in the plantar direction, resulting in a change in interstitial pressure. To measure the resting tissue pressure the pressures measured in any of the three regions (P > 0.05). Furthermore, a nearly linear decrease in pressure was found with increase in torque in all the three regions (Fig. 3), and no significant difference was found among the regions (P > 0.05).

On the basis of the calculated average torque for an exercising cycle (Fig. 2) and the linear relationship between torque and tissue pressure (Fig. 3), the average negative pressure generated during one exercising cycle was calculated to be 25–30 mmHg. On the basis of these calculations 0.1 g/ml of Dextran 70 was added to the perfusate during microdialysis. With the addition of Dextran 70, a 100 ± 4% recovery of dialysate volume was achieved during exercise (Fig. 4). However, a net gain of ~10% in the dialysate volume was found during both rest and recovery.
The addition of Dextran 70 to the perfusate resulted in the gastrocnemius lateralis muscle in a net gain of fluid of 10% during rest and almost 20% during exercise.

DISCUSSION

A marked decrease in peritendinous tissue pressure ventral to the Achilles tendon was found during intermittent static contractions of the triceps surae muscle in humans (Fig. 3). In a recent paper a method for measuring negative intramuscular pressure similar to the one used in the present study was evaluated, and it was shown that the method was suited for recording negative pressures over a wide range (5). This is to our knowledge the first time changes in the interstitial pressure around the human Achilles tendon have been measured in relation to exercise. The negative interstitial pressure found in the present study is in contrast to changes in muscle tissue pressure, where exercise is found to cause a rise in intramuscular pressure in a variety of muscle groups (1, 11, 13, 18, 19). The fact that peritendinous pressure decreased severalfold during exercise can explain why collected dialysate volumes were lower than expected when microdialysis technique was attempted in that region. The decreased peritendinous pressure could be created as a result of the muscles contracting, expanding the dense structures surrounding the Achilles tendon. The role of this marked negative pressure during exercise could be of importance for fluid shift and microvascular flow appearing during exercise and as such involved in the increase in blood flow in the peritendinous area around the human Achilles tendon previously determined during exercise (8, 9).

It is well described in muscular tissue that changes in intramuscular pressure influence blood flow through the region and that chronic elevated intramuscular pressure is associated with decreased venous outflow (18) and with clinical symptoms (3, 12). In the peritendinous tissue of the Achilles region, blood flow has been shown to increase during exercise (8), and this is in accordance with the present observed decrease in tissue pressure.

On the basis of the obtained correlation between exercise load and tissue pressure (Fig. 3), the average negative pressure during one exercising cycle in our protocol (Fig. 2) with the exercise done at a resistance of one times individual body weight would be equivalent to 25–30 mmHg. With this background as the basis, 0.1 g of Dextran 70 was added per milliliter of perfusate, resulting in increase in osmotic pressure of 27 mmHg in the perfusate. It was found that the dialysate volume was restored to 100±4%, and, although the addition of Dextran 70 resulted in a dialysate volume at rest of 110±5%, the loss of dialysate volume when individuals shifted from rest to exercise was counteracted. This supports the hypothesis that the loss in dialysate volume during exercise is a result of changes in pressure. In addition to this, microdialysis in the muscle resulted in an increase in collected dialysate from rest to exercise, which is most likely a result of increased colloid osmotic pressure and a small increase in tissue pressure from rest to exercise. We chose in the present study to perfuse the microdialysis probes at a flow rate of 1 µl/min with a membrane length of 30 mm, which have been found to give the best relationship between recovery (concentration) and volume (unpublished ob-
servations). However, other flow rates, membrane
lengths, and exercising intensities could markedly influ-
ence the fluid loss and as such the need for modifying
the composition of the perfusate to counteract dialysate
loss (14).

In summary, the present study shows that the in-
terstitial pressure decreased during exercise. The de-
crease in pressure along the Achilles tendon was linear
with increasing torque. Addition of a colloid osmotic
active substance to the perfusate counteracted the
tissue pressure and resulted in a complete recovery of
the dialysate volume (100 ± 4%). On the basis of
the present findings, it is concluded that the nega-
tive tissue pressure in human peritendinous space
around the Achilles tendon during exercise requires the
addition of a colloid osmotic substance to the perfusate
when the microdialysis technique is used.

This study was supported by the Team Denmark Research
Council, the Danish Sports Science Foundation, the Danish Medical
Association Research Fund, and Danish National Research Founda-
tion Grant 504-14.

Address for reprint requests and other corre-
respondence: H. Langberg, Sports Medicine Research Unit, Dept. of Rheumatology H,
Bispebjerg Hospital, Bispebjerg Bakke 23, DK-2400 Copenhagen NV, Denmark (E-mail: HL02@bbh.hops.dk).

Received 5 October 1998; accepted in final form 23 April 1999.

REFERENCES

Watenpaugh, N. J. Kahan, and A. R. Hargens. Intramuscular
pressure and electromyography as indexes of force during iso-
2. Aratow, M., S. M. Fortney, D. E. Watenpaugh, A. G. Cren-
shaw, and A. R. Hargens. Transcapillary fluid responses to
lower body negative pressure. J. Appl. Physiol. 74: 2763–2770,
1993.
3. Armstrong, R. B. Mechanisms of exercise-induced delayed
Adrenergic regulation of lipolysis in situ at rest and during
5. Crenshaw, A. G., P. Wiger, and J. Styf. Evaluation of tech-
niques for measuring negative intramuscular pressures in hu-
differences in adrenergic regulation of lipid mobilization during
and J. Henriksson. Muscle blood flow in cats: comparison of
microdialysis ethanol technique with direct measurement. J.
8. Langberg, H., J. Bülow, and M. Kjaer. Blood flow in the
peritendinous space of the human Achilles tendon during exer-
9. Langberg, H., J. Bülow, and M. Kjaer. Standardized inter-
tent static exercise increases peritendinous blood flow in human
10. Muller, M., R. Schmid, M. Nieszpaur-Los, A. Fassolt, P.
Lonnroth, P. Fasching, and H. G. Eichler. Key metabolite
kinetics in human skeletal muscle during ischaemia and reperfu-
11. Nakhostine, M., J. R. Styf, S. van Leuven, A. R. Hargens,
and D. H. Gershuni. Intramuscular pressure varies with depth.
The tibialis anterior muscle studied in 12 volunteers. Acta
Edwards. Pain and fatigue after concentric and eccentric muscle
on intramuscular pressure in m. vastus lateralis during dynamic
1993.
14. Rosdahl, H., U. Ungerstedt, and J. Henriksson. Microdial-
sis in human skeletal muscle and adipose tissue at low flow rates
is possible if dextran-70 is added to prevent loss of perfusion
Interstitial glucose and lactate balance in human skeletal muscle
and adipose tissue studied by microdialysis. J. Physiol. (Lond.)
17. Simonsen, L., J. Bülow, and J. Madsen. Adipose tissue
metabolism in humans determined by vein catheterization and
microdialysis techniques. Am. J. Physiol. 266 (Endocrinol. Metab.
18. Styf, J., R. Ballard, M. Aratow, A. Crenshaw, D. Waten-
paugh, and A. R. Hargens. Intramuscular pressure and torque
during isometric, concentric and eccentric muscular activity.
pressures during exercise. Comparison of measurements with