Short-term exercise enhances insulin-stimulated GLUT-4 translocation and glucose transport in adipose cells

CYNTHIA M. FERRARA, THOMAS H. REYNOLDS, MARY J. ZARNOWSKI, J. O. BROZINICK, JR., AND SAMUEL W. CUSHMAN

IT IS WELL DOCUMENTED that long-term exercise training profoundly affects the metabolic characteristics of rat skeletal muscle and adipose tissue (7, 8, 21, 24, 25). The latter effects are most clearly reflected by marked reductions in adipose cell size (7, 21). Metabolic adaptations in adipose cells, reported to be associated with long-term exercise training, include an increase in the intracellular pool of GLUT-4, a resulting increase in the amount of GLUT-4 translocating to the cell surface in response to insulin stimulation, and a corresponding increase in insulin-stimulated glucose transport (7).

These previous investigations involved up to 12 wk of running or swim training because it was believed that the adaptations in the regulation of glucose transport only occurred over an extended period of time. However, the marked decrease in adipose cell size so characteristic of long-term training confounds the interpretation of the metabolic adaptations with regard to identifying the responsible variables. In one previous investigation, various groups of control animals were included in an attempt to separate the effects of changes in adipose cell size from those of the exercise training itself. In addition to the exercising group, an age-matched group, with larger adipose cells and body weight than the exercise group, and a group matched with the exercising group for adipose cell size (younger animals) were included in the investigation (7). Other investigators have included animals of similar age to the exercise-trained animals but these were given a food-restricted diet to match body weights to the exercising animals (24). It is well known that age, food intake, and adipose cell size itself individually have significant effects on adipose cell metabolism, thus confounding the interpretation of the results of these previous investigations (9, 12).

Recent investigations in skeletal muscle suggest that 4 days of vigorous swim training are sufficient to induce up to a 100% increase in skeletal muscle GLUT-4 content and insulin-stimulated glucose transport (17, 18). These investigations suggest that the adaptations in glucose transport in skeletal muscle as a result of exercise training occurs within a very short period of time. The effects of a similar exercise program on adipose cell metabolism have not been investigated. A potential benefit of the short-term exercise protocol is that the changes in adipose cell size, if any, might be small enough so as to permit a direct evaluation of the effects of exercise training on adipose cell metabolism.

The present investigation was thus undertaken to determine whether 4 days of swim training are sufficient to induce significant adaptations in glucose transport in adipose cells, similar to those observed in skeletal muscle, and to evaluate the relationship between these adaptations and adipose cell size. In characterizing the effects of exercise training on glucose transport, we used the relatively new 2-N-4-N[1-azido-2,2,2-trifluoroethyl]benzoyl-1,3-bis-[D-mannos-4-yloxyl]-2-propylamine (ATB-BMPA) photoaffinity labeling technique to determine how exercise training affects the relationship between insulin-stimulated glucose transport and cell surface GLUT-4 (10, 20). We also examined the effect of short-term exercise training on syntaxin 4, a target membrane-soluble N-ethylmaleimide-sensitive fusion protein receptor, recently proposed to play a role in targeting intracellular GLUT-4-containing vesicles to the plasma membrane (22). We anticipated that changes in GLUT-4 levels and translocation might be paralleled by changes in one or more of the proteins thought to be involved in vesicle docking and fusion, such as syntaxin 4. The answers to these questions will provide new and important information...
on the regulation of insulin-stimulated glucose transport in adipose cells.

METHODS

Materials. Fraction V BSA was from Intergen (Purchase, NY); type I crude collagenase was from Worthington Biochemical (Freehold, NJ). Rabbit polyclonal anti-GLUT-4 and anti-GLUT-1 antisera, prepared against 20-amino acid peptides corresponding to the COOH-terminal sequences, were kindly supplied by Hoffmann LaRoche (Nutley, NJ). A rabbit polyclonal antisum for syntaxin 4, directed against the unique N-terminal region of syntaxin 4, was kindly supplied by W. Trimble (Hospital for Sick Children, Toronto, Canada). 125I-labeled protein A, 3-O-methyl-D-[14C]glucose, and L-[3H]glucose were from DuPont-New England Nuclear (Boston, MA). ATB-[2-3H]BMPA (10 Ci/mmol specific activity) was kindly supplied by G. D. Holman (University of Bath, Bath, UK).

Animal care and exercise program. Specific-pathogen-free male Wistar rats weighing 45–60 g were obtained from Charles River Laboratories (Boston, MA). On arrival, rats were housed four per cage in a temperature-controlled animal room maintained on a 12:12-h light-dark cycle. The rats were fed ad libitum National Institutes of Health standard chow and water. Rats were randomly assigned to a swim training (Sw) or sedentary control (Sed) group. The rats assigned to the Sw group were acclimated to swimming for 10 min/day for 2 days, and then were exercise trained by using a previously published protocol (17, 18). Briefly, the animals performed two bouts of swimming in water maintained at 35°C, separated by a 1-h rest period. On the first day of swimming, rats swam for 1 h, followed by a 2-h bout. During the rest period, animals were given food and water. The duration of swimming was increased to two 3-h bouts of exercise on the second day of swimming and continued at that level for another 2 days.

Preparation of adipose cells. Sed and Sw rats were killed in the postprandial state 18–22 h after the last bout of swimming. The rats were anesthetized with 5 mg/100 g body wt of pentobarbital sodium. The epididymal fat pads were removed and weighed, and isolated adipose cells were prepared by the collagenase digestion technique described by Rodbell (19), as modified by Weber et al. (26). All buffers contained 200 mM adenosine and either 1 or 5% BSA. The isolated cells were incubated in the presence of 5% BSA.

Measurement of 3-O-methyl-D-[14C]glucose transport. The rates of 3-O-methyl-D-[14C]glucose transport were measured at a substrate concentration of 100 µM, by using a double-isotope (3-O-methyl-D-[14C]glucose, and L-[3H]glucose) technique, as described by Korneli et al. (13).

Measurement of adipose cell size. Adipose cell size, expressed as lipid weight/cell, was determined by the osmic acid fixation Coulter electronic counter method described by Hirsch and Gallian (6), as modified for isolated cell suspensions by Cushman and Salans (2).

Preparation of total membranes. After incubation, the adipose cells were washed with a buffer containing 20 mM Tris-HCl, 1 mM EDTA, and 255 mM sucrose (TES), pH 7.4, at 18°C. Total cell membranes were prepared as described by Vannucci et al. (23). Briefly, cells were homogenized in TES and centrifuged at 500 g for 10 min to remove large particulate matter. The supernatants were further centrifuged at 400,000 g for 60 min to pellet the cell membranes. The pellets were resuspended in a small volume of TES buffer. Protein concentrations were determined by the biocinchoninic acid assay (Pierce, Rockville, IL) by using crystalline BSA as the standard.

Quantitation of GLUT-4, GLUT-1, and syntaxin 4. GLUT-4, GLUT-1, and syntaxin 4 levels were assessed in total cell membranes by SDS-PAGE and Western blotting. Samples from both groups were run on the same gel. Western blotting was performed by using anti-GLUT-4 and anti-GLUT-1 COOH-terminal peptide antisera and an anti-syntaxin 4 antisum directed against the N-terminal region, and 125I-labeled protein A (18). The results were quantitated by using a Molecular Dynamics PhosphorImager (Sunnyvale, CA) and normalized to the amounts of protein loaded per well.

Cell surface GLUT-4 and GLUT-1 photolabeling. Diluted adipose cells were incubated without (basal) or with 670 nM of insulin for 20 min. After incubation, 1 ml of cells was photolabeled with 125 µCi of ATB-[2-3H]BMPA by using a Rayonet photochemical reactor (Southern New England Ultra violet, Branford, CT) with 300-nm lamps (3 × 1 min). Photolabeled cells were then washed with TES buffer (18°C), and GLUT-4 was immunoprecipitated via the following procedure. The cells were solubilized for 20–30 min at room temperature in 2% Thesit (Boehringer-Mannheim, Indianapolis, IN) in PBS (pH 7.4). The cell lysate was centrifuged at 150,000 g for 10 min. The supernatant of each sample was then incubated overnight at 4°C with an immunocomplex consisting of anti-GLUT-4 antisum and protein-A-sepharose (Pharmacia Biotech). The efficiency of immunoprecipitation of GLUT-4 is ~95%. The immunocomplexes were briefly centrifuged at high speed, and the supernatants were carefully removed and saved for the immunoprecipitation of GLUT-1. The complexes were washed and solubilized in electrophoresis sample buffer, and the immunoprecipitated GLUT-4 was subjected to SDS-PAGE, followed by gel slicing and counting, as previously described (20). Radioactivity was expressed as counts per minute per 106 cells.

GLUT-1 was immunoprecipitated twice in sequence from the supernatants of the GLUT-4-immune complexes, and photolabeled GLUT-1 was analyzed as described for GLUT-4. The efficiency of immunoprecipitation of GLUT-1 is ~75%.

Statistical analysis. Data were analyzed by using two-way analysis of variance and Student’s t-test, when appropriate. Differences were accepted as significant at the level of P ≤ 0.05. Results are expressed as means ± SE.

RESULTS

Characteristics of experimental animals and adipose cells. Rats in the Sw group weigh significantly less and have significantly smaller epididymal fat pads than those in the Sed group (Table 1). Adipose cell size is also reduced significantly by 20% in the Sw group compared with the Sed group. Adipose cell water space, estimated as adipose cell size photolabeled GLUT-4 transport and cell surface GLUT-4 and GLUT-1. Under basal conditions, adipose cells from the Sw group exhibited a significant decrease in glucose transport activity, compared with cells from the Sed group (Fig. 1), but no significant changes in the cell surface photolabeling of either GLUT-4 (Fig. 2) or GLUT-1 (Fig. 3). In contrast, under conditions of maxi-
Table 1. Body and fat pad weights; adipose cell sizes and water spaces; total membrane protein recoveries; and GLUT-4, GLUT-1, and syntaxin 4 levels in sedentary and swim-trained rats.

<table>
<thead>
<tr>
<th></th>
<th>Sedentary</th>
<th>Swim-Trained</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body weight, g</td>
<td>120 ± 1 (59)</td>
<td>104 ± 1* (60)</td>
</tr>
<tr>
<td>Fat pad weight, g</td>
<td>0.45 ± 0.02 (20)</td>
<td>0.35 ± 0.01* (24)</td>
</tr>
<tr>
<td>Cell size, µg lipid/cell</td>
<td>0.060 ± 0.002 (5)</td>
<td>0.050 ± 0.003* (4)</td>
</tr>
<tr>
<td>Protein, mg</td>
<td>0.41 ± 0.03 (5)</td>
<td>0.35 ± 0.06 (5)</td>
</tr>
<tr>
<td>Cell water space, pl/cell</td>
<td>1.69 ± 0.09 (5)</td>
<td>1.97 ± 0.07* (5)</td>
</tr>
<tr>
<td>GLUT-4, absorbance/mg protein</td>
<td>60 ± 5 (4)</td>
<td>80 ± 7* (4)</td>
</tr>
<tr>
<td>GLUT-1, absorbance/mg protein</td>
<td>10 ± 2 (6)</td>
<td>10 ± 1 (6)</td>
</tr>
<tr>
<td>Syntaxin 4, absorbance/mg protein</td>
<td>5 ± 1 (6)</td>
<td>3 ± 1 (6)</td>
</tr>
</tbody>
</table>

Values are means ± SE; nos. in parentheses are no. of samples/group. GLUT-4, GLUT-1, and syntaxin 4 values are expressed relative to a protein standard that is processed on all gels. *Significant difference between sedentary and swim-trained rats, P ≤ 0.05.

Fig. 1. 3-O-methyl-D-[14C]glucose transport in isolated adipose cells from sedentary and swim-trained rats. Values are means ± SE obtained from triplicate samples in 4–5 independent experiments. *Significant difference between basal and insulin-stimulated rats, P ≤ 0.05.

Fig. 2. Cell surface photolabeling of GLUT-4 in isolated adipose cells from sedentary and swim-trained rats. ATB-[2-3H]BMPA labeling of GLUT-4 is expressed relative to 10⁶ cells. Cell no. was calculated from total lipid (µg) per sample and average cell size (µg lipid/cell) for each respective group. Values are means ± SE from 3 independent experiments; cpm, counts per minute. *Significant difference between sedentary and swim-trained, P = 0.05; *significant difference between basal and insulin-stimulated, P = 0.05.

Fig. 3. Cell surface photolabeling of GLUT-1 in isolated adipose cells from sedentary and swim-trained rats. ATB-[2-3H]BMPA labeling of GLUT-1 is expressed relative to 10⁶ cells. Cell no. was calculated from total lipid (µg) per sample and average cell size (µg lipid/cell) for each respective group. Values are means ± SE from 5–6 independent experiments. *Significant difference between basal and insulin-stimulated, P ≤ 0.05.

With insulin stimulation, cells from the Sw group exhibit a 36% higher glucose transport activity (Fig. 1) and a 44% increase in cell surface GLUT-4 photolabeling (Fig. 2), compared with cells from the Sed group. Insulin-stimulated cell surface GLUT-1 photolabeling is increased compared with basal levels in both experimental groups, but no differences between the values are observed for the two groups. When the stimulatory effects of insulin are expressed as multiples of responses relative to the basal activities, swim training enhances the glucose transport activity markedly because of both decreased basal and increased insulin-stimulated glucose transport activity. Swim training also enhances the cell surface GLUT-4 response but only because of increased insulin-stimulated activity.

DISCUSSION

The present study clearly demonstrates that 4 days of swim training are sufficient to produce marked effects on adipose cell function, with minimal, albeit
The rapid increase in insulin-stimulated glucose transport and total GLUT-4 in adipose cells after 4 days of swim training potentially contributes to the overall increase in metabolism and ability to utilize energy sources such as glucose in exercising vs. sedentary animals. The reason for the rapid increase in the amount of GLUT-4 and insulin-stimulated glucose transport in the adipose cells of exercise-trained rats is not known. Recent research by Dela et al. (3) suggests that one of the possible mechanisms by which exercise increases GLUT-4 expression in skeletal muscle is a direct result of muscle fiber contraction. The mecha-
nisms contributing to the exercise-training-induced increase in insulin-stimulated glucose transport and GLUT-4 levels in adipose cells must certainly differ from those responsible for the adaptations in exercise-trained skeletal muscle.

Hormonal influences may contribute to the elevation in GLUT-4 levels in adipose tissue after exercise training. Elevated insulin concentrations are known to result in increased expression of adipocyte GLUT-4 (10, 11). In the present investigation, 4 days of swim training result in lower fasting insulin concentrations compared with the sedentary group (unpublished observations). Swimming itself may result in elevations in stress-related hormones such as thyroid hormone, cortisol, and catecholamines (4). Hyperthyroidism in rats increases insulin-stimulated glucose transport activity and plasma membrane GLUT-4, as well as total GLUT-4 content in isolated adipose cells (14). In contrast, elevated levels of epinephrine and glucocorticoids reduce insulin-stimulated glucose transport activity and, in the case of epinephrine, may also downregulate GLUT-4 expression (15). Thus changes in circulating insulin, epinephrine, and/or cortisol are not likely to explain the increases in insulin-stimulated glucose transport and total GLUT-4 observed in adipose cells from exercise-trained animals. Further research is needed to elucidate the mechanisms of the exercise-induced increases in insulin-stimulated glucose transport and total GLUT-4 content in adipose cells.

In conclusion, 4 days of swim training are sufficient to induce the marked changes in adipocyte cell metabolism normally observed after long-term exercise programs. In addition, the changes in insulin-stimulated glucose transport and cell surface GLUT-4 induced by the present short-term exercise program are larger than the simultaneous changes in adipocyte cell size. Thus the exercise-induced changes in adipocyte cell function are not likely to be the consequence of changes in adipocyte cell size but rather a functional adaptation to one or more exercise-generated, but still unknown, factors.

The authors thank Steven R. Richards and Dena R. Yver for expert technical assistance and Ian A. Simpson for helpful comments and discussion.

C. M. Ferrara was supported by a Pharmacology Research Associate Postdoctoral Fellowship from the National Institute of General Medical Sciences.

Address for reprint requests: C. M. Ferrara, Univ. of Maryland at Baltimore, Baltimore Veterans Affairs Medical Center, 10 North Greene St., Grecc (BT/18/GR), Baltimore, MD 21201-1524.

Received 4 March 1998; accepted in final form 5 August 1998.

REFERENCES


