Ventilation distribution during histamine provocation

S. VERBANCK, D. SCHUERMANS, A. VAN MUYLEM, M. PAIVA, M. NOPPEN, AND W. VINCKEN

Academisch Ziekenhuis, Vrije Universiteit Brussel, 1090 Brussels; Erasme Hospital, 1070 Brussels; and Biomedical Physics Laboratory, Université Libre de Bruxelles, 1070 Brussels, Belgium

Verbanck, S., D. Schuermans, A. Van Muylem, M. Paiva, M. Noppen, and W. Vincken. Ventilation distribution during histamine provocation. J. Appl. Physiol. 83(6): 1907–1916, 1997.—We investigated ventilation inhomogeneity during provocation with inhaled histamine in 20 asymptomatic nonsmoking subjects. We used N₂ multiple-breath washout (MBW) to derive parameters \(S_{\text{cond}} \) and \(S_{\text{acin}} \) as a measurement of ventilation inhomogeneity in conductive and acinar zones of the lungs, respectively. A 20% decrease of forced expiratory volume in 1 s \((\text{FEV}_1) \) was used to distinguish responders from nonresponders. In the responder group, average \(\text{FEV}_1 \) decreased by 26%, whereas \(S_{\text{cond}} \) increased by 390% with no significant change in \(S_{\text{acin}} \). In the nonresponder group, \(\text{FEV}_1 \) decreased by 11%, whereas \(S_{\text{cond}} \) increased by 198% with no significant \(S_{\text{acin}} \) change. Despite the absence of change in \(S_{\text{acin}} \) during provocation, baseline \(S_{\text{acin}} \) was significantly larger in the responder vs. the nonresponder group. The main findings of our study are that during provocation large ventilation inhomogeneities occur, that the small airways affected by the provocation process are situated proximal to the acinar level where the diffusion front stands, and that, in addition to overall decrease in airway caliber, there is inhomogeneous narrowing of parallel airways.

\[\text{MBW} \]

Material and Methods

Equipment. All lung function parameters, except those related to the MBW test, were obtained by means of standard lung function laboratory equipment (Sensormedics, Bilthoven, The Netherlands) and according to recommended procedures (1). The MBW tests were performed with a dedicated breathing assembly incorporating a set of pneumatic valves enabling communication with a 400-liter bag-in-box system (Fig. 1). Inspiratory and expiratory bags in the box are connected to the subject through a nonrebreathing valve that separates the inhaled and exhaled air. A third connection between the patient and the box is for air breathing to and from the box. A Fleisch-type pneumotachograph is fitted in the wall of the box to record all volume changes generated by the subject breathing in and out from either the bags or the box. The flow signal from the pressure transducer is integrated to give volume. For continuous monitoring of \(N_2 \) concentration at the mouth, the needle valve from an \(N_2 \) analyzer (P. K. Morgan, Kent, UK) was fitted in the tubing in front of the subject’s mouth. Finally, the subject was equipped with the rib cage band of a respiratory inductance plethysmograph (model 150, AMI), only as an independent means of monitoring end-tidal lung volume position. \(N_2 \) concentration, and rib cage signals were acquired by using a dedicated Labview program (National Instruments, Austin, TX), which also controlled the valves and provided a visual feedback of volume on a monitor in front of the subject.

Procedure and subjects. The MBW test requires a regular breathing pattern with a tidal volume of \(1 \) liter, starting from functional residual capacity (FRC) by using pure \(O_2 \) for inspiration. This was handled as follows. During a short period of quiet breathing on the mouthpiece, the subject,

\[\text{SBW} \]
50 ml. As soon as the valves were switched to O2, the subject breathed via the inspiratory bag (100% O2). The switch occurred during an inspiratory pause in the breath pattern with stable end-tidal volume, the computer was given a signal to switch the inspiratory pathway from box (air) to O2. When the operator observed on the screen a breathing cycle with an inspiration corresponding to an indicator line and then exhale freely into the box, the subject was asked to exhale completely down to residual volume. The exact number of breaths was dependent on the subject performance and on progressive N2 dilution. The subject was instructed to watch the screen during each inspiration and fill a tank up to an indicator line and then exhale freely back to his FRC. The tank content was a graphical representation of all inhaled air. In front of mouthpiece sits needle valve probe (6) from N2 analyzer PC, personal computer.

Without watching the screen, breathed air from the box in and out. When the operator observed on the screen a breathing pattern with stable end-tidal volume, the computer was given a signal to switch the inspiratory pathway from box (air) to the inspiratory bag (100% O2). The switch occurred during an exhalation so that, starting from the subsequent inhalation, the subject would breathe 100% O2 from the inspiratory bag. With our valve configuration, the dead space volume, i.e., the volume that does not contain 100% O2 before the MBW test, is 50 ml. As soon as the valves were switched to O2, the subject was instructed to watch the screen during each inspiration and fill a tank up to an indicator line and then exhale freely back to his FRC. The tank content was a graphical representation of pneumotachograph-integrated volume, and the line indicator corresponded to a target 1-liter inspiration, starting from the end of the previous exhalation. After 20–25 breathing cycles, the subject was asked to exhale completely down to residual volume. The exact number of breaths was dependent on subject performance and on progressive N2 dilution. The interval between any two subsequent MBW tests was dependent on the rate of return to baseline alveolar N2 concentration in each subject.

The MBW tests were performed by each subject in three stages that are hereafter referred to as baseline, bronchoprovocation, and bronchodilatation. Baseline measurements included single-breath CO-diffusing capacity (DCO), FVC, FEV1, forced vital capacity (FVC), peak expiratory flow (PEF), and forced expiratory flow after exhalation of 75% FVC (FEF75). After baseline lung function testing, three baseline MBW tests were performed, followed by a forced expiration to give another baseline set of FEV1, FVC, PEF, and FEF75 values.

The bronchoprovocation stage started when the subject inhaled successively increasing doses of histamine until either FEV1 had decreased by >20% compared with baseline, or a cumulative dose of 2 mg histamine had been inhaled. At this point, the subject performed one forced expiratory maneuver. Finally, the subject was given salbutamol (100 µg Ventolin, 2 puffs), and 10 min later bronchodilatation was assessed by performance of a forced expiration, followed by two MBW tests and another forced expiration. Note that, at every stage of the study, a set of two or three MBW tests was preceded and followed by a forced expiratory maneuver before the subject passed on to the next stage. This was mainly done not only to account for any effect of ongoing constriction or dilatation over the course of the period during which two MBW tests were performed (typically, 9 min) but also to verify any possible influence that the MBW pure O2 breathing could have on the forced expiratory maneuver.

If provocation with a cumulative dose of 2 mg histamine failed to provoke a 20% decrease in FEV1, the subject was classified as nonhyperresponsive. We studied 20 symptom-free volunteers (11 men, 9 women), with ages ranging from 18 to 42 yr, until we accumulated 10 hyperresponsive and 10 nonhyperresponsive subjects. Subject recruitment was done on a volunteer basis, and a questionnaire was also used that asked for risk factors to better target the number of subjects in each group. In particular, all subjects were nonsmokers, none took any medication, and none suffered from upper airway infection.

Method of analysis. Figure 2 shows volume and N2 concentration tracings, as a function of time, obtained from a typical MBW experiment performed by a subject in the provocation stage. According to traditional MBW analysis, the continuous N2 concentration tracing of Fig. 2 is translated into a so-called “N2 washout curve” obtained by plotting, on a semilogarithmic scale, the progressive decrease of mean expired N2 concentration in each subsequent breath. Figure 3A shows N2 washout curves derived from three baseline MBW tests (closed symbols) and from two provocation MBW tests (open symbols). Mean expired N2 concentration of each breath is expressed as a percentage of the initial N2 concentration in the lungs ([N2]i), and its logarithm is plotted as a function of lung turnover (TO), i.e., cumulative expired volume divided by the subject’s FRC. FRC was computed from the quantity of cumulatively expired N2 down to the point where 1.5% of [N2]i had been reached. Typically, for a tidal volume =1 liter and FRC =3 liters, as was the case for the subject with the N2 washout curve in Fig. 3A, it takes about three breaths to reach one lung TO. The reason for using lung TO instead of breath number on the abscissa in Fig. 3A is that it allows for better comparison of subjects with different lung volumes and dilution (6).

The MBW tests were also analyzed according to a method first proposed in a theoretical work by Paiva (16) and subsequently applied experimentally by Crawford et al. (9). Basically, this consists of treating each expiration as a single-breath N2 washout and determining breath by breath the alveolar slope, by linear regression of N2 concentration vs. expired volume in the alveolar phase III. We used a linear regression between 0.65 liter and the end of expiration (nominally, 1 liter), with a possibility for readjustment of slope limits to avoid possible disturbance of, e.g., cardiogenic oscillations, especially in the baseline phase MBW tests. For each breath, alveolar slope is then divided by mean expired N2 concentration of that breath, to give a normalized alveolar slope (S). The inset of Fig. 2 illustrates a large increase in the normalized phase III slope between breaths 1 and 20 in the case of a provocation MBW test performed by a hyperresponsive subject. Figure 3B is a graphical representation of all S values as a function of TO, obtained in the same subject, where closed and open symbols represent the average of three baseline MBW tests and two provocation MBW tests, respectively.
In Fig. 3, A and B, the provocation curves (open symbols) are derived to illustrate how the MBW indexes (solid symbols) are computed. The mathematical description of these indexes, without physiological background at this point, is as follows. Derived from the N₂ washout curve in Fig. 3A are its curvilinearity (Curv) and its value for TO sub 5. Curv equals RS₁/RS₂, i.e., the ratio of two regression slopes in the log[N₂] vs. TO plot: RS₁ is the regression slope between TO = 3 and TO = 6, and RS₂ is the regression slope between TO = 0 and TO = 3. In this way, Curv is always smaller than or equal to one, and a more curvilinear N₂ washout curve leads to a smaller value for Curv. The other measurement of the mixing efficiency of the lung, as derived from the classic N₂ washout curve in Fig. 3A, is simply the value of log[N₂] for TO = 6 (log[N₂] TO 6).

S cond and S acin represent the contributions of the conductive airways and acinar airways, respectively, to the ventilation inhomogeneity reflected in the alveolar slopes of the MBW (see Theoretical background). The magnitude of S acin and S cond is determined by use of the entire S curve in Fig. 3B as follows. S cond is the normalized slope difference per unit TO, which is determined by linear regression in that part of the MBW where only conductive airways are known to contribute to the rate of rise of S, i.e., between TO = 1.5 and TO = 6 (see Theoretical background). S acin is determined by subtracting that part attributable to the conductive airways from the slope of the first breath, i.e., S cond multiplied by the TO value of the first breath (~0.3 in the case of Fig. 3B). In the example in Fig. 3B, the baseline MBW leads to S cond = 0.02 liter⁻¹ and S acin = 0.15 liter⁻¹, and the provocation MBW leads to S cond = 0.12 liter⁻¹ and S acin = 0.15 liter⁻¹. In fact, a sixfold rate of rise of the provocation S curve (open symbols) with respect to the baseline S curve (solid symbols) is translated into a sixfold increase in S cond, whereas S acin is unaffected.

Essentially, characterization of the N₂ washout curve in terms of Curv or log[N₂] TO 6 (Fig. 3A) is reported here to relate to indexes that have been used in the clinical context before. For this same reason we also computed anatomical and physiological dead space volume of the first breath (VDanat and VDhyp, respectively). In contrast, the S cond and S acin values derived from the plot of normalized slope vs. lung TO (Fig. 3B) are new and also most relevant with respect to the present study. They necessitate some degree of background information given below, although extensive reference of modeling (16, 17, 26) and experimental work (6–9) can be found elsewhere.

Theoretical background. Basically, the particular advantage of the normalized alveolar slope S is that, as the washout progresses, the behavior of S reveals the mechanisms by which it is generated. In general terms, the normalized alveolar slope is a measure of 1) N₂ concentration differences that are generated after each O₂ inspiration relative to the mean alveolar N₂ inspired concentration, and 2) the emptying pattern during each exhalation. The larger the ventilation inhomogeneity between lung units, the larger the normalized alveolar slope. Two major mechanisms are held responsible for the ventilation inhomogeneities resulting in an alveolar slope.

The first mechanism, also referred to as convection-dependent ventilation inhomogeneity, originates from convective flow differences to and from different lung units because of differing pressure-volume characteristics of these units. When the least-ventilated unit (with largest N₂ concentration) empties predominantly late in the expiration, this results in a positive N₂ slope. One of the factors that has been hypothesized to contribute to the alveolar N₂ slope is gravity-dependent flow sequencing between upper and lower lung units. Although the lung units involved need a priori not be as large as, e.g., entire lung regions, they need to be subtended from airways proximal to the diffusion front to be solely convection dependent. The second mechanism, also referred to as diffusion-convection-dependent inhomogeneity, reflects a far more complex diffusion-convection interaction process without necessity for convective flow sequencing during expiration to produce a positive N₂ slope. For this mechanism to apply, two
conditions need to be fulfilled: 1) comparable magnitude of convective and diffusive transport and 2) asymmetry of the lung structure where diffusion and convection interaction can develop. Asymmetry may be due to unequal narrowing of parallel airways or differences in volume subtended by two daughter branches. Even in normal healthy subjects, these two conditions are met in the lung periphery, more specifically at the acinar level of the bronchial tree where the diffusion front stands. In the case of abnormal lung behavior such as airway inflammation or emphysematous lesions, asymmetry may be increased, leading to an increased \(N_2 \) slope.

The inset of Fig. 3B shows theoretical predictions of \(S \) generated by the two mechanisms described above (solid lines), the sum of which typically corresponds to a smoothed version of the experimental provocation \(S \) curve (open symbols). The diffusion-convection interaction produces an initial \(S \) value that only slightly increases and very rapidly reaches a horizontal asymptote (\(x \)). This \(S \) asymptote corresponds to an equilibrium state of convection and diffusion, in which relative concentration differences remain constant throughout most of the MBW. The convective sequential emptying produces a steady increase of \(S \) (asterisk), reflecting the fact that concentration differences relative to the mean alveolar concentration increase progressively because the best-ventilated lung units get better ventilated at every subsequent inspiration. Moreover, distances between these relatively large units are too large to be covered by diffusive transport, i.e., diffusive homogenization of the concentration differences is negligible. In fact, with this mechanism, \(S \) can only eventually reach a horizontal asymptote if one of the large lung units gets washed out completely.

With respect to the experimental \(S \) curves, we can summarize here that the \(S \) value for the first breath of the MBW is predominantly generated by diffusion-convection-dependent ventilation inhomogeneity in the peripheral acinar lung units. The actual acinar contribution to ventilation inhomogeneity can be characterized by \(S_{\text{acin}} \) by subtracting the estimated convection-dependent contribution from the slope of the first breath. The convection-dependent ventilation inhomogeneity, which is generated by unequal inspired concentration and flow sequencing between larger lung units, becomes more apparent as the MBW progresses. Because these large units roughly correspond to lung units subtended by branch points in the conductive airway zone, we refer to \(S_{\text{cond}} \) for this large-scale ventilation inhomogeneity.

Given these definitions of \(S_{\text{acin}} \) and \(S_{\text{cond}} \), their baseline values should be considered as two independent indexes of ventilation inhomogeneity in the lungs: \(S_{\text{acin}} \) reflects ventilation inhomogeneity resulting from a normal peripheral lung structure with a given asymmetry, and \(S_{\text{cond}} \) results from a given difference in ventilation between any two diffusion-independent lung units. Whenever \(S_{\text{acin}} \) undergoes important changes with respect to baseline, this is due to an important alteration in the peripheral lung structure. Whenever \(S_{\text{cond}} \) is increased, there has been a change in the conductive airways or the pressure-volume characteristics of the lung units subtended by these conductive airways.

Statistical analysis. All values are given as means ± SE. Using a software package (Primer of Biostatistics, McGraw-Hill), we performed a repeated-measures analysis of variance followed by a post hoc Bonferroni test for pairwise comparisons. Paired and unpaired comparisons were made with a t-test. For all statistical analyses, \(P < 0.05 \) was considered significant.
Table 1. Baseline values of lung function and MBW parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>NBHR Group</th>
<th>BHR Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEV₁, %pred</td>
<td>121 ± 3</td>
<td>110 ± 2*</td>
</tr>
<tr>
<td>FEV₁/FVC, %pred</td>
<td>86 ± 1</td>
<td>80 ± 3*</td>
</tr>
<tr>
<td>PEF, %pred</td>
<td>118 ± 4</td>
<td>104 ± 4*</td>
</tr>
<tr>
<td>PEF₁₅, %pred</td>
<td>111 ± 9</td>
<td>84 ± 9*</td>
</tr>
<tr>
<td>DLCO, %pred</td>
<td>98 ± 7</td>
<td>105 ± 6</td>
</tr>
<tr>
<td>KCO, %pred</td>
<td>86 ± 7</td>
<td>87 ± 3</td>
</tr>
<tr>
<td>VDanat, ml</td>
<td>175 ± 12</td>
<td>166 ± 9</td>
</tr>
<tr>
<td>VDphys, ml</td>
<td>204 ± 13</td>
<td>201 ± 9</td>
</tr>
<tr>
<td>VD₀₋VD₂₅₀anat, ml</td>
<td>29 ± 5</td>
<td>36 ± 4</td>
</tr>
<tr>
<td>FRC, ml</td>
<td>3,139 ± 400</td>
<td>3,139 ± 233</td>
</tr>
<tr>
<td>Curv</td>
<td>0.839 ± 0.018</td>
<td>0.847 ± 0.026</td>
</tr>
<tr>
<td>log[N₂]₆₀TO</td>
<td>0.395 ± 0.022</td>
<td>0.376 ± 0.034</td>
</tr>
<tr>
<td>S_dan, liter⁻¹</td>
<td>0.075 ± 0.007</td>
<td>0.107 ± 0.008*</td>
</tr>
<tr>
<td>S_cond, liter⁻¹</td>
<td>0.033 ± 0.003</td>
<td>0.023 ± 0.002</td>
</tr>
</tbody>
</table>

Values are means ± SE; n = 10 subjects/group. MBW, multiple-breath washout; pred, predicted; FEV₁, forced expired volume in 1 s; FEV₁/FVC, FEV₁ per unit forced vital capacity; PEF, peak expiratory flow; FEF₁₅, forced expiratory flow after expiration of 75% FVC; DLCO, carbon monoxide-diffusing capacity; KCO, DLCO per unit alveolar volume; VD₆₀anat and VDphys, anatomic and physiological dead space derived from the 1st breath of MBW, respectively; FRC, functional residual capacity derived from MBW; Curv, log[N₂]₆₀TO, S_dan, and S_cond: curvilinearity of N₂ washout curve, value of curve for 6 sec, and residual capacity derived from MBW, respectively. No significant differences in tidal volume, its coefficient of variation, or breathing frequency were found among different phases (baseline, provocation, dilatation) nor between NBHR and BHR groups in any given phase of the study.

Table 1 lists the baseline values (mean ± SE) of all lung function and MBW parameters obtained in NBHR and BHR groups. All spirometry data reported in this section were those obtained by averaging, for each subject, the values recorded before and after the two or three MBW tests performed at a given stage (at baseline or after bronchoprovocation and bronchodilatation). FEV₁ and FEF₁₅ values recorded before and after the MBW tests showed no significant difference (P > 0.05). The MBW parameters such as S_dan and S_cond are derived from an S curve obtained by averaging, breath by breath, two or three alveolar slope curves, each one computed from one MBW test. The same procedure was followed to derive Curv and log[N₂]₆₀TO from an average of two or three washout curves. V₂₅₀anat and V₂₅₀phys were average values of two or three values of anatomic and physiological dead space, respectively, determined in the first breath of each MBW. Of the lung function parameters, FEV₁, FEV₁/FVC, and FEF₁₅, and of the MBW parameters, S_dan were significantly different between the NBHR and the BHR groups (Table 1).

Table 2 shows how bronchoprovocation and bronchodilatation affect lung function parameters (FEV₁, FEF₁₅, dead space volumes (VD₆₀anat, VDphys), N₂ washout characteristics (Curv, log[N₂]₆₀TO), and proximal and peripheral MBW components of ventilation inhomogeneity (S_dan, S_cond). We performed a repeated-measures analysis of variance on each of the parameters in Table 2, with a Bonferroni t-test for pairwise comparisons to check the significance of the following: changes from baseline after provocation (between baseline and provocation), reversal of changes after bronchodilatation (between bronchoprovocation and bronchodilatation), and re-

Table 2. Values of lung function and MBW parameters at baseline after bronchoprovocation and after bronchodilatation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>NBHR Group</th>
<th>BHR Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEV₁, %baseline</td>
<td>100</td>
<td>89 ± 2*</td>
</tr>
<tr>
<td>PEF, %baseline</td>
<td>100</td>
<td>83 ± 3*</td>
</tr>
<tr>
<td>FEF₁₅, %baseline</td>
<td>100</td>
<td>60 ± 4*</td>
</tr>
<tr>
<td>VD₆₀anat, ml</td>
<td>175 ± 12</td>
<td>155 ± 10*</td>
</tr>
<tr>
<td>VDphys, ml</td>
<td>204 ± 13</td>
<td>195 ± 10</td>
</tr>
<tr>
<td>V₂₅₀anat, ml</td>
<td>29 ± 5</td>
<td>40 ± 5*</td>
</tr>
<tr>
<td>FRC, ml</td>
<td>3,139 ± 400</td>
<td>3,216 ± 339</td>
</tr>
<tr>
<td>Curv</td>
<td>0.839 ± 0.018</td>
<td>0.788 ± 0.029</td>
</tr>
<tr>
<td>log[N₂]₆₀TO</td>
<td>0.395 ± 0.022</td>
<td>0.422 ± 0.018</td>
</tr>
<tr>
<td>S_dan, liter⁻¹</td>
<td>0.075 ± 0.007</td>
<td>0.091 ± 0.009</td>
</tr>
<tr>
<td>S_cond, liter⁻¹</td>
<td>0.033 ± 0.003</td>
<td>0.066 ± 0.013*</td>
</tr>
</tbody>
</table>

Values are means ± SE; n = 10 subjects/group. B, baseline; P, bronchoprovocation; D, bronchodilatation. All FEV₁, PEF, and FEF₁₅ values are expressed as a percentage of individual baseline FEV₁, PEF, and FEF₁₅ values. For all MBW-derived indexes, see text for details.

*Significant changes from B to P and from P to D, P < 0.05. †Significantly larger changes from B to P in hyperresponsive than in nonhyperresponsive subjects, P < 0.05.
turn to baseline after bronchodilatation (between bronchodilatation and baseline). The latter was not represented in Table 2, but the result was that, only for FEV₁ (in NBHR and BHR groups) and for FEF₇₅ (in NBHR group), values were not entirely back to baseline after dilatation. We also checked with an unpaired t-test whether an increase or decrease of a parameter from baseline to provocation was significantly larger in the BHR group than in the NBHR group and found that this was the case only for FEV₁, PEF, FEF₇₅, Curv, and log(N₂)₆TO (Table 2).

Figure 4 shows a graphical representation of the FEV₁ and FEF₇₅ decreases (A), and S_aclin and S_cond increases (B). Closed and open symbols are averages in the NBHR group and the BHR group, respectively. For changes in FEV₁, with respect to baseline, which is taken as the criterion for hyperresponsiveness, we show the distribution of 20 individual data points (some of which are superimposed), indicating a continuous distribution of hyperresponsive and nonhyperresponsive subjects in terms of FEV₁. After bronchoprovocation, average reduction in FEF₇₅ (31% in the NBHR group; 49% in the BHR group) was significantly greater than reduction in FEV₁ (11% in NBHR; 26% in the BHR group). S_cond showed an average 198% increase in the NBHR group and an average 390% increase in the BHR group on bronchoprovocation, with large standard error bars and with no significant difference between the S_cond increase in the BHR and NBHR groups (P = 0.06). S_aclin showed only a 13–20% increase in both groups, which did not reach statistical significance.

Table 2 shows that VDanat decreased to the same extent, namely, 20 ml, in the NBHR and BHR groups. However, because on average VDanat was 10 ml lower in the BHR group, the relative change was slightly more important in the BHR group. For VDphys no significant changes could be demonstrated in any group. Nevertheless, the so-called “alveolar dead space,” defined as VDphys - VDanat, did increase significantly. VDanat and VDphys were back to baseline control values after bronchodilatation. Bronchoprovocation leads to significantly increased curvilinearity of the N₂ washout curve (i.e., decreased value of Curv) only in the BHR group. The change in Curv did not reach statistical significance in the NBHR group. Also, the logarithmic value of the mean expired N₂ concentration for TO = 6 (i.e., log(N₂)₆TO) increased significantly on bronchoprovocation only in the BHR group. Both these parameters derived from the N₂ washout curve were back to baseline control values after bronchodilatation.

DISCUSSION

To evaluate the role of conductive and acinar lung zones in the histamine bronchoprovocation process, an analysis of the normalized slope in the N₂ MBW (9) was applied, from which two indexes of ventilation inhomogeneity, i.e., S_cond and S_aclin, were derived. In the process of extracting a small set of parameters from the MBW normalized slopes for quantitative analysis, we based our choice of S_aclin and S_cond on elements from the MBW papers of Crawford et al. (6–9) and subsequent model analysis by our laboratory (26). S_aclin was based on the extrapolation method described by Crawford et al. (9) but used linear instead of exponential fitting on the latter part of the MBW and used lung TO instead of breath number as the absissa, as suggested in a subsequent paper (6). The computation of the conductive component S_cond only differed from the method described by Crawford et al. (8), where linear regression was also used, by the choice oflung TO as the absissa. Because the subjects in the series of papers by Crawford et al. (8) are not documented in terms of parameters that are pertinent to our study (e.g., hyperresponsive or nonhyperresponsive, FEF₇₅ values, diffusing capacity), direct comparison with our baseline MBW data needs to be handled with caution. However, using the lung volumes reported in Crawford et al. (6) from subjects who also participated in another study by Crawford et al. (7), we used the average normalized slope curve in their Fig. 3 (Ref. 9) to evaluate S_aclin and S_cond according to our method, yielding S_aclin = 0.070.
Values are in general agreement with our baseline determination limits are taken into account, these differences in subjects, flow rates, equipment, and slope determination are small, one fast and one slow (insets, Fig. 3B). That is why we also submitted all our data (including those from provocation and dilatation MBW tests) to a Levenberg-Marquardt routine, which fitted a sum of two exponentials (with boundary conditions on the curvature and asymptotes) to our normalized slope curves as a function of lung TO. Using the statistical method of Bland and Altman (2) to compare S\textsubscript{acin} values obtained with two-exponential vs. linear extrapolation, we obtained a mean difference of 0.004 ± 0.005 (SD) liter\(^{-1}\). Placed against the baseline S\textsubscript{acin} values in Table 1, this result led us to conclude that, even in extreme conditions such as provocation, our linear method for S\textsubscript{acin} determination is as valid as the more cumbersome exponential method.

In this study, it was expected that 1) \(S_{cond}\) would increase if large ventilation differences and asynchronous emptying occur, e.g., as a result of inhomogeneous narrowing of parallel conductive airways; and 2) \(S_{acin}\) would increase if any significant alteration occurs at the level of the acinar structure, even in the absence of flow asynchrony. We observed large \(S_{cond}\) increases during histamine-induced airway narrowing in both BHR and NBHR groups, and no significant changes in \(S_{acin}\) in either group. However, prehistamine \(S_{acin}\) was significantly larger in the BHR group. Together with measurements of dead space (\(V_{D,anat}\), \(V_{D,phys}\)) and lung function parameters (FE\textsubscript{V}\textsubscript{L}, FE\textsubscript{F}\textsubscript{75}), our MBW study suggests that 1) the airways involved during the histamine bronchoprovocation process, part of which are the small airways, are situated proximal to the acinar entrance; 2) between relatively large lung units, i.e., those containing several groups of acini, large differences in inspired gas concentration develop; and 3) the baseline acinar structure is not affected by the provocation process itself but may be related to hyperresponsiveness.

Large-scale inhomogeneities (\(S_{cond}\)). The fact that histamine bronchoprovocation generates average \(S_{cond}\) increases of the order of 200 and 400% in the NBHR and BHR groups, respectively (Fig. 4B), indicates not only an average decrease in airway lumen of parallel airways down to a given level or at a given level of the bronchial tree (which reduces FE\textsubscript{V}\textsubscript{L} and FE\textsubscript{F}\textsubscript{75}) but also an important inhomogeneity in constriction between parallel airways. Indeed, to generate an alveolar slope, parallel differences in ventilation distribution must exist, associated with sequential emptying. Therefore, the present results suggest that the inhomogeneity of airway narrowing that is known to exist in the case of acute asthmatic attack is also present, although to a lesser degree, during bronchoprovocation with a nonspecific agent in asymptomatic subjects. The inequality in response of parallel airways could reflect density differences in muscarinic receptors and/or cholinergic innervation between airways located at a given lung depth (i.e., airways of more or less the same lung generation), in addition to proximal vs. peripheral density differences observed along the bronchial tree.

Another category of MBW indexes that can reflect convection-dependent inhomogeneities is that derived from the classic washout curve, Curv and log\([N_2]_{TOT}\) (Fig. 3A). Their modifications after bronchoprovocation did not reach statistical significance in the NBHR group (Table 2). From a theoretical viewpoint, this is surprising because these two parameters should reflect all convective, i.e., large-scale, concentration differences. In particular, the specific ventilation differences between lung units that empty asynchronously during expiration and therefore increase \(S_{cond}\) should also tend to decrease Curv and increase log\([N_2]_{TOT}\) in addition, possible specific ventilation differences generated between lung units that empty synchronously, and therefore do not contribute to \(S_{cond}\) would nevertheless tend to decrease Curv and increase log\([N_2]_{TOT}\) even more. Therefore, the absence of significant change in Curv or log\([N_2]_{TOT}\) and the twofold increase in \(S_{cond}\) (200% baseline) in the NBHR group could indicate that specific ventilation differences are small, whereas flow asynchrony is more apparent during mild bronchoprovocation. In contrast, in the BHR group, both specific ventilation and flow asynchrony become important enough to affect all large-scale MBW parameters (Table 2). Alternatively, it could be argued that any index derived from the classic \(N_2\) washout curve, whether it be related to its curvilinearity (such as Curv) or to its value after a number of breaths or lung TO (such as log\([N_2]_{TOT}\)), is not sensitive enough to detect the mild bronchoprovocation in the NBHR group.
founding effects of large-scale inhomogeneities as would be the case with a SBW alveolar slope, is indeed crucial.

The larger baseline S_{acin} value in the BHR group should be interpreted with caution. It merely adds a piece of information to the controversy about the relationship between baseline lung function and hyperresponsiveness (24). The significantly smaller FEV$_1$ and FEF$_{75}$ values in the BHR group (Table 1) are in support of such a dependence in a group of 20 otherwise asymptomatic subjects. Nevertheless, FEV$_1$ and FEF$_{75}$ averages are supranormal or normal in both groups. Because baseline D_{LCO} and K_{CO} values are normal and not different between BHR and NBHR groups (Table 1), it is unlikely that intra-acinar alterations reflected in the larger S_{acin} in the BHR group took place at the level of the alveolar structure. Rather, the larger S_{acin} points to some degree of intra-acinar airway narrowing, maybe due to inflammation (23). This issue surely needs further investigation in a larger group of subjects with different degrees of hyperresponsiveness, possibly a group that also includes symptomatic subjects, in whom S_{acin} can, for instance, be related to PD$_{20}$, the provocative dose necessary to reach a 20% fall in FEV$_1$.

V_{Danat} and V_{Dphys}. In contrast to the other MBW parameters, V_{Danat} derived from the first expiration showed a very similar decrease in the BHR and NBHR groups, indicating a similar degree of volumetric reduction of the conductive airways. V_{Danat} is expected to be less sensitive to airway narrowing than any resistance-related parameter simply because V_{Danat} is related to the second power of the airflow radius, whereas resistance is related to approximately the fourth power of the airway radius. Alternatively, one could argue that a possible increase in lung volume after provocation (20, 27) would tend to oppose a V_{Danat} decrease. We did not find a significant change in FRC after bronchoprovocation in any of the two groups, in line with FRC measurements by Langley et al. (12) using the same technique. Despite these arguments for a lack of sensitivity of V_{Danat} to evaluate bronchospasm, the fact that it does not decrease more in the BHR group at all remains surprising. Perhaps it is an indication of upper airway constriction with a limit that is already reached in the NBHR group, where the average FEV$_1$ decrease was 12%. We did not find a correlation between V_{Danat} and FEV$_1$ decrease in the NBHR group, a correlation that could have confirmed the hypothesis of a progressive V_{Danat} decrease with FEV$_1$ below the 20% FEV$_1$ threshold. However, the range of changes in V_{Danat} is probably too small to verify this.

Model analysis predicted that, for the study of ventilation distribution in normal human subjects, V_{Dphys}, or the difference $V_{\text{Dphys}} - V_{\text{Danat}}$, is not very sensitive to evaluate changes in ventilation inhomogeneity (26). Our experimental V_{Dphys} and $V_{\text{Dphys}} - V_{\text{Danat}}$ data confirm that the same is true in the case of bronchoprovocation, during which important inhomogeneities are known to occur. In general, our dead space data coincide with the findings of Burke et al. (4), who also found a 20-ml decrease of V_{Danat} and virtually no effect on V_{Dphys}.

Implication of bronchoprovocation in gas-exchanging units. Despite the small effect of histamine provocation on V_{Dphys} and V_{Danat}, Burke et al. (4) found a large degree of ventilation-perfusion mismatch, and our data provide an explanation for this gas-exchange impairment. The fact that S_{cond} increases so dramatically points to large differences in gas concentration between relatively large units, comprising several acini or clusters of acini. The size of these units remains somewhat speculative. In combination with a similar V_{Danat} decrease in the NBHR and BHR groups, the larger S_{cond} increase in the BHR with respect to the NBHR group is an indication of the fact that the ventilation differences during bronchoprovocation are generated between units subtended by the more peripheral of the conductive airways. The large decreases in FEF$_{75}$, which, despite its poor reproducibility, is used in clinical practice as a maker of the small airways, provide further support for this (Fig. 4A). The implication of the smaller conductive airways in the bronchoprovocation process is also not surprising in view of the conclusions of a MBW study in normal subjects (7) suggesting that bronchomotor tone of relatively small airways is responsible for a relatively uniform distribution of ventilation. When normal bronchomotor tone is disturbed and large inspired concentration differences occur as a result, gas-exchange impairment is likely to ensue.

Our suggestion that the small conductive airways are the major determinant of gas-exchange impairment during bronchoprovocation is also compatible with bronchoprovocation data in the literature. In the case of the bronchoprovocation study by Olgiani et al. (15), one needs to assume that the peripheral airways that were held responsible for impairment of gas exchange were indeed small airways but nevertheless were situated proximal to the acini, i.e., conductive airways. This is probably also the reason why Schmekel et al. (21) found no difference in impairment of gas exchange, whether methacholine was deposited centrally or peripherally in the lungs. With central vs. peripheral deposition of histamine, Ruffin et al. (19) even found that a lower dose was necessary to decrease FEF$_{75}$ in the case of central deposition. Although these authors concluded that action on central airways was the main determinant of histamine provocation, doubt remained about the dispersion of the histamine dose over the more numerous peripheral airways, leading to submaximal reaction of the very peripheral airways. The same reasoning could lead us to believe that this is why S_{acin} did not change significantly (Fig. 4B). It is possible that, to elicit the hypothesized peripheral action of histamine, also at the acinar level, intravenous injection of histamine would be more appropriate.

Potential of the MBW method. Provided one corrects for the convective component, as was done here to obtain S_{acin}, the alveolar slope of the first breath of a MBW may be considered as reflecting intra-acinar alterations. The fact that the convection-dependent part, which turns out to be the most important effect during bronchoprovocation, is only poorly reflected in the first breath probably explains the relatively moder-
ate increases in the SBW phase III slope increases seen after provocation (14, 20). Nevertheless, the first breaths of a MBW and the SBW are not strictly comparable because, for the SBW vital capacity maneuver, the conductive and acinar contribution to ventilation inhomogeneity may be quite different (17). In the study by Scano et al. (20), this relative contribution is further complicated by the end-inspiratory breath hold of 5–10 s, which tends to reduce the acinar contribution of the alveolar slope.

The MBW test has been used in association with bronchoprovocation tests before. Langley et al. (12) quantified ventilation distribution in terms of a mixing-efficiency index, derived from the classic N₂ washout curve. A MBW was performed before and after methacholine provocation and ⁸¹Kr ventilation lung scans were obtained in both phases. From the inspection of the patches on the lung scans, Langley et al. (12) concluded that convection-dependent inhomogeneity alone could not account for the marked decrease in MBW mixing efficiency, and that some diffusion-related mixing inefficiency must be involved in the provocation process. Our interpretation of those data is that important ventilation inhomogeneities exist between the smaller convection-dependent units, which also contribute to decrease the MBW mixing efficiency, but cannot be distinguished on the ventilation scans because of the poor resolution. In fact, the MBW data published by Harris et al. (10) showed that bronchoprovocation had the same effect on Hₑ and sulfur hexafluoride mixing-efficiency curves. Inasmuch as these curves (obtained in only 3 asthmatic subjects) are sensitive enough to make the diffusion-dependent part of it. This opposing gravity-dependent effect must have contributed to counteract the alveolar slope increase resulting from much smaller lung units. However, human physiological experiments recently performed onboard the Spacelab Life Sciences 1 mission show that the MBW maneuver, involving near-tidal breathing from FRC, and the normalized slopes it generates are not significantly affected by gravity (18). This means that, in the absence of the blurring effect of gravity, the alveolar slope generated in a MBW test can be entirely attributable to intrinsic structural and elastic properties of the lung, a fact that renders this test particularly useful in the clinical context of the lung function laboratory.

In conclusion, our MBW results suggest that, in otherwise asymptomatic subjects with airway hyperresponsiveness to inhaled histamine, airway narrowing occurs predominantly in airways proximal to the acini. These airways are at the point of origin of important inspired gas concentration differences between relatively large units and of a sequential emptying pattern between them. By contrast, the acinar component of ventilation inhomogeneity is not affected by the bronchoprovocation itself, but its baseline value is significantly increased in the BHR group of subjects.

We thank Johan Goris from the Biotechnology Department of Academisch Ziekenhuis, Vrije Universiteit Brussel, for technical support. This study was supported by the Fund for Scientific Research, Flanders-Belgium (actie “Levenslijn”), and the Federal Office for Scientific Affairs (“Prodek” program). Address for reprint requests: S. Verbanck, AZ-VUB, Dienst Pneumologie (CPNE), Laarbeeklaan 101, 1090 Brussels, Belgium (E-mail: pnevks@az.vub.ac.be).

Received 26 December 1996; accepted in final form 25 July 1997.

REFERENCES

