A pump system for performing indicator-dilution curves without blood loss. Cohn, J. D. 841
Calibration of the Clark oxygen electrode for use in aqueous solutions. Leteere, M. E. 844

Electric-field disturbances near the human body. Richardson, P. C., and R. M. Adams 838
New catheter-tip flowmeter with velocity flow and volume flow capabilities. Stein, P. D., and W. H. Schuette 831
A new approach for measurement of intrapericardial pressure in the closed-chest dog. Weisse, A. B. 833
Zeroing and static pressure calibration apparatus for electro-manometers. Woolley, G. 865

CORRIGENDA

Volume 25, November 1968
Page 600: F. G. V. Douglas and Margaret R. Becklake. “Effect of seasonal training on maximal cardiac output.” Page 601: the formula for cardiac output should read:

\[
Q_c = \frac{(V \times \text{cat}) \left(F_{N_2} - F_{N_2} \right)}{\lambda \left(F_{N_2} - \left[F_{N_2} \mid \text{Int.} \right] \right) \frac{P_b}{P_w}}
\]

Page 602: footnote a to table 1 should read: 3 Age, 17 years; height, 170 cm; weight, 62 kg.

Volume 25, December 1968
Page 747: Ernest D. Michael, Jr., and Frank I. Katch. “Prediction of body density from skin-fold and girth measurements of 17-year-old boys.” Page 748: in table 1, the mean body density should read 1.074. Page 749: in table 2, the numbers in the column “Variable” were reversed; the column should read:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Page 58: in table 2, α Blood values ascribed to Handbook of Respiration should read 28 C 0.0285; 18 C No value.

Volume 25, January 1969
Page 56: C. Christoforides, L. H. Laasberg, and John Hedley-Whyte. “Effect of temperature on solubility of O₂ in human plasma.” Page 56: equations 1, 2, and 3 should read:

\[
\frac{\alpha_{\text{H}_2\text{O}}^{T_1}}{\alpha_{\text{H}_2\text{O}}^{T_2}} = \frac{\alpha_p^{T_1}}{\alpha_p^{T_2}} \quad (1)
\]

\[
\frac{p_{\text{O}_2}^{T_2}}{p_{\text{O}_2}^{T_1}} = \frac{\alpha_{\text{H}_2\text{O}}^{T_2}}{\alpha_{\text{H}_2\text{O}}^{T_1}} \quad (2)
\]

\[
\frac{p_{\text{O}_2}^{T_2}}{p_{\text{O}_2}^{T_1}} = \frac{\alpha_p^{T_2}}{\alpha_p^{T_1}} \quad (3)
\]

Page 170: Jonas Bergström, Eric Hultman, Lennart Jorfeldt, Bengt Pernow, and John Wahren. “Effect of nicotinic acid on physical working capacity and on metabolism of muscle glycogen in man.” Page 170: the second paragraph of acknowledgments should read: This investigation was supported by grants from the Karolinska Institutet (Stiftelsen Gustaf och Tyra Svenssons Minne), the Swedish Medical Council (project nos. K67-19X-1002-02, K68-19X-1002-03, and B69-19X-2647-01A), The Swedish Nutrition Foundation, and the Semper Fund for Nutrition Research.

Volume 26, February 1969
Page 385: Nicholas B. Karatzas, John A. Clements, and Malcolm B. McIlroy. “A pressure plethysmograph with a pneumatic differentiator for pulmonary capillary flow measurements.” Page 387: legend for Fig. 6 should read: A sample record taken with a 70-lb. dog in the plethysmograph.