Response to Brugniaux, Foster, and Beaudin

Robert J. Thomas,1 David Wang,2,3,4,5 Brendon J. Yee,2,3,4,5 and Ronald R. Grunstein2,3,4,5

1Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; 2Sleep & Circadian Group, Woolcock Institute of Medical Research, The University of Sydney, Australia; 3Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Sydney Local Health District; 4NHMRC Centre of Research Excellence in Sleep Medicine-NeuroSleep, Australia; and 5Central Clinical School, The University of Sydney

TO THE EDITOR: We thank Brugniaux et al. (1) for the comments, and we agree. It is likely that if sleep hypercapnia is an important mediator of cognitive impairment in sleep apnea syndromes, multiple mechanisms are at work. Altered cerebrovascular reactivity is plausibly one of them, with a possibility of interaction with underlying cerebrovascular disease and reserve in the older individual. It is also probable that individual differences exist in hypercapnia tolerance. To truly understand hypercapnia effects, experimental (and human) models will need to explore gene expression, cerebrovascular reactivity, glymphatic flow (5), epigenetic modification (3), effects on ion channels and neurotransmitter plasticity under hypercapnia (4), and changes in brain network activity induced by hypercapnia (2), to name just a few possibilities.

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the author(s).

AUTHOR CONTRIBUTIONS

R.J.T. drafted manuscript; D.W., B.J.Y., and R.R.G. edited and revised manuscript.

REFERENCES


Address for reprint requests and other correspondence: D. Wang, Woolcock Institute of Medical Research, 431 Glebe Point Road, Glebe NSW 2037 Australia (e-mail: david.wang@sydney.edu.au).