Skeletal muscle vasodilation during systemic hypoxia in humans

Frank A. Dinenno

Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, Center for Cardiovascular Research, Colorado State University, Fort Collins, Colorado

Submitted 25 March 2015; accepted in final form 21 May 2015

Dinenno FA. Skeletal muscle vasodilation during systemic hypoxia in humans. J Appl Physiol 120: 216–225, 2016. First published May 28, 2015; doi:10.1152/japplphysiol.00256.2015.—In humans, the net effect of acute systemic hypoxia in quiescent skeletal muscle is vasodilation despite significant reflex increases in muscle sympathetic vasoconstrictor nerve activity. This vasodilation increases tissue perfusion and oxygen delivery to maintain tissue oxygen consumption. Although several mechanisms may be involved, we recently tested the roles of two endothelial-derived substances during conditions of sympathoadrenal blockade to isolate local vascular control mechanisms: nitric oxide (NO) and prostaglandins (PGs). Our findings indicate that 1) NO normally plays a role in regulating vascular tone during hypoxia independent of the PG pathway; 2) PGs do not normally contribute to vascular tone during hypoxia, however, they do affect vascular tone when NO is inhibited; 3) NO and PGs are not independently obligatory to observe hypoxic vasodilation when assessed as a response from rest to steady-state hypoxia; and 4) combined NO and PG inhibition abolishes hypoxic vasodilation in human skeletal muscle. When the stimulus is exacerbated via combined submaximal rhythmic exercise and systemic hypoxia to cause further red blood cell (RBC) deoxygenation, skeletal muscle blood flow is augmented compared with normoxic exercise via local dilator mechanisms to maintain oxygen delivery to active tissue. Data obtained in a follow-up study indicate that combined NO and PG inhibition during hypoxic exercise blunts augmented vasodilation and hyperemia compared with control (normoxic) conditions by ~50%; however, in contrast to hypoxia alone, the response is not abolished, suggesting that other local substances are involved. Factors associated with greater RBC deoxygenation such as ATP release, or nitrite reduction to NO, or both likely play a role in regulating this response.

IN CONSCIOUS HUMANS AND EXPERIMENTAL animals, acute exposure to systemic hypoxia evokes autonomic reflex responses and alterations in the synthesis of a variety of vasoactive substances within the local tissue, blood vessels, and red blood cells (RBCs), all of which contribute to the control of vascular tone (57a). With respect to the skeletal muscle circulation, the net effect of these changes is vasodilation that is graded with the degree of systemic hypoxia (2, 24, 39) despite concurrent sympathetic activation as evidenced by increases in muscle sympathetic nerve activity (54, 82). This vasodilation increases tissue perfusion and oxygen delivery to maintain tissue oxygen consumption (18). Although many studies have been performed in experimental animals in vivo and in isolated blood vessels in vitro, this review will focus on our understanding of vascular control mechanisms based on studies conducted in conscious human subjects using local (vs. systemic) pharmacological approaches as highlighted in an invited presentation at the 19th International Hypoxia Symposium (March 3-8, 2015) at Chateau Lake Louise within the session “Counteracting Hypoxia: Gasotransmitters, Adenosine and Vasodilation.” Additionally, the majority of mechanistic studies in humans have been performed in the forearm muscle circulation and, as such, the physiology discussed reflects vascular control of a small muscle mass when cardiac pumping capacity is not limited. Finally, although there are many proposed theories and excellent reviews on similar topics, this is a brief (nonexhaustive) review that reflects the opinion of the author and presents alternative interpretations to existing data and ideas for future directions.

SKELETAL MUSCLE VASODILATION DURING SYSTEMIC HYPOXIA IN QUIESCENT TISSUE

Sympathoadrenal Control of Vascular Tone: Norepinephrine-Mediated Vasocostriction

Acute systemic hypoxia in humans leads to chemoreflex-(and perhaps baroreflex-) mediated increases in sympathetic nervous systemic activity as evidenced by a marked increase in muscle sympathetic nerve discharge via direct neural record-
ings (40, 54, 82). Despite this, circulating norepinephrine (NE) is not typically elevated due to greater neurotransmitter clearance during hypoxia (54). Because muscle sympathetic nerve activity is high and net vasodilation (vs. vasoconstriction) is observed, it was originally suspected that systemic hypoxia reduces NE responsiveness in resting skeletal muscle, analogous to what occurs in contracting skeletal muscle (76, 94). However, we directly tested this hypothesis and found that postjunctional α-adrenergic receptor responsiveness is not blunted in resting (quiescent) skeletal muscle during systemic hypoxia (24), a finding that was replicated by Wilkins et al. (98). These findings are also consistent with the observation that hypoxic vasodilation is restrained by elevations in sympathetic vasoconstriction, such that acute blockade of α-adrenergic receptors results in an augmented local dilatory response (96). From a teleological perspective, this sympathetic “restraint” of hypoxic vasodilation may be important for appropriate blood pressure regulation because several vascular beds including skeletal muscle (e.g., coronary, cerebral) vasodilate in response to systemic hypoxia.

Sympathoadrenal Control of Vascular Tone: Epinephrine-Mediated Vasodilation

In addition to elevations in muscle sympathetic nerve activity, circulating epinephrine is typically (78, 96–98) but not always (3, 79) increased presumably as a result of elevated neural activity to the adrenal medulla (72), or perhaps as a result of a direct effect of hypoxia on the gland. The role of circulating epinephrine and subsequent stimulation of β-adrenergic receptors in contributing to hypoxic vasodilation in the human forearm was originally studied in the late 1960s (79) and more recently by Joyner and colleagues (96), with the results being equivocal. Note that most studies on this topic have reduced hemoglobin (Hb) saturations to approximately 75–80%, with corresponding arterial partial pressure of oxygen (PO₂) to approximately 40–45 mmHg. Under such experimental conditions, Richardson et al. (79) demonstrated that local blockade of β-adrenergic receptors had a nonsignificant (<10%) effect on forearm blood flow and vascular resistance. In contrast, Blauw et al. (3) demonstrated that local blockade of β-receptors not only blunted local vasodilation in the forearm, but it resulted in a net vasoconstrictor response presumably due to “unopposed” sympathetic vasoconstriction (because α-adrenergic receptors were not blocked in this study). Interestingly, this was observed in the absence of significant elevations in circulating epinephrine.

A series of studies by Joyner and colleagues (96, 97) have also implicated epinephrine in playing a role in hypoxic vasodilation, suggesting that β-receptor stimulation mediates up to 50% of hypoxic vasodilation; however, some caution is warranted when interpreting these findings. Specifically, the role of β-mediated vasodilation was always studied when α-adrenergic receptors were inhibited (96, 97). Although this approach is important for evaluating vasodilating mechanisms independent of sympathetic vasoconstriction, local nonselective α-blockade can increase NE release from sympathetic nerve endings via inhibition of prejunctional α₂-adrenergic receptors leading to stimulation of β-receptors independent of circulating epinephrine (30, 84). Importantly, this effect could be enhanced during systemic hypoxia when sympathetic nerve discharge is elevated, leading to a potential overestimation of the contribution of β-adrenergic receptors to the net dilatory responses. Recent data from our laboratory in young healthy humans indicate that despite a significant increase in plasma epinephrine, hypoxic vasodilation is only modestly blunted (~10%) during blockade of β-receptors (without concomitant α-receptor blockade) (78), consistent with observations made in the 1960s. Taken together, the collective data indicate that β-receptor activation can participate in hypoxic vasodilation in humans; however, evidence also exists to indicate that this may not be obligatory to observe the normal dilatory response.

Local Control of Vascular Tone: Endothelial-Derived Nitric Oxide and Prostaglandins

The endothelial autacoids nitric oxide (NO) and prostaglandins (PGs) have received attention for potentially mediating hypoxic vasodilation in experimental animals (75), isolated vessel preparations, and in humans in vivo (4). This most likely reflects the observations that an intact healthy endothelium may be necessary to observe hypoxic vasodilation (8, 31, 58, 73), and early studies clearly demonstrate release of NO and PGs from the endothelium when it is exposed to hypoxic conditions. Blitzer et al. (4) were the first to directly test whether endothelial-derived NO was involved in hypoxic vasodilation in the human forearm. Using intrabrachial infusions of Nδ-nitro-l-arginine (l-NMMA) to inhibit NO synthase (NOS), they observed a significant attenuation in local vasodilation during hypoxia. An important control experiment revealed that preconstriction of the forearm vasculature with the α₁-agonist phenylephrine (to reduce vascular tone similar to the tone that occurs with l-NMMA infusions) did not affect the normal hypoxic dilatory response. These data indicate that NO actively participated in hypoxic vasodilation and that the effect of NOS inhibition was not simply due to a reduction in basal vascular tone.

Subsequent to the study by Blitzer et al., Weisbrod et al. (96) questioned whether this NO-mediated dilation was due to β-adrenergic receptor stimulation via circulating epinephrine, because experimental evidence in the human forearm had indicated that a significant portion of β-mediated dilation is NO-dependent (20). In the Weisbrod et al. study, infusion of l-NMMA did not further attenuate local hypoxic vasodilation beyond what was observed during β-blockade, and when viewed in the context of prior reports, led to the conclusion that the NO component of hypoxic vasodilation was downstream of β-receptor stimulation.

Although this is one plausible interpretation of the Weisbrod et al. data, many studies in several experimental preparations have demonstrated a significant interplay or “cross-talk” between NO and PGs in the regulation of vascular tone. For example, it has been clearly demonstrated that isolated endothelial cells or resistance vessels subjected to acute and chronic NOS inhibition demonstrate an augmented shear stress-induced increase in the synthesis of vasodilating PGs (e.g., prostacyclin), which acts to maintain normal vasodilation (70, 92). Furthermore, in some models of exercise hyperemia, single inhibition of either NO or PGs does not affect muscle blood flow responses to contracting muscle in humans, whereas combined inhibition can reduce exercise hyperemia by approximately 20 to 30% (5, 22, 61, 86). Thus our laboratory
questioned whether this interplay was operative during systemic hypoxia in humans and whether it could explain the lack of NOS inhibition of hypoxic vasodilation during β-blockade in the study by Weisbrod et al. (96). In other words, we questioned whether PGs compensated for the acute inhibition and “loss” of NO-dependent signaling and thus maintain a normal hypoxic vasodilator response. Importantly, before our studies on this topic, no studies had been designed to determine whether PGs were involved in hypoxic vasodilation in human skeletal muscle despite evidence from very detailed studies in experimental animals (75).

To gain further insight into the roles of NO and PGs in hypoxic vasodilation, we designed a complex study to understand the independent and potential interactive roles of these endothelial-derived substances in humans (57). Before any experimental trials, we administered both phentolamine (an α-receptor antagonist) and propranolol (a β-receptor antagonist) to eliminate sympathoadrenal influences on vascular tone, thus isolating local vascular control mechanisms. By design, our study allowed us to determine 1) the independent and interactive roles of NO and PGs in vascular control during systemic hypoxia, 2) the independent roles of NO and PGs in hypoxic vasodilation (i.e., from baseline to steady-state hypoxia), and 3) the combined effect of NO and PGs on hypoxic vasodilation. One group of subjects received the NOS inhibitor l-NAME first, another group of subjects received the cyclooxygenase (COX) inhibitor ketorolac first (to inhibit PG synthesis). As shown in Figure 1, our results indicate that 1) NO normally plays a role in regulating vascular tone during hypoxia independent of the PG pathway; 2) PGs do not normally contribute to vascular tone during hypoxia; however, they do affect vascular tone when NO is inhibited; 3) NO and PGs are not independently obligatory to observe hypoxic vasodilation when assessed as a response from rest to steady-state hypoxia; and 4) combined NO and PG inhibition abolishes hypoxic vasodilation in human skeletal muscle under these conditions (57). Our findings also indicate that stimulation of NO under these conditions of systemic hypoxia in quiescent skeletal muscle is not a result of PG synthesis (67).

EXACERBATING THE STIMULUS: HYPOXIC EXERCISE IN HUMANS

A common experimental approach toward understanding hypoxic vascular control in human skeletal muscle is to combine manipulations of systemic oxygen levels with muscle contractions to further create mismatches between oxygen delivery and demand, leading to greater RBC deoxygenation. As recently reviewed by my colleagues Casey and Joyner (10, 46), the elevation in skeletal muscle blood flow during submaximal hypoxic exercise compared with that during normoxic exercise is due to local vasodilation. This augmented or compensatory vasodilation occurs to effectively match oxygen delivery (via elevated blood flow) to oxygen demand of the contracting muscle in the face of lower arterial oxygen content (CaO2) (10, 18, 36, 38, 50, 80, 83). In addition to the effects of muscle contraction as an added complexity to vascular control, these combined stimuli evoke greater local deoxygenation of RBCs, and the absolute change in muscle blood flow during hypoxic exercise is greater than the sum of hypoxia or exercise alone (10).

Sympathoadrenal Control of Vascular Tone

The role of sympathetic α-adrenergic vasoconstriction and β-mediated vasodilation during combined mild-intensity exercise and systemic hypoxia is quite similar to that observed in quiescent muscle. Muscle blood flow and vascular conductance are significantly greater in hypoxia than during normoxic

![Fig. 1. Hypoxic vascular control by nitric oxide (NO) and prostaglandins (PGs) in quiescent skeletal muscle. NO synthase (NOS) inhibition reduces forearm vascular tone during steady-state hypoxia independent of cyclooxygenase (COX) inhibition (A), whereas COX inhibition reduces vascular tone only after inhibition of NO (B). NO inhibition (C) or PG inhibition (D) alone does not affect vasodilation from rest to steady-state hypoxia; however, combined NO/PG inhibition abolishes hypoxic vasodilation in humans. Published with permission (57).]

- A: *P < 0.05 vs. zero; †P < 0.05 vs. independent COX inhibition. C and D: †P < 0.05 vs. control and single inhibition.
exercise despite concomitant elevations in sympathetic outflow (41, 42, 88, 97). Because postjunctional α-adrenergic responsiveness is intact under these conditions (98), elevations in sympathetic activity result in a greater sympathetic restraint compared with normoxic conditions, and this sympathetic restraint acts to limit the magnitude of vasodilation (13, 97). β-Adrenergic receptor stimulation appears to play a role in vasodilation during mild-intensity hypoxic exercise (9, 97), but again, these data need to be interpreted with caution because all studies were performed after local α-adrenergic blockade (see previous section for discussion).

Local Control of Vascular Tone: Endothelial-Derived NO and PGs

In normoxia, there is evidence to suggest that 1) NO or PGs are not obligatory for exercise hyperemia (5, 61, 86, 87), 2) NO independently contributes ~20% to exercise hyperemia whereas the independent PG contribution is modest and transient (86), and 3) NO and PGs act synergistically in the regulation of vascular tone and thus muscle blood flow during exercise in humans (61, 62, 86). When exercise during systemic hypoxia was performed at higher intensities, the skeletal muscle vasodilation observed was clearly independent of β-adrenergic receptor levels and thus it appears that there is a greater reliance on local dilatory signaling mechanisms (9, 97). Accordingly, Casey and colleagues have performed a series of investigations on this topic and have made a number of key observations [for review, see (11)]. The most consistent finding from these studies is that acute inhibition of NO synthesis significantly reduced the augmented hyperemia and vasodilation during hypoxic exercise in humans, and close inspection of these data indicates that NO (presumably from the endothelium) contributes ~60% if not more to the entire response (9, 12). This was observed with or without local β-adrenergic blockade, and thus a stimulus beyond epinephrine (or noradrenaline) acting on β-adrenergic receptors augmented NO synthesis under these conditions (9). These studies were performed under normal conditions when sympathetic vasoconstriction was intact, and thus these observations reflect an interaction between NO-mediated vasodilatation and sympathetic β-adrenergic receptor vasoconstriction. Given that sympathetic restraint of muscle blood flow during hypoxic exercise is greater than that during normoxia (97), this intact sympathetic vasoconstriction may be masking other vasodilating pathways operative under these conditions.

Although this is one way to study hypoxic exercise hyperemia, as a follow-up to our studies in quiescent muscle, we were interested in performing similar studies using pharmacological inhibition of both α- and β-adrenergic receptors to eliminate sympathoadrenal influences on vascular tone, and thus isolate local control mechanisms. Given our recent findings under these experimental conditions that combined inhibition of NO and vasodilating PGs abolished hypoxic vasodilation in resting muscle, whereas single inhibition of NO or PGs alone did not affect the response from rest to steady-state hypoxia (57), we questioned whether these two endothelium-derived substances played a significant role in augmenting the vasodilatory (and hyperemic) response during hypoxic exercise. We also questioned this given the observations during forearm exercise that combined NO and PG inhibition does not affect the normal dilatory and hyperemic response to handgrip exercise (86). In this study, as opposed to our previous experiments during both normoxic exercise (86) and systemic hypoxia at rest (57), we did not inhibit NO or PGs after achieving steady-state hyperemia. The data from these experiments demonstrate that consistent with prior findings, combined inhibition of NO and PGs 1) does not affect the normal local vasodilator responses to normoxic handgrip exercise and 2) abolished hypoxic vasodilation to resting (quiescent) skeletal muscle (Fig. 2). Furthermore, our data indicate that combined

![Image](http://jap.physiology.org/)

Fig. 2. Effect of combined NO and PG inhibition on skeletal muscle vascular control at rest and during hypoxic exercise. Forearm blood flow (A) and vascular conductance (B) are significantly augmented during hypoxic exercise (HypEx) compared with normoxia (NormEx). Combined NO and PG inhibition reduces this augmented response, but forearm hemodynamics are still greater compared with normoxia indicating other operative mechanisms are involved in the responses. Quantification of the effect of combined inhibition of NO and PGs on augmented hypoxic exercise hyperemia indicates that these autocoids explain ~50% of the response. [Published with permission (18).] A and B (within condition): *P < 0.05 vs. control condition; †P < 0.05 vs. Rest 2; §P < 0.05 vs. normoxic exercise. C: *P < 0.05 vs. control condition; †P < 0.05 vs. zero.
inhibition of NO and PGs significantly blunts the augmented local dilator response by ~50% to moderate-intensity hypoxic exercise (Fig. 2); however, local vasodilation and muscle blood flow were still augmented compared with control conditions (18). Thus it is clear that additional mechanisms beyond endothelial NO and PGs can influence vascular tone and participate in the augmented dilatory and blood flow response to hypoxic exercise. Our current understanding of the remaining signaling pathway or pathways in humans remain incomplete, and perhaps future work should incorporate studies in which sympathetic α-adrenergic vasoconstriction is both intact and experimentally removed to gain more integrative insight into this regulation.

WHAT IS THE STIMULUS FOR LOCAL VASODILATION?

There is clear experimental evidence that NO and PGs play a major role in hypoxic vasodilation in quiescent skeletal muscle (4, 57) and also contribute significantly to the augmented vasodilation and hyperemia to contracting skeletal muscle during systemic hypoxia (12, 18). These are important mechanistic studies, particularly in humans, but what is the stimulus for endothelial NOS (eNOS) and COX to produce these autocoids? Arguments have been made that the hypoxic “sensor” is located in the endothelium, vascular smooth muscle cells, and RBCs. Although there is evidence to support all of these theories, classic human physiology studies dating back to the 1990s and more thereafter using a variety of experimental manipulations have demonstrated that skeletal muscle blood flow and vascular conductance are more related to changes in \(\text{CaO}_2 \), not simply to changes in \(\text{PO}_2 \) (36–38, 51, 80). This is important to understand given that studies using systemic hypoxia or systemic hypoxia in combination with exercise often manipulate both \(\text{CaO}_2 \) and \(\text{PO}_2 \). Thus whatever is stimulating NO and PG synthesis and the remaining unexplained factors regulating vascular tone in active hypoxic muscle must be sensitive to changes in \(\text{CaO}_2 \). This idea is further highlighted by the lack of effect of combined NO and PG inhibition on normoxic exercise hyperemia, whereas there is a significant effect during both hypoxia at rest and during hypoxic exercise (18). Given that changes in \(\text{CaO}_2 \) are directly related to reductions in the oxygenation of Hb, the RBCs may be implicated as a potential sensor of the hypoxic stimulus and modulate vascular tone, blood flow, and oxygen delivery accordingly (more discussion below).

Adenosine has long been suggested to be involved in skeletal muscle vascular control, particularly during mismatches in oxygen delivery and demand such as when it occurs during hypoxia, exercise, and ischemia. Despite the number of investigations on this topic, very limited data exist on plasma adenosine concentrations during hypoxia, most likely reflecting the extremely rapid catabolism of this purine and its half-life in the blood (64). A few studies have shown that adenosine concentrations increase in plasma during systemic hypoxia (25, 85), and it appears that interstitial adenosine levels increase as well (56). The source of adenosine in plasma is unclear but it may be related to ATP release by deoxygenated RBCs (see below) and subsequent hydrolysis to adenosine or via direct release from endothelial cells, and interstitial adenosine reflects release from skeletal muscle. Interestingly, adenosine-mediated vasodilation is significantly reduced via inhibition of NO and PG synthesis (23, 62, 68), consistent with a role for these autocoids in vascular control during systemic hypoxia in quiescent and active skeletal muscle (12, 18, 57). The first study in humans to determine whether adenosine was involved in hypoxic vasodilation was performed by Leunberger et al. (55), and they demonstrated that acute adenosine receptor inhibition via intrabrachial aminophylline abolished forearm vasodilation during systemic hypoxia. However, more recent data reported by Casey et al. (12, 13) provide compelling evidence that adenosine is not obligatory to observe hypoxic vasodilation in quiescent skeletal muscle, nor is it involved in the augmented vasodilatory response during hypoxic handgrip exercise. This latter observation has been supported during knee extensor exercise (43). The precise reason for the discrepant findings, particularly in resting muscle, is unclear, but one possibility is that the “off-target” effects aminophylline (e.g., nonselective phosphodiesterase inhibition) can increase resting muscle blood flow (and thus local oxygenation) and potentially affect the response to the hypoxic stimulus. Additionally, significant alterations in resting vascular tone may affect data quantification and interpretation; this has not been an issue when selective pharmacologic agents in place of adenosine receptors were used in animal studies (6).

Finally, aminophylline inhibits only ~50% of adenosine-mediated dilation in humans (49). Thus although questions exist regarding the role of adenosine, experimental considerations noted above preclude the ability to definitively state that this substance is not involved in hypoxic vascular control in humans.

Studies dating back to the 1950s and 1960s also implicated another purine, ATP, in the control of skeletal muscle vascular tone (26, 29). Building upon original observations by Bergfeld and Forrester (1) that isolated RBCs release ATP during hypoxia and hypercapnia, Ellsworth and Sprague and collaborators (28, 89) have proposed that the RBCs not only delivers oxygen, but they also act as oxygen sensors. In this context, Ellsworth Sprague et al. have elegantly demonstrated that 1) ATP is released from RBCs during hypoxia and that this is graded with the level of Hb deoxygenation (not \(\text{PO}_2 \)) (44); 2) there is a clear oxygen-sensitive intracellular signaling cascade leading to ATP release from pannexin-1 channels (90); and 3) hypoxic vasodilation in isolated skeletal muscle arterioles requires the presence of RBCs and ATP release (21, 89) [also see ref (28) for an excellent review]. Consistent with this, more recent studies from our laboratory and others with humans have shown elevations in venous plasma ATP draining hypoxic and active skeletal muscle (Fig. 3, A and B) (37, 48, 63), although note that similar challenges exist when measuring this purine in circulation because its half-life is estimated to be <1 s (63), and thus concentrations in the microcirculation are likely much greater than reported. Similar to adenosine, some studies have demonstrated that NO and PGs mediate a portion of ATP-induced dilation in humans (17, 60), although other studies have argued against this (15, 81, 95). In vitro studies have demonstrated that ATP-mediated vasodilation is endothelium-dependent (7, 74) and activates endothelial small and intermediate \(K_{Ca} \) channels (99). Consistent with a downstream effect of activating these endothelial \(K_{Ca} \) channels (27), our laboratory has recently demonstrated that ~50% of ATP-mediated vasodilation occurs via activation of inwardly rectifying-potassium (\(K_{IR} \)) channels (15) (Fig. 3C). To date, direct
mechanistic data regarding ATP and P$_{2y}$ receptor stimulation in mediating hypoxic vasodilation in quiescent or active skeletal muscle in humans is limited due to the lack of pharmacology to inhibit the receptors. However, given recent pharmacological approaches we have adopted to inhibit downstream signaling of intravascular ATP in humans, studies incorporating inhibition of K$_{IR}$ channels (in addition to NOS and COX inhibition) and determination of the remaining unexplained hypoxic vasodilation during hypoxic exercise could provide further insight into the role of ATP in vascular control under these conditions.

Beyond ATP release, there are two other prevailing theories regarding RBCs acting as oxygen sensors and serving as a source of NO bioavailability (potentially independent of eNOS) particularly in hypoxic environments. The original theory proposed by Stamler and colleagues (45, 91) states that Hb becomes S-nitrosylated on a specific and conserved cysteine residue on the β-chain (β93Cys) as erythrocytes become oxygenated in the lungs (forming S-nitrosohemoglobin; SNO-Hb); this NO is transmitted out of the RBC upon deoxygenation, thereby evoking local vasodilation. More recently, Gladwin and Patel and collaborators (14, 32, 33) have demonstrated that Hb can function as a nitrite reductase, whereby low oxygen results in bioactivation of nitrite via deoxyhemoglobin and stimulation of blood flow via NO-mediated dilation and restoration of oxygen delivery. Of note related to our studies and others on hypoxic exercise, deep venous PO$_2$ is very close to the P_{50} of the oxygen dissociation curve of Hb where this reductase mechanism is optimized (32), making this an attractive mechanism to contribute to hypoxic vasodilation under these conditions.

OTHER POTENTIAL CONTRIBUTING MECHANISMS

Another recent idea regarding NO-mediated vascular control independent of RBCs proposed by Golub and Pittman (34, 35) suggests that interstitial NO acts as an error signal whose magnitude is related to the mismatch in oxygen and glucose delivery and their consumption. In this model, increases in blood flow during hypoxia or muscle contractions occur via the lowering of the NO inhibitor superoxide (O$_2^-$) into the interstitial space, allowing endothelial-derived NO to diffuse to the vascular smooth muscle cells and evoke vasodilation (34, 35). This is an interesting theory because it challenges the conventional metabolic theory of blood flow regulation and postulates that the system is designed to remove an inhibitor of local vasodilation (in this case, O$_2^-$) vs. the accumulation or production of various metabolites. However, if this were the sole mechanism matching blood flow and oxygen delivery to metabolic demand as postulated, it is unclear how inhibition of NO alone in our studies failed to affect hypoxic vasodilation in quiescent muscle (57) as well as the onset and steady-state response to normoxic exercise (18, 19, 86). Although this is a provocative theory, there is clearly more complexity to vascular control during active muscle contractions because mechanical deformation of blood vessels during contractions (47) and the release of K$^+$ ions from active muscle (16, 19) evoke feed-forward vasodilation, and these signals among others would need to be integrated into this model with NO in a manner that leads to the overall matching of blood flow and oxygen delivery to metabolic demand.

In addition to the gas NO, other “gasotransmitters” have been recognized as playing a role in many responses to acute hypoxia, including vasodilation. Although these are beyond the scope of this review, carbon monoxide (CO) and hydrogen

Fig. 3. Intravascular ATP and mechanism of vasodilation in human skeletal muscle. Venous plasma [ATP] draining forearm skeletal muscle increases during systemic hypoxia (A) and graded exercise (B) in young healthy humans. [Published with permission (48).] C: low-dose barium chloride (BaCl$_2$) used to inhibit inwardly rectifying potassium (K$_{IR}$) channels significantly blunts ATP-mediated vasodilation in the human forearm. [Published with permission (15).] A and B: *P < 0.05 vs. normoxia/rest. B: †P < 0.05 vs. 5 and 15% maximum voluntary contraction (MVC). C: *P < 0.05 vs. control.
sulfide (H2S) have received attention. With respect to the control of skeletal muscle vascular tone during hypoxia, it is unlikely that CO plays a role in the vasodilatory response because hypoxia inhibits heme oxygenase-2 activity and reduces CO generation (59). Although it has not been demonstrated in humans, H2S has been proposed as an oxygen sensor [for a review see (69)] whereby low oxygen can stimulate cystathionine γ-lyase in peripheral tissues to increase H2S production (71) and hyperpolarize the endothelium and smooth muscle cells to evoke vasodilation (65). Recent data in human cutaneous microvasculature support a functional vasodilatory role for H2S (53), and future studies should be aimed at extending these observations to skeletal muscle and other vascular beds in response to systemic and/or local hypoxia. Figure 4 summarizes potential vascular control mechanisms involving RBCs during hypoxic conditions in quiescent and contracting human skeletal muscle.

SUMMARY AND FUTURE DIRECTIONS

Acute systemic hypoxia in humans leads to a net vasodilation in quiescent skeletal muscle that is graded with the level of hypoxia. This vasodilation serves to increase blood flow to maintain oxygen delivery when CaO2 content is reduced. When exercise is combined with hypoxia that leads to greater RBC deoxygenation, a similar phenomenon is observed in that the normal dilatory response to exercise is augmented, which in turn maintains oxygen delivery via elevations in blood flow to the contracting tissue. In both quiescent and active skeletal muscle, these responses act to maintain tissue oxygen consumption. A number of studies designed to partition out various pathways involved in the response have demonstrated that elevated sympathetic outflow and NE release evokes vasoconstriction that restrains resistance vessels and limits the net vasodilation in both resting and active muscle, that circulating epinephrine and β-adrenergic receptor stimulation may be involved in the vasodilation at rest and during mild intensity exercise, and that endothelial-derived NO and PGs are stimulated during hypoxia in resting and contracting muscle. Other factors related to the oxygenation status of Hb likely play a role under these conditions during hypoxic exercise, and accumulating evidence indicates that ATP release by RBCs and nitrite reduction to NO may be involved.

The purpose of this review was to highlight our basic understanding of blood flow and oxygen delivery control to hypoxic skeletal muscle in healthy humans. Accumulating evidence indicates that hypoxic vasodilation is impaired in older healthy adults (52, 78) and patients with heart failure (66) and obstructive sleep apnea (77), populations clearly at elevated risk for ischemic coronary and cerebrovascular disease. Future studies will require furthering our basic understanding of the role of purines (adenosine and ATP), RBC-NO mediated dilation, and H2S in regulating blood flow and oxygen delivery during hypoxia in humans. Furthermore, although the function of transient receptor potential cation (TRP) channels are multifactorial, recent evidence implicates TRPAl channels in oxygen sensing (93) and represents an interesting area for future investigation. Translation of these basic physiology studies into understanding hypoxic vascular control in various pathological states could provide ideas for how to improve tissue blood flow and oxygen delivery in at-risk patient populations.
REFERENCES

