Sleep at high altitude: guesses and facts

Konrad E. Bloch,1,2,3 Jana C. Buenzli,1 Tsogyal D. Latshang,1,3 and Silvia Ulrich1,2
1Sleep Disorders Center, Pulmonary Division, University Hospital of Zurich, Zurich; Switzerland; 2Zurich Center for Human Integrative Physiology, University of Zurich, Zurich, Switzerland; and 3Zurich Center for Interdisciplinary Sleep Research, University of Zurich, Zurich, Switzerland

Submitted 8 June 2015; accepted in final form 13 July 2015

Lowlanders commonly report a poor sleep quality during the first few nights after arriving at high altitude. Polysomnographic studies reveal that reductions in slow wave sleep are the most consistent altitude-induced changes in sleep structure identified by visual scoring. Quantitative spectral analyses of the sleep electroencephalogram have confirmed an altitude-related reduction in the low-frequency power (0.8–4.6 Hz). Although some studies suggest an increase in arousals from sleep at high altitude, this is not a consistent finding. Whether sleep instability at high altitude is triggered by periodic breathing or vice versa is still uncertain. Overnight changes in slow wave-derived encephalographic measures of neuronal synchronization in healthy subjects were less pronounced at moderately high (2,590 m) compared with low altitude (490 m), and this was associated with a decline in sleep-related memory consolidation. Correspondingly, exacerbation of breathing and sleep disturbances experienced by lowlanders with obstructive sleep apnea during a stay at 2,590 m was associated with poor performance in driving simulator tests. These findings suggest that altitude-related alterations in sleep may adversely affect daytime performance. Despite recent advances in our understanding of sleep at altitude, further research is required to better establish the role of gender and age in alterations of sleep at different altitudes, to determine the influence of acclimatization and of altitude-related illness, and to uncover the characteristics of sleep in highlanders that may serve as a study paradigm of sleep in patients exposed to chronic hypoxia due to cardiopulmonary disease.

altitude; hypoxia; sleep; insomnia
during altitude acclimatization, treatments of altitude-induced sleep disturbances, sleep in patients with respiratory disease traveling to altitude, and sleep in highlanders.

Systematic Search of the Literature

A systematic search of the literature was performed (last retrieval on May 30, 2015) using the PubMed and the MEDLINE database (http://www.ncbi.nlm.nih.gov/pubmed/). The search terms and the number of returned articles are listed in Table 1. Titles and abstracts of the retrieved publications were studied. Articles were further analyzed if the following criteria were met: original investigations in adult humans; sleep assessment by either polysomnography, actigraphy, or standardized questionnaires; the study design, altitude, and setting were reported; and the results with appropriate statistics were reported. Data from these studies are described in this review.

A further, detailed analysis of all studies using polysomnography in at least 10 participants in addition to fulfilling the criteria mentioned above was performed. The results of this analysis are presented in Tables 2-4. The minimally required number of 10 participants was derived by a power calculation assuming a minimal important difference of 5% in slow wave sleep, a SD of 7%, a power of 0.8, and an alpha level of 0.05 based on data from a previous study (24).

Table 1. Systematic literature research on sleep at altitude assessed by polysomnography

<table>
<thead>
<tr>
<th>Search Terms</th>
<th>PubMed Search Details</th>
<th>Returned Articles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Altitude and sleep</td>
<td>('altitude'[MeSH Terms] OR 'altitude'[All Fields]) AND ('sleep'[MeSH Terms] OR 'sleep'[All Fields])</td>
<td>559</td>
</tr>
<tr>
<td>2. Random allocation and altitude and sleep</td>
<td>('random allocation'[MeSH Terms] OR ('random'[All Fields] AND 'allocation'[All Fields]) OR 'random allocation'[All Fields]) AND ('altitude'[MeSH Terms] OR 'altitude'[All Fields]) AND ('sleep'[MeSH Terms] OR 'sleep'[All Fields])</td>
<td>8</td>
</tr>
<tr>
<td>3. Hypobaric hypoxia and sleep</td>
<td>hypobaric[All Fields] AND ('anoxia'[MeSH Terms] OR 'anoxia'[All Fields] OR 'hypoxia'[All Fields]) AND ('sleep'[MeSH Terms] OR 'sleep'[All Fields])</td>
<td>52</td>
</tr>
<tr>
<td>4. Random allocation and hypobaric hypoxia and sleep</td>
<td>('random allocation'[MeSH Terms] OR ('random'[All Fields] AND 'hypoxia'[All Fields] OR 'anoxia'[MeSH Terms] OR 'anoxia'[All Fields]) AND 'hypoxia'[All Fields]) AND ('sleep'[MeSH Terms] OR 'sleep'[All Fields])</td>
<td>2</td>
</tr>
<tr>
<td>5. Polysomnography and altitude</td>
<td>('polysomnography'[MeSH Terms] OR 'polysomnography'[All Fields]) AND ('altitude'[MeSH Terms] OR 'altitude'[All Fields])</td>
<td>85</td>
</tr>
<tr>
<td>6. Random allocation and polysomnography and altitude</td>
<td>('random allocation'[MeSH Terms] OR ('random'[All Fields] AND 'polysomnography'[All Fields]) AND ('polysomnography'[MeSH Terms] OR 'polysomnography'[All Fields]) AND ('altitude'[MeSH Terms] OR 'altitude'[All Fields])</td>
<td>0</td>
</tr>
<tr>
<td>7. Polysomnography and hypobaric hypoxia</td>
<td>('polysomnography'[MeSH Terms] OR 'polysomnography'[All Fields]) AND 'hypoxia'[All Fields] AND ('anoxia'[MeSH Terms] OR 'anoxia'[All Fields]) AND 'hypoxia'[All Fields]</td>
<td>8</td>
</tr>
<tr>
<td>8. Random allocation and polysomnography and hypobaric hypoxia</td>
<td>('random allocation'[MeSH Terms] OR ('random'[All Fields] AND 'polysomnography'[All Fields]) AND 'hypoxia'[All Fields] AND ('polysomnography'[MeSH Terms] OR 'polysomnography'[All Fields]) AND 'hypoxia'[All Fields] AND 'anoxia'[MeSH Terms] OR 'anoxia'[All Fields] OR 'hypoxia'[All Fields])</td>
<td>0</td>
</tr>
<tr>
<td>1–8 All</td>
<td>Total number of titles and abstracts screened</td>
<td>714</td>
</tr>
<tr>
<td>1–8 All</td>
<td>Number of articles containing polysomnographic data from altitude studies on at least 10 adult humans and summarized in Table 2</td>
<td>14</td>
</tr>
<tr>
<td>Reference</td>
<td>Design and Setting</td>
<td>EBM</td>
</tr>
<tr>
<td>----------------</td>
<td>--------------------</td>
<td>-----</td>
</tr>
<tr>
<td>Latshang et al. 2013 (24).</td>
<td>Randomized crossover. 1 day at 490 m, 2 days at 1,630 m, 2 days at 2,590 m.</td>
<td>lb</td>
</tr>
<tr>
<td>Stadelmann et al. 2013 (48). Data collected during study by Latshang et al. 2013 (24).</td>
<td>Randomized crossover. 1 day at 490 m, 2 days at 1,630 m, 2 days at 2,590 m.</td>
<td>lb</td>
</tr>
<tr>
<td>Stadelmann et al. 2014 (49). Data collected during study by Latshang et al. 2013 (24).</td>
<td>Randomized crossover. 1 day at 490 m, 2 days at 1,630 m, 2 days at 2,590 m.</td>
<td>lb</td>
</tr>
<tr>
<td>Tseng et al. 2014 (52).</td>
<td>Observational. 1 night at 9 m, 2 nights at 3,150 m, 1 night at 9 m.</td>
<td>4</td>
</tr>
</tbody>
</table>
Table 2.—Continued

<table>
<thead>
<tr>
<th>Reference</th>
<th>Design</th>
<th>Setting</th>
<th>Participants</th>
<th>Main Results</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nussbaumer-Ochsner et al. 2012 (39).</td>
<td>Observational. 1 night at 490 m, night 1 and 3 at 4,559 m.</td>
<td>Field study. Sleep laboratory in Zürich, Regina Margherita hut at 4,559 m, Swiss/Italian Alps.</td>
<td>4 16 Healthy mountaineers, age 45 yr.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Time at altitude

1 day at 490 m, 3 days at 4,559 m.

Sleep

Sleep efficiency, %: 490 m 93; 4,559 m night 1 69*; night 3 75.
Stage 3 and 4, %: 490 m 18; 4,559 m night 1 6; night 3 11.
REM, %: 490 m 8; 4,559 m night 1 3*; night 2 4.
Arousal index, 1/h: 490 m 5.4; 4,559 m night 1 17.9*; night 3 5.7.
Breathing

SpO₂, %: 490 m 96; 4,559 m night 1 67*, night 3 71*.
AHI, 1/h: 490 m 0.1; 4,559 m night 1 160.9*; night 3 86.5%.
*P < 0.05 vs. 490 m; ¶P < 0.05 vs. day 1 at same altitude. | Symptoms of AMS and of disturbed sleep were significantly reduced in the morning after the 3rd vs. the 1st night at 4,559 m. |

| Muhm et al. 2009 (30). | **Randomized crossover.** Exposure to simulated altitude of 305 m and 2,438 m for 18 h each. Washout period of >3 wk. | Hypobaric chamber simulating 305 m and 2,438 m. | 1b 20 Healthy men, age 44.1 yr. |

Time at altitude

18 h at 305 m and at 2,438 m, respectively.

Sleep

Sleep efficiency, %: 305 m 87; 2,438 m 84.
Slow wave sleep, %: 305 m 3; 2,438 m 2.
REM, %: 305 m 17; 2,438 m 17.
Arousal index, 1/h: 305 m 139; 2,438 m 152.
SpO₂, %: 305 m 92; 2,438 m 86.
Breathing

SpO₂, %: 305 m 92; 2,438 m 86*.
Oxygen desaturation index (>3%), 1/h: 305 m 3; 2,438 m 12*.
*P < 0.05 vs. 305 m | Objective and subjective measurements of sleep quantity and quality did not change significantly with changes in simulated altitude nor did postsleep neurobehavioral performance or mood. |

| Beaumont et al. 2004 (3). | **Randomized, placebo-controlled, crossover.** Sleep studies during 4 nights, separated by 1 wk washout in normobaric conditions. Treatment with zolpidem 10 mg, zaleplon 10 mg, placebo at simulated 4,000 m, respectively. | Hypobaric chamber simulating 80 and 4,000 m. | 4 (altitude effect) 1b (drug effect) 12 Healthy men, age 29.9 yr. |

Time at altitude

1 night at 80 m, 3 nights at simulated 4,000 m.

Sleep

Sleep efficiency, %: 80 m 87; 4,000 m: placebo 81; zaleplon 84; zolpidem 85.
NREM 3 and 4, %: 80 m 23; 4,000 m: placebo 38%; zaleplon 20; zolpidem 24%.
REM, %: 80 m 17; 4,000 m: placebo 7%; zaleplon 10%; zolpidem 10%.
Arousal index, 1/h: NA. | Minor effect of hypobaric hypoxia on slow wave and REM sleep. Accordingly, the effect of drugs was also minor. The drugs did not induce any significant changes in oxygen saturation or periodic breathing. |
<table>
<thead>
<tr>
<th>Reference</th>
<th>Design and Setting</th>
<th>EBM</th>
<th>Participants</th>
<th>Main Results</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beaumont et al. 2007 (4).</td>
<td>Design</td>
<td>Randomized, placebo-controlled crossover. 5 days at 1,000 m, 3 periods of nights at 3,613 m with washout phase.</td>
<td>4 (altitude effect) 1b (drug effect)</td>
<td>12 Healthy military trainees, age 22.2 yr.</td>
<td>Time at altitude 1 night at 1,000 m, 3 periods of 3 consecutive nights at 3,613 m, 1 night on placebo, 1 night on zolpidem, 1 night on zaleplon. Sleep: Sleep efficiency, %: 1,000 m: placebo 91%; zaleplon 93%; zolpidem 93%; Arousal index, 1/h: NA. NREM 4 (SWS NA), %: 1,000 m: placebo 12%; zaleplon 13%; zolpidem 15%. REM, %: 1,000 m: placebo 19%; zaleplon 19%; zolpidem 17. Breathing SpO2, %: 1,000 m: placebo 83%; zaleplon 84%; zolpidem 82%. AHI, 1/h: placebo 82.9*, zaleplon 80.2*, zolpidem 73.6*. *P < 0.05 vs. placebo. *P < 0.05 vs. 1,000 m; ¶P < 0.05 vs. placebo.</td>
</tr>
<tr>
<td>Nussbaumer-Ochsner et al. 2010 (37).</td>
<td>Design</td>
<td>Randomized crossover. 1 day at 490 m, 2 days at 1,860 m, 2 days at 2,590 m. Discontinuation of CPAP therapy during study.</td>
<td>1b</td>
<td>34 Patients with obstructive sleep apnea syndrome living at <600 m, age 62 yr. Discontinued their CPAP therapy during the study period.</td>
<td>Time at altitude 1 day at 490 m, 2 days at 1,860 m, 2 days at 2,590 m. Sleep: Sleep efficiency, %: 490 m: 86%; 1,860 m: 1st night 82%; 2nd night 79%; 2,590 m: 1st night 78%; 2nd night 71%. NREM 3 and 4, %: 490 m: 1st night 82%; 2nd night 79%; 2,590 m: 1st night 66%; 2nd night 60%. REM, %: 490 m: 13%; 1,860 m: 1st night 13%; 2nd night 12%; 2,590 m: 1st night 10%; 2nd night 10%. Arousal index, 1/h: 490 m: 35.5; 1,860 m: 1st night 41.8%; 2nd night 45.5%; 2,590 m: 1st night 51.3%; 2nd night 49.3%. Breathing SpO2, %: 490 m: 94%; 1,860 m: 1st night 90%; 2nd night 89%; 2,590 m: 1st night 86%; 2nd night 87%. AHI, 1/h: 490 m: 51.2; 1,860 m: 1st night 85.1%; 2nd night 68.5%; 2,590 m: 1st night 90.3%; 2nd night 88.6%. *P < 0.05 vs. 490 m; P = NS night 2 vs. 1 at same altitude.</td>
</tr>
</tbody>
</table>

Continued
Table 2.—Continued

<table>
<thead>
<tr>
<th>Reference</th>
<th>Design and Setting</th>
<th>EBM</th>
<th>n</th>
<th>Participants</th>
<th>Main Results</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ulrich et al. 2014 (53). Data collected during study of Nusshammer-Ochsner et al. 2012 (35). Design</td>
<td>Randomized, placebo-controlled, double-blind crossover.</td>
<td>4b</td>
<td>18</td>
<td>Patients with obstructive sleep apnea syndrome living at <600 m, age 64 yr. Discontinued their CPAP therapy during the study period. Time at altitude</td>
<td>1 day at 490 m, 2 days at 1,860 m, 1 day at 2,590 m. Outcomes assessed at 490 m off CPAP and at 2,590 m on placebo and acetazolamide, respectively. Sleep</td>
<td>See Ref. 35. Breathing SpO2, %: 490 m 93; 2,590 m placebo 86*, acetazolamide 89%. Cerebral tissue oxygenation, %: 490 m 65; 2,590 m placebo 59%, acetazolamide 61%. AHI, 1/h: 490 m 57.3; 2,590 m placebo 86.5*, acetazolamide 67.4*; *P < 0.05 vs. 490 m; ¶P < 0.05 vs. placebo at same altitude.</td>
</tr>
</tbody>
</table>

Numbers in the participants and results columns are means or medians; n = number of participants. EBM, Oxford Center of Evidence-based Medicine Level of Evidence; level 4b, individual randomized, controlled trial; level 4, case series; CPAP, continuous positive airway pressure; AHI, apnea/hypopnea index; REM, rapid eye movement sleep; NREM, nonrapid eye movement sleep; SpO2, mean nocturnal arterial oxygen saturation.

Early studies have suggested that a pronounced sleep fragmentation occurred with exposure to hypobaric hypoxia (2). However, these observations obtained in only five subjects confined to a hypobaric chamber for several weeks while being exposed to extremely low barometric pressure are not compatible with the findings reported by the mountaineers (39).

The results of our systematic analysis of the literature on polysomnographic studies in newcomers at altitude are provided in Tables 1–4. In the largest study evaluating alterations subjacent to altitude (39), it is important to consider both subjective reports and objective assessments when evaluating adverse effects of sleep. Due to the inhomogeneity of the studies a pooled analysis was not feasible. The study design and setting, the Oxford Center of Evidence-Based Medicine evidence level (40), the number of participants, and the main outcomes were extracted and tabulated for these polysomnographic studies.
Fig. 2. Data from a randomized trial evaluating effects of altitude on sleep and cognitive performance in 51 healthy men. A: this shows the decrease in nocturnal oxygen saturation and the increase in the apnea/hypopnea index at the higher altitudes (left: 1,630 m and 2,590 m compared with 490 m), and the corresponding changes in deep sleep (right); the number of arousals is similar at the three altitudes (\(\star P < 0.05 \) vs. 490 m, \(\dagger \dot{P} < 0.05 \) vs. 490 m and 1,650 m). B: spectral plots of power density from frontal (F3A2; left) and central electroencephalographic derivations (C3A2; right) that quantify the reduction in slow wave activity (0.8 – 4.6 Hz) and the increase in the spindle frequency range (10 – 15 Hz) at the higher altitudes (1,630 and 2,590 m, nights 1 and 2, N1 and N2, compared with a night at 490 m). C: Presleep (left) and postsleep (right) performance in a visual-motor task are illustrated. The decrement of overnight memory consolidation at 2,590 vs. 490 m is reflected in the increase in directional error in 264 movements at 2,590 vs. 490 m. A–C are reproduced in modified form with permission from Latshang et al. (24), Stadelmann et al. (48), and Tesler et al. (51).
periodic breathing triggers arousals from sleep or, vice versa, sleep fragmentation promotes instability of ventilatory control remains controversial. Both spontaneous arousals not associated with central apnea and arousals following apneas of periodic breathing have been described (19). However, the observation that the amount of high-altitude periodic breathing in mountaineers arriving at 4,559 m increased with acclimatization over the course of 3 nights (i.e., the apnea/hypopnea index increased from 60.9/h in the 1st to 86.5/h in the 3rd night at 4,559 m) while the arousal index decreased over the same period (from 17.9/h to 5.7/h) suggests independent physiologic mechanisms (39). Correspondingly, in healthy newcomers at 2,590 m, the arousal index determined by visual EEG analysis was not different from that at 490 m (i.e., 7.7/h at 2,590 m vs. 8.3/h at 490 m) although the apnea/hypopnea index had increased significantly (13.1/h at 2,590 m vs. 4.6/h at 490 m) (24). Quantitative electroencephalogram analysis in the same study revealed that spectral EEG signatures during periodic breathing without visually scored arousals were similar to those of sleep periods without periodic breathing but with visually scored arousals (46, 49). Therefore, high-altitude periodic breathing seems to be associated with EEG alterations not apparent during visual inspection using standard criteria (46). Subtle changes in electrical brain activity induced by exposure to even mild hypobaric hypoxia may thus reflect cortical dysfunction at altitude. Sophisticated, quantitative measurement techniques are required to detect these effects.

Consistent with an unfavorable effect of altitude on sleep, overnight changes in slow wave-derived measures of neuronal synchronization (i.e., overnight decrements in the slope of slow waves) were less pronounced at 2,590 m than corresponding baseline measures at 490 m and this was associated with a decline in the sleep-related memory consolidation assessed by a visual-motor learning task (Fig. 2C) (51). Impairment in postural control observed at 2,590 m during the same study further supports a role of even mild hypoxia and possibly sleep disturbances in causing central nervous performance decrements (47) even though vigilance and cognitive function were not noticeably affected in certain tests (24). In turn, studies performed at higher altitude (3,800 m and 3,900 m) have revealed cognitive impairment and improvement of sleep and periodic breathing by nocturnal oxygen enrichment that were followed by subsequent improvements in daytime performance in neuropsychological tests (26, 27).

Table 3. Sleep in lowlanders ascending to altitude, effect of acclimatization

<table>
<thead>
<tr>
<th>Reference</th>
<th>Design and Setting</th>
<th>EBM</th>
<th>Participants</th>
<th>Main results</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latshang et al. 2013 (24).</td>
<td>See Table 2.</td>
<td>1b</td>
<td>51 Healthy men.</td>
<td>See Table 2.</td>
<td>Acclimatization (days at altitude) was a significant independent predictor of the %NREM sleep stages 3 and 4, of the %time with wakefulness after sleep onset, and of the AHI when controlling for several covariates.</td>
</tr>
<tr>
<td>Stadelmann et al. 2013 (48). Data collected during study by Latshang et al. (24).</td>
<td>See Table 2.</td>
<td>1b</td>
<td>44 Healthy men.</td>
<td>See Table 2.</td>
<td>Quantitative spectral analysis of frontal and central EEG derivations revealed that the altitude dependent decrease in slow wave activity was more pronounced in the first compared to the second night at altitude. In addition, the increase in the number of sleep cycles at higher altitudes was more pronounced in the first compared to the second night.</td>
</tr>
<tr>
<td>Tseng et al. 2014 (52).</td>
<td>See Table 2.</td>
<td>4</td>
<td>40 Healthy men and women.</td>
<td>See Table 2.</td>
<td>There was no statistically significant difference between sleep variables in the first and second night at 3,150 m suggesting no effect of acclimatization.</td>
</tr>
<tr>
<td>Nussbaumer-Ochsner et al. 2012 (39).</td>
<td>See Table 2.</td>
<td>4</td>
<td>16 Healthy mountaineers.</td>
<td>See Table 2.</td>
<td>Acclimatization from day 1 to day 3 at 4,559 m was associated with an increase in deep sleep (NREM stages 3 and 4) and REM sleep and in the AHI while the arousal decreased.</td>
</tr>
<tr>
<td>Nussbaumer-Ochsner et al. 2010 (37). See also Table 2.</td>
<td>See Table 2.</td>
<td>1b</td>
<td>34 Patients with obstructive sleep apnea.</td>
<td>See Table 2.</td>
<td>In patients with obstructive sleep apnea syndrome living near sea level and discontinuing their continuous positive airway pressure therapy during altitude travel there was no difference in sleep characteristics between the first and second night at 1,860 and 2,590 m, respectively.</td>
</tr>
</tbody>
</table>

Numbers in the participants and results columns are means or medians; n = number of participants. Abbreviations: see Table 2.
Sleep Disturbances in Altitude-Related Illness

It is conceivable that altitude-related illness including acute mountain sickness and high-altitude pulmonary edema may interfere with refreshing sleep either directly or through symptoms such as headache, cough, and shortness of breath although there is little robust evidence to corroborate this (Tables 2–4). Mountain travelers with acute mountain sickness at 3,250 m had a minor reduction in REM sleep but an otherwise similar sleep structure compared with controls without acute mountain sickness (52). High-altitude pulmonary edema susceptible subjects revealed a major reduction in sleep efficiency and in deep sleep (NREM 3 and 4) in the first night after ascent to 4,559 m within less than 24 h (Table 4) (38). These changes were similar to those in mountaineers without known susceptibility to high-altitude pulmonary edema in the same setting (Table 2) (39). Since high-altitude pulmonary edema usually develops within 2–4 days after rapid ascent, sleep in the first night at altitude may not have been affected in the participants of the cited study although subtle changes in the nocturnal breathing pattern, i.e., an increase in the breath rate and periodic breathing, were noted (9). The combination of sustained and intermittent hypoxia associated with periodic breathing in the first 1–2 nights at high altitude with the associated surges of pulmonary artery pressure may promote the subsequent development of high-altitude pulmonary edema in susceptible subjects.

Treatment of Altitude-Induced Sleep Disturbances

Several studies have evaluated the effect of hypnotic drugs on altitude-induced sleep disturbances, but only few used polysomnography (Table 4). In a randomized, placebo-controlled hypobaric chamber study simulating an altitude of 4,000 m (3) and a field study in the French Alps at 3,610 m (4), the GABA_A agonists zaleplon (10 mg) and zolpidem (10 mg) were evaluated. Zolpidem provided minor although statistically significant improvements in deep NREM sleep (i.e., a 2.6% increase in stage 4 vs. placebo). No impairment of nocturnal oxygen saturation, breathing pattern, or daytime performance in cognitive test batteries was noted with either zaleplon or zolpidem compared with placebo (3, 4). In a study performed in Nepal at 3,540 m, 34 trekkers received either temazepam (7.5 mg) or acetazolamide (125 mg) on the first night at that altitude according to a randomized, double-blind design (50). Participants receiving temazepam reported a better subjective sleep quality and less frequent awakenings to urinate than those receiving acetazolamide. No polysomnographic data were available in that study (50). In climbers staying at Everest base camp at 5,300 m, temazepam (10 mg) improved subjective sleep quality and reduced the cyclic oxygen desaturations due to periodic breathing compared with values during a placebo night without affecting mean nocturnal oxygen saturation (13). However, temazepam (10 mg) did not improve subjectively perceived insomnia nor actigraphic indexes of sleep continuity in 19 trekkers sleeping at 5,000 m in Nepal compared with a control group of 14 trekkers receiving placebo (31). Interpretation of these results is hampered by incomplete data sets, and the small number of participants, some of them also taking acetazolamide.

In high-altitude pulmonary edema susceptible mountaineers, dexamethasone (2 × 8 mg/d) taken before a rapid ascent to 4,559 m resulted in a better subjective sleep quality and a greater total sleep time and sleep efficiency recorded by polysomnography in the first night at altitude compared with participants not receiving the drug (Table 4) (38). Taking dexamethasone before ascent increased the mean nocturnal oxygen saturation and reduced the heart rate at 4,559 m, which is consistent with the beneficial effects of dexamethasone on reducing pulmonary artery pressure and preventing overt high-altitude pulmonary edema (29).

Sleep in Patients with Respiratory Disease Traveling to Altitude

Although patients with disturbances of control of breathing or gas exchange impairment due to respiratory disease may be particularly susceptible to adverse effects of hypobaric hypoxia at altitude, there has been little scientific evidence to counsel these patients regarding the risks of altitude travel and effective measures to prevent them. To address this point, we have performed several randomized, controlled trials in lowlanders with obstructive sleep apnea syndrome (OSA) (Tables 2–4) (25, 35, 37, 53). These studies revealed that OSA patients who discontinued their continuous positive airway pressure therapy when staying in Alpine resorts at an elevation of 1,860 and 2,590 m had pronounced nocturnal hypoxemia and an exacerbation of sleep apnea due to frequent central events (37). This was associated with a reduced cerebral tissue oxygenation (53), decreased sleep efficiency and deep sleep, and more frequent arousals compared with nights at 490 m (37, 53). Moreover, driving simulator performance during daytime was impaired at altitude (37). Continuous positive airway pressure treatment with computer controlled mask pressure (AutoCPAP) combined with acetazolamide improved arterial oxygen saturation and prevented the altitude-induced increase in sleep apnea (25). Another trial suggested that acetazolamide alone may be beneficial for patients with OSA traveling to remote mountain areas where CPAP therapy is not feasible as it improved...
Table 4. Treatment of sleep disturbances at altitude

<table>
<thead>
<tr>
<th>Reference</th>
<th>Design and Setting</th>
<th>EBM</th>
<th>n</th>
<th>Participants</th>
<th>Main results</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beaumont et al. 2004 (3).</td>
<td>Randomized, placebo-controlled, crossover. Sleep studies during 4 nights, separated by 1 wk washout. Treatment with zolpidem 10 mg, zaleplon 10 mg, placebo at simulated 4,000 m, respectively.</td>
<td>4 (altitude effect) 1b (drug effect)</td>
<td>12</td>
<td>Healthy men.</td>
<td>See Table 2.</td>
<td>Minor effect of hypobaric hypoxia on slow wave and REM sleep. Accordingly, the effect of drugs was also minor and only significant for zolpidem in terms of a slight increase in NREM stage 4 compared to placebo. The drugs did not induce any significant changes in oxygen saturation or periodic breathing.</td>
</tr>
<tr>
<td>Beaumont et al. 2007 (4). See also Table 2.</td>
<td>Randomized, placebo-controlled crossover study of zaleplon and zolpidem, respectively, vs. placebo. 5 days at 1,000 m, 3 times 3 nights at 3,613 m using the different drugs, washout phase of at least 1 wk between treatment nights.</td>
<td>4 (altitude effect) 1b (drug effect)</td>
<td>12</td>
<td>Healthy military trainees.</td>
<td>See Table 2.</td>
<td>Exposure to 3,613 m was associated with a significant reduction in NREM sleep stage 4 and in sleep efficiency. This was partially reversed with zaleplon (sleep efficiency) and zolpidem (sleep efficiency and NREM stage 4) compared to placebo at 1,000 m. Nocturnal SpO2 was not affected by either drug.</td>
</tr>
</tbody>
</table>
| Nussbaumer-Ochsner et al. 2011 (38). | Randomized study of dexamethasone prophylaxis of high-altitude pulmonary edema susceptible but otherwise healthy subjects, age 47 yr. | 3b 14 | High-altitude pulmonary edema susceptible but otherwise healthy subjects, age 47 yr. | Time at altitude 1 night at 490 m, 3 nights at 4,559 m. Dexamethasone late group: Sleep Sleep efficiency, %: 490 m 91; 4,559 m night 1 65*; night 3 69#. Stage 3 and 4, %: 490 m 22; 4,559 m night 1 11*; night 3 20#. REM, %: 490 m 6; 4,559 m night 1 2*; night 3 3#. Arousal index, 1/h: 490 m 3.0; 4,559 m night 1 8.1*; night 3 6.0. Breathing SpO2, %: 490 m 96; 4,459 m night 1 71*; night 3 80#. AHI, 1/h: 490 m 1.9; 4,459 m night 1 91.3*; night 3 9.6#. | Multipl...
Table 4.—Continued

<table>
<thead>
<tr>
<th>Reference</th>
<th>Design and Setting</th>
<th>EB M</th>
<th>n</th>
<th>Participants</th>
<th>Main results</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nussbaumer-Ochsner et al. 2012 (35).</td>
<td>Randomized, placebo-controlled, double-blind crossover study of acetazolamide 2 × 250 mg/d during stay at altitude vs. placebo in patients with obstructive sleep apnea. Discontinuation of CPAP therapy during study. 1 day at 490 m, 2 days at 1,860 m, 1 day at 2,590 m.</td>
<td>lb</td>
<td>45</td>
<td>Patients with obstructive sleep apnea syndrome living at <600 m, age 64 yr. Discontinued their CPAP therapy during the study period.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dexamethasone early group:

Sleep
- Sleep efficiency, %: 490 m 96; 4,559 m night 1 95¶; night 3 90¶.
- Stage 3 and 4, %: 490 m 19; 4,559 m night 1 19*; night 3 18*.
- REM, %: 490 m 10; 4,559 m night 1 1*; night 2 2*.
- Arousal index, 1/h: 490 m 2.0; 4,559 m night 1 5.6*; night 3 6.2*.

Breathing
- SpO₂, %: 490 m 95; 4,559 m night 1 78*; night 3 79*.
- AHI, 1/h: 490 m 1.7; 4,559 m night 1 85.3*; night 3 52.3*#
- *P < 0.05 vs. 490 m; ¶P < 0.05 vs. acetazolamide early; #P < 0.05 vs. day 1 at 4,559 m.

Time at altitude
- 1 day at 490 m, 2 days at 1,860 m, 1 day at 2,590 m. Outcomes assessed at 490 m, 1,860 m 2* night and 2,590 m 1* night on placebo and acetazolamide, respectively.

Sleep
- Sleep efficiency, %: 490 m 78; 1,860 m placebo 72, acetazolamide 81¶;
- 2,590 m placebo 66*; acetazolamide 77¶.
- NREM 3 and 4, %: 490 m 6; 1,860 m placebo 6, acetazolamide 8; 2,590 m placebo 4*; acetazolamide 3*.
- REM, %: 490 m 8; 1,860 m placebo 12, acetazolamide 8; 2,590 m placebo 9, acetazolamide 8.
- Arousal index, 1/h: 490 m 44.9; 1,860 m placebo 52.8, acetazolamide 47.4; 2,590 m placebo 72.7¶;
- acetazolamide 54.9¶.

Breathing
- SpO₂, %: 490 m 93; 1,860 m placebo 89¶; acetazolamide 91*; 2,590 m placebo 85*, acetazolamide 88¶.
- AHI, 1/h: 490 m 51.2; 1,860 m placebo 63.6*, acetazolamide 48.0¶;
- 2,590 m placebo 68.2*, acetazolamide 61.4¶.
- *P < 0.05 vs. 490 m; ¶P < 0.05 vs. placebo at same altitude.

In patients with obstructive sleep apnea syndrome discontinuing their CPAP therapy during a stay at 1,860 m and 2,590 m acetazolamide 2 × 250 mg/day was superior to placebo in terms of nocturnal oxygen saturation, AHI, sleep efficiency, and arousal index. Therefore, patients with obstructive sleep apnea may benefit from acetazolamide therapy during a stay at altitude if CPAP therapy is not feasible.
<table>
<thead>
<tr>
<th>Reference</th>
<th>Design and Setting</th>
<th>Design</th>
<th>n</th>
<th>Participants</th>
<th>Main results</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ulrich et al. 2014 (53)</td>
<td>See Table 2 and Nussbaumer-Ochsner et al. 2012 (35).</td>
<td>1b</td>
<td>18</td>
<td>Patients with obstructive sleep apnea syndrome living at <600 m, age 64 yr.</td>
<td>Discontinued their CPAP therapy during the study period.</td>
<td>Study using transcranial near-infrared spectroscopy during sleep.</td>
</tr>
<tr>
<td></td>
<td>Data collected during study of Nussbaumer-Ochsner et al. 2012 (35) above.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Latshang et al. 2012 (25)</td>
<td>Randomized, placebo-controlled, double-blind crossover.</td>
<td>1b</td>
<td>51</td>
<td>Patients with obstructive sleep apnea syndrome living at <600 m, age 63 yr.</td>
<td>Time at altitude 2 days at 490 m, 2 days at 1,630 m, 1 day at 2,590 m.</td>
<td>In lowlanders with obstructive sleep apnea syndrome spending 3 days at 1,630 m and 2,590 m, combined treatment with acetazolamide and CPAP with计算机controlled mask pressure adjustments improved nocturnal oxygen saturation, the AHI and some aspects of sleep structure compared to CPAP and placebo. Therefore, patients with obstructive sleep apnea syndrome should be recommended to continue using their CPAP therapy during an altitude sojourn and they may benefit from additional treatment with acetazolamide.</td>
</tr>
<tr>
<td></td>
<td>Acetazolamide 250 mg in the morning and 500 mg in the evening during stay at altitude vs. placebo. CPAP therapy during stay at altitude. 1 day at 490 m, 2 days at 1,630 m, 1 day at 2,590 m.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Field study. University Hospital Zurich, mountain hostels in Swiss Alps.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
arterial and cerebral oxygenation and central sleep apnea and prevented excessive blood pressure rises. These studies in obstructive sleep apnea patients have been reviewed recently (7, 21).

Preliminary studies revealed that lowlanders with chronic obstructive pulmonary disease [COPD, Global Initiative for Chronic Obstructive Lung Disease (GOLD) grade 2–3] who were normoxemic and did not have sleep apnea at 490 m were significantly more hypoxemic and developed moderate to very severe, predominantly central sleep apnea with reduced sleep efficiency and deep sleep when staying at 1,650 and 2,590 m compared with 490 m (23).

Thus current evidence suggests that patients with obstructive sleep apnea or COPD at lowlands are particularly susceptible to periodic breathing and sleep disturbances when staying at altitude. No other robust data on sleep in altitude travelers with preexisting respiratory or cardiac conditions are available.

Sleep in Highlanders

Virtually no conclusive data on sleep characteristics in highland residents are available. Normand et al. (32) reported that sleep organization assessed in Bolivian highlanders in La Paz at 3,850 m was “roughly” similar in 14 highlanders with polycythemia compared with 6 without polycythemia, but no comparison to measurements in lowlanders was provided. Coote et al. (11) performed polysomnographic studies in 8 Peruvian highlanders (mean hematocrit 58%) at Cerro de Pasco (4,330 m). Sleep efficiency was 91%, the relative duration of deep sleep (NREM stages 3 and 4) was 26%. Again, no comparison to data from lowlanders was performed in the cited and in a similar additional study performed by the same group (10). In Indian soldiers, six of them Ladakhis born and brought up at 3,300-3,800 m, sleep studies were obtained at an altitude of 3,500 m but the data are inconclusive because of the small sample size (45). Our own preliminary data from a study in Kyrgyz highlanders with high-altitude pulmonary hypertension (n = 36) suggest that the time in wakefulness after sleep onset was increased and NREM sleep stages 1 and 2 were increased compared with healthy highlanders (n = 54) and lowlanders (n = 34) (22); highlanders with high-altitude pulmonary hypertension had a significantly higher apnea/hypopnea index compared with both healthy highlanders and lowlanders.

Conclusions

Our review of the scientific literature on sleep and its disturbances at altitude confirm the longstanding notion that mountain tourists commonly perceive sleep disturbances with insomnia and frequent awakenings in the first few nights at altitude. High-altitude insomnia is generally modest, and it may or may not be associated with acute mountain sickness. The most consistent change reported from the few well-designed polysomnographic studies performed in healthy lowlanders arriving at altitude is a decrease in slow wave sleep. This may not only affect subjective well-being but also impair memory consolidation during sleep and possibly vigilance and cognitive and visual-motor performance during daytime. However, the evidence to support these assumptions is still scant. Further studies are required to better quantify the effects of different levels of altitude on sleep in persons of both sexes and of various ages and to elucidate the underlying physiological

<table>
<thead>
<tr>
<th>Table 4.—Continued</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Reference Design and Setting</th>
<th>Participants</th>
<th>Main results</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breathing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SpO2, %: 490 m off-CPAP 93*, CPAP 95; 1,630 m CPAP + placebo 94%, CPAP 95%</td>
<td>2,590 m CPAP + placebo 94%, CPAP 95%</td>
<td>AHI, 1/h: 490 m off-CPAP 58.3*, CPAP 6.6; 1,630 m CPAP + placebo 10.7*, CPAP 5.8%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,590 m CPAP + placebo 6.8%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>acetazolamide 91*¶</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>acetazolamide 91*¶</td>
<td></td>
</tr>
<tr>
<td>Numbers in the participants and results columns are means or medians; n = number of participants. Abbreviations: see Table 2.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

J Appl Physiol • doi:10.1152/japplphysiol.00448.2015 • www.jappl.org
mechanisms. Areas of uncertainty that should be addressed by future research relate to the interaction of high-altitude periodic breathing and sleep fragmentation, to the role of hypoxia in impairing daytime performance directly or via sleep disturbance (sleep fragmentation and altered sleep structure), and to the changes in sleep with acclimatization. A better evaluation of the efficacy and safety of drugs for treatment of altitude-related sleep disturbances is also required. The research on sleep in high-altitude residents is still at its very beginning but might provide insights that are valuable for the better understanding and treatment of sleep disturbances in patients with chronic hypoxia at lowlands due to cardiac or pulmonary disease. In summary, although recent research has provided several facts that corroborate or refute previous guesses, more research is clearly needed to advance our understanding of various aspects of sleep at altitude.

GRANTS

This study was supported by the Swiss National Science Foundation, Zurich Lung League; Zurich Center for Interdisciplinary Sleep Research, University of Zurich; and Zurich Center for Human Integrative Physiology, University of Zurich.

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the author(s).

AUTHOR CONTRIBUTIONS

REFERENCES

