High-intensity interval training evokes larger serum BDNF levels compared with intense continuous exercise

Cinthia Maria Saucedo Marquez,1 Bart Vanaudenaerde,4 Thierry Troosters,3,4 and Nicole Wenderoth1,2

1KU Leuven, Department of Kinesiology and Rehabilitation Sciences, Research Center for Movement Control and Neuroplasticity, Heverlee, Belgium; 2ETH Zurich, Department of Health Sciences and Technology, Neural Control of Movement, Zurich, Switzerland; 3KU Leuven, Department of Rehabilitation Sciences and Respiratory Division, University Hospital, Leuven, Belgium; and 4KU Leuven, Pneumology Division, University Hospital, Leuven, Belgium

Submitted 13 February 2015; accepted in final form 12 October 2015

One mechanism through which exercise might facilitate brain health is by increasing the expression of brain-derived neurotrophic factor (BDNF), a natural protein found mainly in the brain (51). BDNF is a neurotrophin that regulates crucial functions of the central nervous system such as neurogenesis, neuroprotection, neuroregeneration, cell survival, and the development and maintenance of synaptic connections between neurons (34, 87, 89). In rodent models it has been repeatedly demonstrated that physical exercise elevates BDNF mRNA expression and protein concentration in hippocampus, striatum, and various cortical regions (13, 45, 51, 58, 88, 95), even if only one bout of exercise is performed (17, 26, 37, 51). Remarkably, these BDNF increases in the brain are positively associated with improved cognition, especially in learning and memory tasks that are hippocampus-dependent such as the Morris water maze task (26, 89) or the object recognition task (49).

Also, in humans it is believed that acute physical exercise increases BDNF levels in the brain, providing an interesting paradigm for enhancing cognitive functions in healthy individuals and patients (43, 62, 63). Unlike in animals, this conclusion is based on indirect evidence derived from either measuring BDNF levels in the blood or from data in cohorts that differed according to their BDNF genotype (8, 52). The current hypothesis is that BDNF is primarily produced in the brain, some of which crosses the blood-brain barrier (53) and travels to the periphery where it can be measured in plasma and serum (36). BDNF is stored in platelets and is released during clotting processes, which leads to concentrations of serum BDNF ([BDNF]ser) that are approximately 200-fold higher relative to the concentration of plasma BDNF ([BDNF]pla) (17, 31). Other potential loci of BDNF production are skeletal muscle cells (38, 50), but it is currently believed that BDNF cannot leave the cell (58), implying that BDNF produced in muscle does not contribute directly to BDNF levels measured in serum or plasma.

Several studies found that a single bout of exercise increases either [BDNF]pla (58, 72, 100), [BDNF]ser (15, 22, 64, 79), or both (9, 48). More specifically, in healthy individuals the positive effect of exercise on BDNF levels seems to be intensity dependent (15, 31, 96). This has important implications when exercise is used to positively influence BDNF expression to facilitate neural plasticity and cognition in patients and raises the question as to which type of training might be optimal for influencing BDNF synthesis. Two exercise protocols that are commonly used in clinical settings are continuous training (CON) performed at moderate to high intensities or high-intensity interval training (HIT). Both are equally effective at improving exercise performance and reducing the risk of cardiovascular disease (18, 27). Importantly, use of the HIT protocol over other high-intensity exercise protocols is preferred in patient populations due to its higher efficacy, tolerability, and adherence without compromising patient safety (19, 24, 94). However, whether or not HIT and CON protocols are also equally effective at increasing BDNF levels and poten-
tially facilitating brain health to a similar extent is currently unknown.

Here we investigated the kinetics of [BDNF]_{ser} by measuring it before, during, and after participants performed either a CON or HIT exercise protocol (experiment 1). We then tested and in a larger cohort whether the maximal increase in [BDNF]_{ser} between these two protocols is different (experiment 2). Based on previous research (15, 23, 31, 64, 96) we hypothesize that both exercise protocols will elevate [BDNF]_{ser} concentrations compared with a resting control condition. Furthermore, we assessed exercise-induced changes in lactate, cortisol, and range of perceived exhaustion using Borg CR-10 scale ratings for dyspnea and leg fatigue. We also asked participants which protocol they preferred to quantify potential adherence to an exercise routine. The results of this study might have important clinical implications because exercise is increasingly considered as an adjuvant therapy beneficial not just for cardiovascular health, but also for brain health in a large variety of patient populations.

MATERIALS AND METHODS

Participants

Eight active men (age 28 ± 5 yr) were recruited for experiment 1 and 21 men (age 27 ± 4 yr) were recruited for experiment 2. All participants were required to complete all exercise sessions. This study was approved by the Ethical Committee for Biomedical Research at the KU Leuven in agreement with the Code of Ethics of the World Medical Association Declaration of Helsinki (60). Participants were screened with the Physical Activity Readiness Questionnaire for any cardiac or respiratory problems that might have placed them at risk by participating in the study. Healthy men who were physically active for 3 or more days/wk with no contraindications to exercise, and who were currently not taking drugs, tobacco, or any other medications were included in this study. To minimize confounding effects, participants were asked to avoid consumption of alcohol or caffeine 24 h prior to testing. They were also instructed not to exercise on the same day of the experiment. At the beginning of every session, sleep hours, quality of sleep, smoking, alcohol and caffeine consumption, and physical activity performed before the experiment were documented. Written informed consent was obtained from all participants prior to participation.

Overall Experimental Design

We performed two separate experiments. In experiment 1 we sampled [BDNF]_{ser} multiple times during the exercise sessions to investigate the kinetics of [BDNF]_{ser} in response to two different high-intensity exercise protocols. In particular, we were interested in testing whether [BDNF]_{ser} might reach a plateau even earlier than after 20 min. On the basis of findings from experiment 1 we designed an optimized protocol for experiment 2 with the aim of accurately measuring the magnitude of BDNF changes induced by CON vs. HIT while limiting the discomfort of the participants. Even though both experiments used a crossover design to test the effect of the CON and HIT exercise protocols on [BDNF]_{ser} in healthy active men, some aspects of the overall methodology differed between the two experiments (i.e., number of sessions and blood measurements; for more details see Fig. 1, A and C).

Fig. 1. Overall experimental design. A: experimental protocol. *The REST session was carried out on a separate day only in experiment 1. B: exemplary data of a representative participant showing breath by breath VO_{2} values (see left axis for scale) during the three test conditions (maximal exercise text, MAX; continuous exercise, CON; high-intensity interval training, HIT). Work rate (see right axis for scale) for each exercise protocol is indicated by the dashed line. C: blood sampling. †This sample was taken in half of the participants during the CON protocol and in the other half during the HIT protocol.
All participants came to the laboratory on four (experiment 1) or three (experiment 2) different days. The first active session consisted of a maximal exercise test (MAX) to determine maximal oxygen consumption (VO₂max) and maximal work rate output. Afterward, participants were randomly assigned to perform either the CON protocol followed by the HIT protocol or vice versa (the order counterbalanced across participants) as shown in Fig. 1A.

At the beginning of each session, participants were fully informed about the entire exercise test protocol and the upcoming procedures. All exercise tests were performed on a stationary cycle ergometer (Ergometrics 900; Ergoline, Bitz, Germany). Work rate, oxygen consumption (VO₂), and heart rate (HR) were monitored breath by breath (Ergoline). Borg CR-10 scale ratings for dyspnea and leg fatigue were assessed before and immediately after all exercise tests to measure perceived exhaustion. At the end of the study we asked participants to select the protocol they preferred to estimate the possible adherence to an exercise routine. Each session lasted ~1 h.

Maximal Exercise Test

The MAX test started with a rest period of 2 min (no pedaling) followed by a warm-up period of 3 min (unloaded pedaling). Next, the resistance of the cycle ergometer started at 20 W and was increased by 10 W every minute until exhaustion. Participants were instructed to cycle at a constant speed (measured in crank revolutions per minute) throughout the entire test. Criteria to stop the MAX test included chest pain, dizziness, headache, nausea, or inability to maintain a constant speed throughout the test.

HIT and CON Exercise Protocols

After an initial resting period of 30 min, participants mounted the cycle ergometer. Both protocols started with a rest period of 2 min (no pedaling) and a warm-up period of 3 min at 60 W (corresponding to 20.7 ± 3.5% of the maximal work rate). For the HIT protocol participants performed intervals of 1 min at 90% of maximal work load, alternating with 1 min rest at 60 W for a total duration of 20 min. For the CON protocol the resistance was set at 70% of maximal work rate and participants cycled continuously at the same intensity for 20 min.

Even though both exercise protocols were considered intense, the HIT protocol was designed to reach higher VO₂ levels in the short interval training bouts than the CON protocol as illustrated in Fig. 1B (right, y-axis).

Blood Sampling

Experiment 1. A venous catheter was placed in the right forearm at the beginning of both exercise sessions. Immediately after placement of the catheter a blood sample was collected (i.e., −30 min). After a resting period of 30 min, participants were seated on the cycle ergometer while blood samples were collected at the beginning (0 min), during exercise (at 6, 10, 14, and 18 min), and at the end of exercise (final). This final measurement was collected immediately after the last minute of exercise, at 20 min for the CON protocol and at 19 min for the HIT protocol (immediately after the last sprint). Additionally, we collected a blood sample 20 min after completion of exercise (final + 20) (Fig. 1C). [BDNF]ser was determined for the samples taken at −30 min, 0, 6, 10, 14, 18 min; final; and final + 20 as shown in Fig. 2. Lactate and cortisol measurements were determined for 0 min and final samples. We measured the REST condition on a separate day (experiment 1 only), which consisted of a nonactive session of 20 min sitting on the cycle ergometer without pedaling.

Experiment 2. We decreased the number of samples to reduce distress to participants and obtained venous blood only at the beginning (0 min) and at the end (final) of the CON and HIT exercise protocols (Fig. 1C). Serum BDNF, lactate, and cortisol concentrations were measured in all samples taken at 0 min and final. These time points were chosen on the basis of experiment 1 because we wanted to estimate the maximal [BDNF]ser levels that could be obtained with each protocol. To determine REST values, a third blood sample was taken 30 min before the exercise protocol started (~30 min). In half of the participants, resting [BDNF]ser was determined before the CON session and in the other half before the HIT session.

Coagulant-free separation tubes (SSTTube, 5 ml; BD Vacutainer) were used to collect blood samples. SST tubes were left to clot at room temperature for 30 min after collection. They were then centrifuged (Capricorn) for 15 min at 4,800 g. The serum was separated and stored in Eppendorf tubes at −20°C for a week, after which they were stored at −80°C until analysis.

Biochemical Analysis

Samples to determine [BDNF]ser were analyzed using the Quantikine ELISA kit from R&D Systems (Minneapolis, MN). The minimum sensitivity of BDNF in this kit is <20 pg/ml. The analysis was conducted according to manufacturer’s guidelines. All samples were diluted 20-fold with a calibrator diluent prior to assay.

Cortisol and lactate concentrations were analyzed by the central laboratory of the University Hospital Leuven using a radioimmunoassay (IM1841 Immunotech cortisol assay kit; Beckman Coulter) for cortisol and ADVIA 1650 (Bayer, Tarrytown, NY) for lactate.

Statistical Analysis

All statistical analyses were performed using STATISTICA 10 (StatSoft). The alpha level was set to 0.05, and data are shown as means ± SE.

Values that were 3 SD below or above the mean were considered as outliers and were removed from further analysis. Following these criteria, two participants were removed from the change in lactate analysis, and one from the BDNF analysis that compared the percent change in [BDNF]ser between exercise protocols.

Due to the small sample size in experiment 1 we analyzed the data using nonparametric statistics. First, we tested the effect of time (−30, 0, 6, 10, 14, 18 min; final; and final + 20) on [BDNF]ser, separately for the CON and the HIT protocols with a Friedman’s two-way ANOVA by ranks. Post hoc Wilcoxon matched-pairs signed-rank tests were performed where necessary. Separate Wilcoxon matched-pairs signed-rank tests were calculated for each time point comparing HIT and CON [BDNF]ser values to test whether the [BDNF]ser kinetics differed between the two exercise protocols.

For experiment 2, we compared how [BDNF]ser changed in response to CON vs. HIT protocols. Analyzing relative change in BDNF (%Δ [BDNF]ser) (i.e., expressing values obtained after exercise relative to baseline measurements prior to exercise) is a commonly reported measurement mainly because there is high variability in absolute BDNF concentrations across studies due to methodological differences in BDNF analyses (31). In our data, however, we observed high variability among baseline BDNF levels (ranging from 3,256 to 14,263 pg/ml with a mean of 8,019 ± 268 pg/ml) of which only 21% was explained by individual differences (Pearson’s correlations r = 0.46, P = 0.02). To reduce the risk that our data were biased due to baseline variability between sessions, we report three different approaches to test [BDNF]ser changes after exercise. First, we compared absolute [BDNF]ser after 20 min (final) between conditions (REST/CON/HIT). [BDNF]ser data were normally distributed, thus a repeated-measures ANOVA was used. Post hoc tests were conducted using Tukey’s honestly significant difference test to further analyze a significant main effect. Second, we calculated a Pearson’s correlation between the final [BDNF]ser values of the CON and HIT protocols. Third, we determined one common [BDNF]ser baseline by averaging an individual’s rest values determined at 0 min across
conditions, and calculated the %Δ [BDNF]ser for each exercise protocol relative to this common baseline. Data for %Δ [BDNF]ser were normally distributed and subjected to a paired t-test to compare exercise protocols.

Paired t-tests were also used to compare the maximal values of the following exercise parameters between exercise protocols: work rate, VO2, HR, lactate, and cortisol. We also investigated whether any of these exercise parameters would be a significant predictor of [BDNF]ser changes in response to exercise. Pearson’s correlations were calculated between maximal values of work rate, VO2, HR, lactate (final), cortisol (final), and final [BDNF]ser. Borg CR-10 scale ratings for dyspnea in the CON protocol and leg fatigue in the HIT protocol deviated from normality (Shapiro-Wilks test, P ≤ 0.04). Thus Wilcoxon matched-pairs signed-rank tests were used to compare these parameters between CON and HIT protocols, and the extent to which they were correlated with final [BDNF]ser was calculated with Spearman correlation coefficients.

All exercise parameters were entered as regressors into a multiple stepwise regression analysis to test the cumulative effect of exercise measurements in final [BDNF]ser. All correlation analyses and the stepwise regression model were calculated separately for each protocol.

Finally, goodness-of-fit χ2 tests were performed to determine whether the two exercise protocols were equally preferred, and to determine whether the proportion of participants who showed higher final [BDNF]ser levels in each protocol was equal.

RESULTS

Participants

In experiment 1, one individual dropped out due to needle anxiety. In experiment 2, two individuals were unable to complete both sessions. As a result, the analysis of experiment 2 consisted of 26 participants (including 7 from experiment 1). Their age ranged from 22 to 35 yr (28 ± 1 yr), with a mean body mass index of 22.5 ± 1 kg/m2 and a mean VO2 max of 56.6 ± 2 ml·kg⁻¹·min⁻¹, indicating an overall fitness level that was above average based on their gender and age.

Experiment 1

[BDNF]ser kinetics in response to exercise are shown in Fig. 2, which revealed that [BDNF]ser increased gradually during exercise in both protocols, reaching maximum concentrations toward the end of exercise. After the exercise was finished, [BDNF]ser returned quickly to baseline such that the postexercise measurement at final + 20 was not significantly different from that at rest levels. During the HIT protocol there were statistically significant increase in [BDNF]ser over time (χ², 7, n = 7 = 26.4, P < 0.001). Wilcoxon matched-pairs signed-rank tests showed significant differences between 0, 10, 14, and 18 min, and final (P ≤ 0.02).

The CON protocol evoked a similar increase in [BDNF]ser even though the response was somewhat weaker than for the HIT protocol. Statistics yielded only a trend toward a significant increase in [BDNF]ser levels across time for the CON protocol (χ², 7, n = 7 = 12.5, P = 0.08). Wilcoxon matched-pairs signed-rank tests conducted between CON and HIT at each time point revealed no significant differences between the two protocols (Z ≥ −1.521, P ≥ 0.13).

Experiment 2

Table 1 summarizes the maximal values of the exercise parameters obtained throughout each exercise protocol (CON vs. HIT), which in most cases, corresponded to the values recorded during the final measurements. Both protocols show values for lactate of 8 mmol/l and above confirming that both exercise protocols were of high intensity.

The effect of REST, CON, and HIT protocols on final [BDNF]ser values is illustrated in Fig. 3. A repeated-measures ANOVA revealed a significant main effect of condition (REST 7,958 ± 448, CON 9,806 ± 581, HIT 11,049 ± 588; F2,7 = 20.56, P < 0.001). Tukey’s honestly significant difference post hoc test revealed significant differences between CON and

Table 1. Maximal values of exercise parameters reached in each exercise protocol

<table>
<thead>
<tr>
<th></th>
<th>CON</th>
<th>HIT</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
<td>Mean</td>
</tr>
<tr>
<td>Work rate, W</td>
<td>198</td>
<td>28</td>
<td>269</td>
</tr>
<tr>
<td>VO2, kg·m⁻¹·min⁻¹</td>
<td>50.5</td>
<td>8.4</td>
<td>51.1</td>
</tr>
<tr>
<td>HR, bpm</td>
<td>175.9</td>
<td>10.7</td>
<td>176.3</td>
</tr>
<tr>
<td>Lactate, mM</td>
<td>8.4</td>
<td>3.5</td>
<td>11.1</td>
</tr>
<tr>
<td>Cortisol, μg/dl</td>
<td>22.6</td>
<td>7.7</td>
<td>20.7</td>
</tr>
<tr>
<td>Borg CR-10 scale for dyspnea</td>
<td>7.0</td>
<td>2.0</td>
<td>7.0</td>
</tr>
<tr>
<td>Borg CR-10 scale for leg fatigue</td>
<td>6.0</td>
<td>2.0</td>
<td>7.0</td>
</tr>
</tbody>
</table>

CON, continuous exercise; HIT, high-intensity interval training; HR, heart rate; bpm, beats per minute; IQR, interquartile range; SD, standard deviation. P refers to the comparison between CON and HIT. Most measurements were numerically higher for the HIT protocol, however, only differences in lactate and work rate reached statistical significance. The difference in work rate was expected given the design of the exercise protocols. *Parametric paired t-tests. †Nonparametric Wilcoxon signed-rank tests.
Comparisons of Exercise Parameters for CON and HIT Protocols

Comparing the exercise parameters between both exercise protocols revealed significant differences in work rate ($t_{25} = -7.98, P < 0.001$) and lactate ($t_{25} = -4.25, P < 0.001$), which were both higher for HIT than for CON. None of the other parameters reached significance (see Table 1).

Figure 6 shows changes in lactate and cortisol concentrations confirming the higher lactate increases for the HIT than the CON protocol (CON 6.8 ± 0.77 vs. HIT 9.5 ± 0.83; $t_{23} = -4.04, P = 0.001$), whereas the increase in cortisol tended to be numerically higher in CON than HIT even though significance was not reached (CON 5.3 ± 1.2 vs. HIT 3.7 ± 0.82; $t_{25} = 1.29, P = 0.21$).

Parameters Predicting Change in [BDNF]ser After Exercise

Correlations between exercise parameters and final [BDNF]ser levels were not significant for the CON protocol ($r \leq 0.12, P \geq 0.24$). The stepwise regression model did not identify a statistically significant predictor of [BDNF]ser measured in the last minute of exercise (final) ($F_{8,11} = 0.39, P = 0.91, r^2 = 0.35$).

For the HIT protocol, only the correlation between final [BDNF]ser levels and Borg CR-10 scale ratings for leg fatigue reached significance ($r = 0.446, P = 0.033$; Fig. 7). All other parameters exhibited insignificant correlations ($r \leq 0.16, P \geq 0.096$). The stepwise multiple regression revealed no other significant predictors ($F_{1,21} = 5.23, P = 0.033, r^2 = 0.199$).

Finally, preference for the two protocols was not equally distributed in our sample, with 19 of 26 participants preferring the HIT protocol ($\chi^2_{1, n = 26} = 5.538, P = 0.02$).

DISCUSSION

In this study we investigated the effectiveness of two types of intense exercise training to increase [BDNF]ser concentrations in young active men. Both protocols resulted in significantly increased [BDNF]ser levels after exercise compared with rest. However, this increase was slightly higher for the HIT protocol, suggesting that HIT exercise could be an effective strategy for promoting brain health via BDNF-related mechanisms, which makes it an interesting intervention for clinical applications in patients with neurological or cognitive challenges.

Effect of Both Exercise Protocols on [BDNF]ser

We observed that [BDNF]ser levels increase relative to resting levels when participants perform intensive exercise, which is consistent with previous work in humans (21-23, 31, 64, 70, 71, 79). Investigating the underlying kinetics revealed that [BDNF]ser rose gradually during the training session, with maximum concentrations being measured toward the end of

![Fig. 3. BDNF serum concentration levels at final for the three test conditions. Both CON and HIT protocols showed higher [BDNF]ser levels compared with the REST condition, with the HIT protocol reaching higher [BDNF]ser levels than the CON protocol. Bars indicate SEM. *P < 0.05, **P < 0.001.](image-url)

![Fig. 4. Correlation between BDNF concentration levels from CON and HIT for the three test conditions.](image-url)
training. After the exercise was finished [BDNF]ser returned quickly to baseline levels such that the postexercise measurement at final + 20 was not significantly different from levels at 0 min. These results are very much in line with results reported by Schmidt-Kassow et al. (70), who showed that BDNF levels gradually increased over time, reaching maximal levels after 20 min of exercise and returned to baseline values after 10 min of recovery. Our data extend these previous results because we defined exercise intensity levels on the basis of V˙O2 measurements, whereas Schmidt-Kassow et al. (70) used a subjective measurement of intensity. Moreover, we show that [BDNF]ser kinetics are similar for both exercise training protocols, whereas they tested CON exercise protocols only. Our data suggest that HIT exercise of at least 20 min is needed to increase [BDNF]ser by 37.7%. In literature, the %/BDNFser concentrations after performing exercise vary from 11.7 to 410% (in both healthy and clinical populations) (31). The lowest increase in [BDNF]ser that appeared to influence behavior was reported by Winter et al. (96), who found that a 12% increase in [BDNF]ser induced a 20% increase in novel vocabulary learning. Others showed that a 10–30% increase in [BDNF]ser improved stroop task (15) and face-name recognition task performance (23). Hence, the relative change in [BDNF]ser observed in the present study falls within the values that have previously shown improvements in cognition.

Several lines of evidence suggest that BDNF concentration measured in blood serum is reflective of BDNF expression in the brain. Klein et al. (30) demonstrated in rats that BDNF levels in brain tissue correlate with BDNF concentrations in the blood, and Sartorius et al. (67) also reported a positive correlation between [BDNF]ser and brain tissue BDNF after electroconvulsive treatment in rats. More importantly, in humans it has been confirmed that most of the BDNF transported in the blood and measured in the periphery during exercise, and during rest comes from the brain (58), which was demonstrated by measuring changes in BDNF arterial-to-internal jugular venous differences.

Potential Mechanism Mediating the Higher [BDNF]ser Response to the HIT Protocol

Our data showed that both protocols were able to increase [BDNF]ser compared with rest, but the HIT protocol induced slightly larger effects than the CON protocol. The mechanism leading to this result is currently unclear. Nevertheless, possible BDNF modulating factors such as lactate (15, 69), cortisol (74), and intensity (31) have been previously proposed.

Several studies have assessed the relationship between lactate and BDNF, but results are not consistent. Schiffer et al. (69) discovered that a sodium-lactate infusion at rest was able to induce an increase in BDNF concentrations in the blood of human volunteers. However, the authors pointed out that a sodium-lactate infusion may differ from lactic-acid infusion in causing alkalosis rather than acidosis in the blood. The increase in lactate during a lactate clamp procedure as used by Schiffer et al. (69) at rest might therefore differ markedly from the lactate increase during high intensity exercise. Up until now, Ferris et al. (15) published the only study in which a positive correlation between BDNF and lactate was presented, whereas no such correlation was found in other studies (64). In our study we did not find any significant correlation between [BDNF]ser and lactate for either exercise protocol, although we observed greater lactate increases after the HIT protocol than after the CON protocol at the group level.

Cortisol is commonly known as a stress hormone (66). It has been shown that chronically elevated cortisol levels inhibit neurogenesis and neuronal plasticity. More specifically, exposure to corticosterone decreases BDNF expression in the brain of rats, which suggests a negative relationship between cortisol and BDNF (74). However, in humans there is no evidence of...
such a correlation between cortisol and BDNF levels, and our data do not support a simple linear relationship between [BDNF]ser and cortisol concentrations in the blood. Several studies have investigated the relationship between cortisol response and exercise intensity. Rojas and colleagues (64) observed no change in cortisol levels after 10 min of moderate exercise, whereas they were significantly elevated 10 and 15 min after an incremental exercise test. This finding is further supported by Van Bruggen et al. (84) who found that serum cortisol levels increased significantly only in response to high intensity exercise. Moreover, Tauler et al. (80) demonstrated that the magnitude of the increase in cortisol depends on the intensity and duration of physical activity. In our data, both exercise protocols significantly increased cortisol levels, supporting again that both protocols were physically demanding. Nonetheless, this difference did not reach significance and there was no correlation between the cortisol concentration and [BDNF]ser for either exercise protocol.

In exercise testing, Borg scale ratings have been widely used to assess exercise intensity (14, 46). In our data, numerically higher Borg CR-10 scale ratings for leg fatigue were reported during the HIT exercise condition, but the median difference did not reach significance. However, from all possible mediating factors that we tested, Borg CR-10 scale rating for leg fatigue was the only variable exhibiting a significant correlation such that 19.9% of the variance in [BDNF]ser measured at the end of the HIT exercise protocol could be explained by Borg CR-10 scale ratings for leg fatigue. It is tempting to speculate that skeletal muscle cells might be involved in mediating changes in [BDNF]ser. It has been shown that muscle contractions elevate BDNF concentration in the muscle (38), however, BDNF produced in muscle cells does not appear to be released into circulation, indicating that elevated [BDNF]ser in the periphery must come from other sources (38).

Very recently, Wrann et al. (98) proposed a novel biochemical pathway linking an exercise-induced secreted factor from skeletal muscle to BDNF gene expression in the brain. They suggested a model in which activation of peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α is induced by exercise in skeletal muscle cells, and that when PGC-1α binds with the transcription factor ERα it could activate FNDC5 gene expression, which is a positive regulator of BDNF levels in the brain, especially in the hippocampus. On the basis of this model we speculate that skeletal muscle contractions during high-intensity exercise might be a possible trigger of this biochemical pathway to induce elevated BDNF levels in the brain.

An alternative source of [BDNF]ser is platelets, which have the ability to store BDNF and release it upon agonist stimulation depending on the specific need of BDNF in certain tissues (17). Although it remains unknown how exercise influences the platelets, one potential use of BDNF stored in platelets is thought to be in the repair of exercise-induced muscle damage (48). It is unclear, however, the extent to which physical fiber disruptions may be associated with stimuli that lead to BDNF release. Recent evidence has suggested that the exercise itself, rather than the tissue damage or fatigue, is essential for BDNF increase (91). Wahl and colleagues (91) showed that cycling exercises combined with electrical stimulation (the latter leading to more marked muscle damage) did not increase BDNF levels more than cycling exercises only. Cycling combined with electrical stimulation did increase other markers of damage such as creatine kinase, interleukin-6, and myoglobin more than cycling only.

Interestingly, however, if isolated muscle activation was the main source of BDNF upregulation, then resistance training would be the ideal protocol for elevating BDNF levels. Yet evidence to support this notion is inconclusive. Few studies have investigated the influence of resistance training on the upregulation of BDNF (11, 20, 68, 77, 99), and three out of five resistance training studies show negative effect sizes on BDNF upregulation (11, 68, 77). This low number of studies and the considerable variation in the direction of the observed effects make it difficult to draw a clear conclusion on the beneficial effect of this type of exercise on upregulating BDNF levels in humans. Importantly, the low response of BDNF upregulation to this type of training might stem from differences in exercise protocols used, as well as the time and methods of blood sampling. For instance, in most of these studies, basal/resting BDNF levels were tested; these are the changes in BDNF observed when the acute exercise-induced changes have been washed out and therefore are a less sensitive measurement of long-lasting change in BDNF levels after exercise (31). Additionally, most of the resistance protocols used were very short with long resting periods in between that, as a whole, consisted of fewer muscle contractions compared with our cycling protocols that involved 2,000 or 3,000 (10–20 min times ×70–80 revolutions per minute) contractions and therefore placed a greater total load on the muscle. Hence, more studies with longer resistance training protocols that place a greater load to the muscle following appropriate methodological blood sampling and that include measurement of transient and long-term changes in BDNF.
would be necessary to better characterize changes in the concentration of BDNF after resistance training.

An additional factor that also has the potential to elevate BDNF levels in the brain is tissue hypoxia (4, 93). It has been shown that BDNF is released by the cerebral vascular endothelium following hypoxic stresses (92). Similar to muscle contractions, hypoxia stimulates signaling pathways involved in mitochondrial biogenesis (25). Accordingly, successive bouts of HIT have been shown to cause transient increases in mRNA, which lead to sustained increases in the content of transcription and metabolic proteins, which also lead to greater mitochondrial protein content and enzyme activity (54). More specifically, HIT activates several kinases and phosphatases involved in signal transduction, including the AMPK and MAPK cascades and increases the expression of PGC-1α (19). Furthermore, studies show that HIT protocols elevate PGC-1α levels more than CON protocols (81, 94, 97). As mentioned previously, PGC-1α could activate FNDC5 gene expression, which is a positive regulator of BDNF levels in the brain (67). Hence, higher expression of this important coactivator after a HIT protocol may be one important factor that could explain why this type of exercise training showed greater BDNF levels.

Based on animal work, other factors have been proposed. A recent study compared the effects of high-intensity interval and continuous training regimens on BDNF levels in the rat brain (1). Similarly to our study Afzalpour et al. found that the HIT protocol resulted in greater BDNF increases in the brain compared with the CON protocol. They suggest that these differences might be related to the higher concentrations of hydrogen peroxide (H₂O₂) and tumor necrosis factor alpha (TNF-α) in the brain after HIT. They argued that intensive interval and continuous training regimens may differentially activate stress oxidative resources and antioxidant systems and thereby produce different levels of H₂O₂ (1). Even though we did not measure H₂O₂ levels, it has been shown that production of H₂O₂ causes loss of muscle contractility (59), which is in line with our observation that the perceived muscle fatigue (measured by Borg CR-10 scale ratings for leg fatigue) was the only predictor of [BDNF]ser changes after exercise. Furthermore, it has been shown that H₂O₂ and TNF-α induce the transport of p65:p50 subunits of the nuclear factor-κB complex from the cytoplasm to the nucleus, where it binds to the target sites in the DNA, thereby inducing BDNF expression (16, 65, 73).

To conclude, even though it is unclear which are the main pathways that mediate exercise-induced BDNF expression in the brain, we tentatively speculate that the higher levels of [BDNF]ser during the HIT protocol resulted from the combined effect of various factors most likely including high muscle activation (measured by Borg CR-10 scale ratings for leg fatigue) and high intensity (as indicated by high lactate levels), as well as a shorter total exercise duration compared with the CON protocol, which could have induced optimal short-term periods of oxidative stress leading to a rise in H₂O₂ and TNF-α. As a result, the appropriate signaling cascade (most likely PGC-1α) might have been activated leading to higher BDNF expression in the brain.

Adherence and Safety of the HIT Protocol

Seventy-three percent of our participants preferred the HIT protocol. Therefore, when it comes to incorporating these exercise-training protocols into a daily exercise routine, it is important that participants are able to tolerate the exercise to maximize adherence. This is an additional advantage of the HIT protocol.

Numerous studies show that HIT can be used effectively even in less-fit populations and patients, including older adults (35); overweight adolescents (82); individuals with paraplegia (83); and in persons with diabetes (35), metabolic syndrome (81), chronic obstructive pulmonary disease (75, 90), stable angina (39), and heart failure (28, 97); those undergoing cardiac rehabilitation (10, 24, 61); or even after coronary artery bypass surgery (40) and heart transplant (57). In fact, in more- frail patients, HIT (tailored at the maximal tolerance of a patient) is often the preferred and better tolerated mode of exercise training. More importantly, the above-mentioned studies have demonstrated the safety and effectiveness of this type of training (5, 10, 24). In a review of studies of cardiac rehabilitation, no adverse or other significant clinical, hemodynamic, electrical, or biological signs of ischemia or arrhythmia events secondary to participation in HIT protocols were observed (24). These findings suggest that HIT is safe, beneficial, and tolerable for many populations, including patients. Good tolerability of HIT exercise has received attention from within the scientific community because many patients are not only interested in improving their cardiovascular health but would also potentially benefit from the elevation of BDNF levels that might result in improved brain health and cognition.

Interpretational Issues

Low basal [BDNF]ser levels of participants. The baseline [BDNF]ser levels we found in our participants ranged from 3,256.5 to 14,263.2 pg/ml, which fall in the lower range of baseline BDNF values reported in the literature (31). One explanation for our low BDNF values could be attributed to the characteristics of our participants. We tested young, healthy, and active participants whose maximal VO₂ suggested good to excellent fitness levels. Several studies have examined the difference in basal [BDNF]ser between trained and untrained participants. Chan et al. (7) and Nofuji et al. (47) found that rest [BDNF]ser values were lower in athletes and trained participants compared with untrained participants, a finding that was confirmed by subsequent studies (2). A possible explanation for lower rest [BDNF]ser in physically active persons is that they have a more effective clearance, leading to less stored and circulating basal BDNF levels.

Another explanation for the relatively low [BDNF]ser in our study is the time when the exercise tests were carried out. In the majority of studies investigating increases in BDNF levels after acute physical exercise, blood collection times took place early in the morning and some even after an overnight fasting state (6, 9, 47, 64, 76, 78, 100). In the present study, we were limited to testing after 2:00 P.M., which according to Beglioni et al. (3), could have had an impact on BDNF levels measured due to diurnal variations in the circadian rhythm of cortisol resulting in higher BDNF values in the morning compared with later in the day (3, 56). Another influencing factor is that our participants were not tested in the fasted state,
which could have added variability to the [BDNF_{ser}] measurements at rest due to the confounding effect of sugar levels in the blood. For example, in animals, a high-sugar diet caused lower BDNF levels (41). Nonetheless, even if testing in the afternoon had influenced [BDNF_{ser}] it is unlikely that it can explain the differential response of [BDNF_{ser}] to HIT vs. CON exercise.

Limitations of the Study

In this study we tested healthy active men, who represent a small part of the general population, making it difficult to transfer our results to other groups such as children, women, elderly, or patients. The reasoning behind selecting this specific group was to eliminate other confounding variables in our experiment. For example, Monteleone et al. (42) reported a high positive correlation between estrogen and plasma BDNF levels in women. Although our study provides evidence of a positive influence of HIT on [BDNF_{ser}] only in physically active healthy young men, it certainly justifies future research in patients, elderly, or sedentary populations.

Moreover, we did not control for the BDNF polymorphism, which could have provided more specific information on how the polymorphism might modulate BDNF secretion in response to exercise.

Conclusion

In summary, we demonstrated that [BDNF_{ser}] levels gradually increase during both types of intense exercise, CON and HIT, and that this increase is temporary, with BDNF levels returning to baseline value 20 min after the end of exercise. Moreover, we showed that [BDNF_{ser}] levels after our HIT protocol were slightly higher than after our CON protocol when they were tested in healthy, active young men using a crossover design.

We detected a correlation between HIT exercise-induced increases in [BDNF_{ser}] and Borg CR-10 scale ratings for leg fatigue, which might suggest that muscle fatigue caused by higher intensity protocols could coincide with activation of a signaling cascade that triggers the release of BDNF in the brain. Because HIT induced greater [BDNF_{ser}] levels than CON, and because most of our participants preferred the HIT protocol, we recommend HIT as a potential intervention for increasing BDNF levels in the brain, which might promote neural plasticity and good cognitive function. However, further studies are needed to reproduce this effect in elderly and patient populations and to yield further insights into the underlying mechanisms.

ACKNOWLEDGMENTS

We thank Dr. Daniel G. Woolley for patiently proofreading numerous versions of the manuscript.

GRANTS

Support for this study was provided by Flanders Fund for Scientific Research (FWO) Grant G.0401.12. C.M.S.M. was supported by a DBOF Ph.D. fellowship from KU Leuven.

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the authors.

AUTHOR CONTRIBUTIONS

C.M.S.M., T.T., and N.W. conception and design of research; C.M.S.M. performed experiments; C.M.S.M. and B.V. analyzed data; C.M.S.M., T.T., and N.W. interpreted results of experiments; C.M.S.M. prepared figures; C.M.S. drafted manuscript; C.M.S.M., B.V., T.T., and N.W. edited and revised manuscript; N.W. approved final version of manuscript.

REFERENCES

