Heat acclimation improves heat exercise tolerance and heat dissipation in individuals with extensive skin grafts

Zachary J. Schlader,1,2* Matthew S. Ganio,1,3* James Pearson,1,4 Rebekah A. I. Lucas,1,5 Daniel Gagnon,1 Eric Rivas,1,6 Karen J. Kowalske,7 and Craig G. Crandall1

1Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital of Dallas and Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas; 2Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York; 3Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, Arkansas; 4Department of Biology, University of Colorado at Colorado Springs, Colorado; 5School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK; 6Department of Kinesiology, Texas Woman’s University, Denton, Texas; and 7Department of Physical Medicine and Rehabilitation, University of Texas Southwestern Medical Center, Dallas, Texas

Submitted 27 February 2015; accepted in final form 23 April 2015

Schlader ZJ, Ganio MS, Pearson J, Lucas RAI, Gagnon D, Rivas E, Kowalske KJ, Crandall CG. Heat acclimation improves heat exercise tolerance and heat dissipation in individuals with extensive skin grafts. J Appl Physiol 119: 69–76, 2015. First published April 30, 2015; doi:10.1152/japplphysiol.00176.2015.—Burn survivors with extensive skin grafts have impaired heat dissipation and thus heat tolerance. This study tested the hypothesis that heat acclimation (HA) improves these factors in this population. Thirty-four burn survivors were stratified into highly (>40% body surface area (BSA) grafted, n = 15) and moderately (17–40% BSA grafted, n = 19) grafted groups. Nine healthy nonburned subjects served as controls. Subjects underwent 7 days of HA involving 90 min of exercise at ~50% peak oxygen uptake in 40°C, 30% relative humidity. On days 1 and 7, subjects exercised in the heat at a fixed rate of metabolic heat production. Pre-HA, all controls and 18/19 subjects in the 17–40% group completed 90 min of exercise. Conversely, heat exercise tolerance was lower (P < 0.01) in the >40% group, with 7/15 subjects not completing 90 min of exercise. Post-HA, heat exercise tolerance was similar between groups (P = 0.39) as all subjects, except one, completed 90 min of exercise. Pre-HA, the magnitude of the increase in internal temperature during exercise occurred sequentially (P ≤ 0.03) according to BSA grafted (>40%: 1.6 ± 0.5°C; 17–40%: 1.2 ± 0.3°C; control: 0.9 ± 0.2°C). HA attenuated (P < 0.01) increases in internal temperature in the control (by 0.2 ± 0.3°C), 17–40% (by 0.3 ± 0.3°C), and >40% (by 0.3 ± 0.4°C) groups, the magnitude of which was similar between groups (P = 0.42). These data indicate that HA improves heat tolerance and dissipation in burn survivors with grafted skin, and the magnitude of these improvements are not influenced by the extent of skin grafting.

heat tolerance; hyperthermia; burn injury; skin grafting; heat adaptation; heat loss

BETWEEN 5 AND 20% of all military battlefield injuries are burn related (8, 60), while in the United States 40,000–70,000 civilians per year are hospitalized for burn-related injuries (11), with ~16% of these cases involving burns covering >20% of the total body surface area (BSA) (2). Twenty years ago, burns covering half of a person’s BSA were fatal. However, because of medical advances, patients with upward to 90% BSA burned are now surviving (52). Serious burns permanently damage the skin, requiring in most cases the damaged tissue to be excised and replaced with grafted skin. This grafted skin impedes heat dissipation (25). Owing to physical disruption of the sweat glands and/or ducts, sweat production in grafted skin is virtually nonexistent during heat stress, compared with ungrafted skin, while increases in skin blood flow are markedly attenuated (16) because of compromised reinnervation and/or responsiveness of cutaneous active vasodilator nerves (15). Importantly, these impairments persist at least 8 years postinjury and may, in fact, be permanent (17). As a result, burn survivors with grafted skin have greater increases in internal temperature during exercise in the heat compared with unburned individuals (4, 27, 54). Interestingly, those with the greatest BSA grafted have the greatest increases in internal temperature (27), suggesting that the ungrafted skin does not fully compensate for the impaired heat loss in grafted skin. Thus burn survivors with grafted skin, especially those with a high BSA grafted, are relatively heat intolerant (35) and are likely at an elevated risk for hyperthermia and heat-related injuries (47).

Repeated exposure to heat and subsequent hyperthermia, typically involving exercise in the heat, evokes the process of heat acclimation (HA) (49, 56). Primarily through enhancements in skin blood flow (23, 34, 37–39, 45) and sweating (23, 34, 37, 39, 45, 61), HA improves heat dissipation (44), which results in less of an increase in internal temperature for a given thermal load (37–39, 45, 46, 61) and permits functional improvements in exercise tolerance and performance in the heat (21, 33, 38, 39). These adaptations occur relatively rapidly, with ~70% of the total heat acclimation response occurring in just 7 days (21, 44, 46) and the remaining occurring within ~14 days (44, 56). Thus even short-term HA is a valuable strategy for improving heat tolerance and reducing the risk and incidence of hyperthermia and heat-related injuries (5, 10).

A case study conducted by our laboratory suggested that a short-term, 7-day HA regimen in a burn survivor with a high BSA of grafted skin (~75% BSA grafted) is capable of improving heat dissipation, thereby attenuating increases in internal temperature (59). Whether these findings are consistent in a larger group of burn survivors, with a varying extent of grafted skin, remains uncertain. Therefore, this study tested the hypothesis that a 7-day HA regimen improves heat exercise tolerance and heat dissipation in burn survivors with grafted skin. The information gained from this study will aid clinicians...
and their patients in understanding the effects of serious burn injuries, and subsequent skin grafting, on whether short-term HA is an effective strategy to improve heat tolerance, safety, and comfort in hot environments that are typically encountered during both work and recreation.

METHODS

Thirty-four otherwise healthy burn survivors with grafted skin and nine nonburned control subjects completed this study. The burn survivors were stratified into two groups based upon their BSA grafted: 17–40% (n = 19) and >40% (n = 15). The subject characteristics are listed in Table 1. All subjects were free of any known cardiovascular, metabolic, neurological, or psychological diseases. Subjects taking medications known to affect the cardiovascular system and/or heat dissipation were excluded. Burn survivors were at least 12 mo removed from their last surgery. Each subject was fully informed of the experimental procedures and possible risks before giving informed, written consent. This protocol and consent were approved by the Institutional Review Boards at the University of Texas Southwestern Medical Center at Dallas and Dallas Texas Health Presbyterian Hospital of Dallas. For each visit, subjects arrived at the laboratory euhydrated (confirmed via urine specific gravity: 1.015 ± 0.008) and having refrained from strenuous exercise, alcohol, and caffeine for a period of 12 h. Subjects were recruited from throughout North America with testing completed in the northern hemisphere (Dallas, TX) during the fall, winter, and spring months. A portion of these data have been presented in a previously published manuscript that tested unique hypotheses (27).

Instrumentation and measurements. Total BSA was calculated from height and weight (20), while the percentage of BSA grafted was calculated using the Rule of Nine’s (48). Together, the absolute BSA ungrafted for each subject was calculated from total BSA and the percent BSA grafted. At least 60 min, but usually more than 8 h, prior to experimental testing, each subject swallowed a telemetry pill (HQ, Palmetto, FL) for the measurement of internal temperature. Three subjects had contraindications for taking the telemetry pill. In these subjects, esophageal (n = 1) or rectal (n = 2) temperature was measured. Esophageal temperature was measured at a depth of ~40 cm (36), while rectal temperature was measured at a depth ~10 cm past the anal sphincter with general purpose thermocouples (Mon-atherm, Mallinckrodt Medical, St. Louis, MO). Given the difficulty in accurately quantifying mean skin temperature with a reasonable number of locations and with the same ungrafted and grafted skin locations in all individuals with grafted skin, skin temperature was measured from a single ungrafted (all subjects) and grafted (burn survivors only) location. The location of these thermocouples was maintained constant, within a subject, throughout all measurement periods, and was usually placed on the upper arm, chest, or back depending on the location of skin grafting. Heart rate was measured with a Polar heart rate monitor (Polar Electro, Kempele, Finland). On separate days pre- and post-HA (see below), blood and plasma volumes were measured via the carbon monoxide rebreathing method, previously described in detail (28), following at least 30 min of recumbent rest. Whole-body sweat rate was measured via pre-postexercise nude body weight measurements, corrected for fluid consumption and urine output. Ratings of perceived exertion (RPE) were measured with a standard Borg scale (from 6–20) (6). Thermal perception was measured on a modified 5-point scale where 4 is described as “neutral” (comfortable) and 8 as “unbearably hot,” with 0.5 increments (57). The rate of metabolic heat production (Hprod) was calculated from oxygen uptake, the respiratory exchange ratio (Parvo Medics, Sandy, UT), and the rate of external work (40). Sweat sodium, potassium, and chloride concentrations were measured in duplicate on ungrafted skin locations by the regional patch method (3). The location of these sweat patches was maintained constant within a subject throughout all measurement periods.

Experimental protocol. Subjects visited the laboratory on 9 days within a 9- to 10-day period. On visit 1, peak oxygen uptake was measured by methods described previously in our laboratory in this population (26). On visits 1 and 9, carbon monoxide rebreathing procedures were carried out for blood volume determination. During the middle seven visits, subjects underwent a HA regimen over 7–8 days (subjects were given the option to have 1 day off in the middle of the regimen). The HA regimen involved 7 days of exercise in a 39.6 ± 1.1°C, 31 ± 3% relative humidity environment. Subjects exercised either on a cycle ergometer or walked on a treadmill. During all trials a fan was directed at the subjects that provided an air velocity of ~3 m/s. Subjects drank 12 ml/kg of warmed (37.1 ± 1.4°C) water throughout exercise (total volume: 951 ± 173 ml). The timing of drinking was carefully controlled such that no fluid was permitted within 5 min of measuring internal temperature. This was done to avoid temperature fluctuations in internal temperature due to the consumption of water, which was confirmed by continually monitoring internal temperature throughout the exercise, including during drinking. On days 1 and 7 of the HA regimen, subjects underwent a heat exercise test during which they exercised at a fixed Hprod expressed both as absolute and relative to body mass (Fig. 1). This was employed to isolate, independent of physical fitness (31) or body weight (14), the influence of grafted skin on absolute sweat production (absolute Hprod) (24) and the increase in internal temperature (relative Hprod) (14) during exercise. During these heat exercise tests, subjects exercised for 90 min and had the option for a short (5 ± 3 min) break at 45 min. Subjects exercised for the full 90 min unless they reached volitional exhaustion or their internal temperature achieved 39.5°C. Within subjects, the day 7 (post-HA) heat exercise test employed the exact same external workload, exercise modality, rest period duration, fluid consumption, etc., as that occurring during the day 1 (pre-HA) heat exercise test. On days 2–6, to account for slight differences in aerobic fitness, subjects exercised for 90 min at 53 ± 7% of peak oxygen uptake (1.2 ± 0.4 liter/min).

Data and statistical analyses. With the exception of blood and plasma volume data (see above), data are presented only from the heat exercise tests conducted pre- (day 1) and post- (day 7) HA to identify the effect of HA on heat exercise tolerance and heat dissipation. Whole-body sweat rate is expressed in absolute terms (in liter per hour) and as sweat rate relative to the increase in internal temperature during the exercise bout (in L/hr°C). Given that grafted skin does not measurably produce sweat during heat stress (16), both indices were also expressed relative to the absolute BSA of ungrafted skin (in liter per hour per square meter and liter per hour per degree Celsius per square meter).

Table 1. Subject characteristics

<table>
<thead>
<tr>
<th>Burn Survivors with Grafted Skin</th>
<th>17–40% BSA grafted</th>
<th>>40% BSA grafted</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of subjects, male/female</td>
<td>19 (12/7)</td>
<td>15 (8/7)</td>
<td>9 (4/5)</td>
</tr>
<tr>
<td>Years post burn injury</td>
<td>20.8 ± 15.8</td>
<td>11.8 ± 9.2‡</td>
<td>—</td>
</tr>
<tr>
<td>Median, range</td>
<td>20.8 (12.0–51.0)</td>
<td>9.2 (2.0–27.1)</td>
<td>—</td>
</tr>
<tr>
<td>Percentage of BSA Grafted, %</td>
<td>30 ± 7</td>
<td>54 ± 11‡</td>
<td>—</td>
</tr>
<tr>
<td>Median, range</td>
<td>31 (17–40)</td>
<td>49 (42–75)</td>
<td>—</td>
</tr>
<tr>
<td>Absolute BSA grafted, m²</td>
<td>0.59 ± 0.17</td>
<td>1.02 ± 0.21‡</td>
<td>—</td>
</tr>
<tr>
<td>Absolute BSA ungrafted, m²</td>
<td>1.36 ± 0.21†</td>
<td>0.89 ± 0.24‡</td>
<td>1.87 ± 0.16</td>
</tr>
<tr>
<td>Weight, kg</td>
<td>82.9 ± 14.6</td>
<td>78.0 ± 15.2</td>
<td>75.0 ± 12.1</td>
</tr>
<tr>
<td>Height, cm</td>
<td>170 ± 13</td>
<td>172 ± 8</td>
<td>172 ± 7</td>
</tr>
<tr>
<td>Age, yr</td>
<td>40 ± 12</td>
<td>33 ± 11</td>
<td>32 ± 10</td>
</tr>
<tr>
<td>Peak oxygen uptake, liter/min</td>
<td>2.5 ± 0.9</td>
<td>2.5 ± 1.0</td>
<td>2.9 ± 0.8</td>
</tr>
</tbody>
</table>

Values are means ± SD. BSA, body surface area. *Different from control (P < 0.001); ‡different from 17–40% group (P ≤ 0.059).
Subject characteristics were analyzed by one-way ANOVA, whereas data pre- and post-HA were analyzed by a two-way mixed model ANOVA (group \times HA). Where appropriate, post hoc Holm-Sidak pair-wise comparisons between independent groups were made. Kaplan-Meier curves with log-rank tests were used to quantify differences in heat exercise tolerance between groups both pre- and post-HA. Data were analyzed with GraphPad Prism (6, GraphPad Software, La Jolla, CA). A priori statistical significance was set at $P \leq 0.05$, but actual P values are reported where possible. All data are reported as means \pm SD.

RESULTS

Absolute and relative H_{prod} were not different ($P \geq 0.390$) between groups both pre- and post-HA (Fig. 1). However, H_{prod} was, on average, 12 ± 36 W and 0.2 ± 0.5 W/kg lower ($P \leq 0.030$) post-HA (Fig. 1).

Heat exercise tolerance. Pre-HA, all nine of the controls and all but one (19) in the 17–40% group (due to volitional exhaustion) were able to complete the full 90 min of exercise (Fig. 2). By contrast, heat exercise tolerance was lower ($P = 0.002$) in the >40% group (Fig. 2), with only eight (of 15) subjects completing the 90 min of exercise (internal temperature $\geq 39.5^\circ$C: $n = 3$; volitional exhaustion: $n = 4$). Post-HA, all subjects were able to complete the 90 min of exercise, except for one subject in the >40% group (Fig. 2), in which exercise was terminated because of the attainment of an internal temperature $\geq 39.5^\circ$C.

Body temperature. Pre-exercise internal temperature was not different between groups ($P = 0.291$) and was unaffected by HA ($P = 0.431$) (mean pre-HA: $37.1 \pm 0.4^\circ$C; post-HA: $37.1 \pm 0.4^\circ$C). Pre-HA, the increase in internal temperature during exercise was greatest ($P \leq 0.005$) in the >40% group and lowest ($P \geq 0.031$) in the control group, while the 17–40% group was in the middle (Fig. 3). HA attenuated ($P < 0.001$) the increase in internal temperature during exercise by $0.2 \pm 0.3^\circ$C (control), $0.3 \pm 0.3^\circ$C (17–40%), and $0.3 \pm 0.4^\circ$C (>40%). However, the magnitude of these attenuations did not differ between groups (group \times HA interaction: $P = 0.417$) (Fig. 3). Ungrafted skin temperature was lower ($P = 0.004$) following HA, but grafted skin temperature was unaffected ($P = 0.163$) (Fig. 3).

Cardiovascular adjustments. Pre-exercise heart rate was not different between groups ($P = 0.938$) and was not different following HA ($P = 0.086$) (mean pre-HA: 87 ± 11 bpm; post-HA: 85 ± 11 bpm). Pre-HA, heart rate at the end of exercise was higher ($P = 0.006$) in the >40% group compared with both the 17–40% and control groups, between which there was no difference ($P = 0.466$) (Fig. 4). HA resulted in a lower ($P < 0.001$) heart rate at the end of exercise, but the magnitude of these changes did not differ between groups (group \times HA interaction: $P = 0.199$) (Fig. 4). Blood volume was similar ($P = 0.586$) between groups (control: 78 ± 5 ml/kg; 17–40%: 73 ± 11 ml/kg; >40%: 77 ± 12 ml/kg) and did not change ($P = 0.073$) with HA (control: 80 ± 10 ml/kg; 17–40%: 76 ± 14 ml/kg; >40%: 79 ± 14 ml/kg). Plasma volume was also similar ($P = 0.282$) between groups and increased ($P = 0.011$) with HA, although the magnitude of this improvement was similar between groups (group \times HA interaction: $P = 0.839$) (Fig. 4).
mmol/liter; post-HA: 71 ± 21 mmol/liter, \(P = 0.102 \) concentrations did not change with HA.

Perceptual measures. Pre-HA, RPE was higher at the end of exercise in the >40% group (17 ± 3 au, approximately “very hard”) compared with the control (14 ± 2 au, between “somewhat hard” and “very hard,” \(P = 0.023 \)) and 17–40% groups (13 ± 3 au, somewhat hard, \(P = 0.004 \)), which were similar (\(P = 0.859 \)) (Fig. 6). Post-HA, RPE was lower (\(P = 0.001 \)) at the end of exercise, with the magnitude of reductions in RPE being not different between groups (group × HA interaction: \(P = 0.780 \)) (Fig. 6). Thermal perceptions immediately before exercise were perceived as “warm,” which was similar between groups (\(P = 0.669 \)) and did not change (\(P = 0.322 \)) with HA (mean pre-HA: 5.1 ± 0.1 au, post-HA: 5.0 ± 0.1 au). At the end of exercise, pre-HA perceptions of warmth were higher in the >40% group (7.2 ± 0.7 au, approximately “very hot”) compared with the control group (5.8 ± 0.8 au, approximately “hot,” \(P = 0.006 \)), both of which were not different from the 17–40% group (6.4 ± 1.1 au, between hot and very hot, \(P = 0.084 \)) (Fig. 6). Post-HA, warmth perceptions were lower (\(P = 0.001 \)) at the end of exercise in all groups, and the magnitude of this attenuation did not differ between groups (group × HA interaction: \(P = 0.165 \)) (Fig. 6).

Sweating. Absolute whole-body sweat rates were similar (\(P = 0.198 \)) between groups and did not change (\(P = 0.254 \)) with HA (Fig. 5). When whole-body sweat rate was expressed relative to the absolute BSA of ungrafted skin (i.e., the surface area available to sweat), sweat rate was greatest (\(P = 0.022 \)) in the >40% group (Fig. 5). Pre-HA, absolute sweat rate relative to the increase in internal temperature was lower (\(P = 0.027 \)) in the >40% group compared with the control group (Fig. 5). This measure of sweat rate increased (\(P = 0.005 \)) with HA (Fig. 5), but remained lowest (\(P = 0.038 \)) in the >40% group and was highest (\(P = 0.049 \)) in the control group (Fig. 5). The magnitude of these HA-induced changes did not differ between groups (group × HA interaction: \(P = 0.513 \)). Sweat rate relative to the increase in internal temperature, when expressed relative to the absolute BSA of ungrafted skin, was not different (\(P = 0.792 \)) between groups and increased (\(P < 0.001 \)) with HA, the magnitude of which did not differ between groups (group × HA interaction: \(P = 0.923 \)) (Fig. 5). Sweat sodium concentration decreased (\(P = 0.025 \)) with HA, but the magnitude of this reduction did not differ between groups (group × HA interaction: \(P = 0.347 \), mean pre-HA: 97 ± 23 mmol/liter; post-HA: 85 ± 33 mmol/liter). In contrast, sweat potassium (mean pre-HA: 8 ± 1 mmol/liter; post-HA: 8 ± 1 mmol/liter, \(P = 0.615 \)) and chloride (mean pre-HA: 78 ± 14

Fig. 3. The change (\(\Delta \)) in internal temperature during exercise (A) and absolute skin temperatures at ungrafted (B) and grafted (C) skin locations at the end of exercise pre- and post-HA in nonburned control subjects (\(n = 9 \)) and burn survivors with 17–40% BSA grafted (\(n = 19 \)) and >40% BSA grafted (\(n = 15 \)) (mean ± SD). *Different from control (\(P \leq 0.031 \)); †main effect of HA (\(P \leq 0.004 \)); ‡different from 17–40% (\(P = 0.029 \)); group × HA interaction: \(P = 0.417 \).

Fig. 4. Heart rate at the end of exercise (A) and plasma volume (B) pre- and post-HA in nonburned control subjects (\(n = 9 \)) and burn survivors with 17–40% BSA grafted (\(n = 19 \)) and >40% BSA grafted (\(n = 15 \)) (mean ± SD). *Different from control (\(P \leq 0.006 \)); †main effect of HA (\(P \leq 0.011 \)); ‡different from 17–40% (\(P = 0.009 \)); group × HA interaction: \(P = 0.199 \).
DISCUSSION

This study tested the hypothesis that a 7-day HA regimen involving 90 min of exercise at ~50% of peak oxygen uptake in a hot (~40°C) and dry (~30% relative humidity) environment improves heat exercise tolerance and heat dissipation in burn survivors with grafted skin. In support of this hypothesis, 33 (of 34) burn survivors with grafted skin completed the entire 90 min of exercise following HA, compared with just 26 (of 34) before HA (Fig. 2). At least partially explaining these observations, increases in internal temperature during exercise were attenuated following HA (Fig. 3), suggesting that heat dissipation was enhanced. Interestingly, the magnitude of this improvement in heat dissipation was not different between groups. This finding is supported by similar enhancements in cardiovascular (Fig. 4), sweating (Fig. 5) and perceptual (Fig. 6) responses with HA between groups. Collectively, these data indicate that a 7-day HA regimen improves heat exercise tolerance and heat dissipation in burn survivors with grafted skin and that the magnitude of this improvement is not influenced by the extent of grafted skin. These findings suggest that, with the HA regimen employed herein, the degree of adaptation with HA in ungrafted skin is independent of the BSA available for heat dissipation.

Improved heat exercise tolerance. Exercise tolerance in the heat is compromised in child burn survivors (35). The current study extends these findings to adult burn survivors, such that
pre-HA heat exercise tolerance, defined as the ability to complete the 90 min of exercise in a hot and dry environment, was lowest in the group of burn survivors with the greatest extent of skin grafting (i.e., >40% group) (Fig. 2). More importantly, however, we demonstrated that heat exercise tolerance can be dramatically improved following HA (Fig. 2). Although novel, this finding is not necessarily surprising, as improvements in exercise tolerance (13, 21, 38, 39) and performance (33) are typically observed following HA in healthy subjects. The mechanism(s) underlying this observation are likely multifactorial and perhaps mediated by attenuated increases in internal temperature during exercise (Fig. 3) that led to lower sensations of warmth and perceived exertion during exercise (Fig. 6), which are known to influence exercise tolerance in the heat (51).

Improved heat dissipation. Heat dissipation improves with 7 days of HA (44). Evidence of this improvement is demonstrated by a lower internal temperature for a given thermal load (37–39, 45, 46, 61). In the present study, exercise was carried out at a fixed H_{prod}, expressed as both absolute and relative to body mass, between subjects (Fig. 1). This is an important consideration. The similar absolute H_{prod} ensured the same stimulus for absolute whole-body sweat production (24, 31), while the similar H_{prod} relative to body mass ensured that any differences in internal temperature between groups were due to differences in heat dissipation (14). Using this approach, we (25, 27), and others (4, 54), have demonstrated that burn survivors with grafted skin have impaired heat dissipation, and that the magnitude of this impairment is greatest in those with the highest BSA grafted (Fig. 3, Pre-HA). The current study extends these findings, and others from our laboratory (59), by demonstrating that heat dissipation is improved in a large group of burn survivors with varied percentages of BSA of grafted skin following a 7-day HA regimen (Fig. 3).

It is notable that, although H_{prod} was not different between groups at any time point, we did observe a small but statistically significant reduction in H_{prod} (by ~12 W or ~0.2 W/kg) following HA (Fig. 1). This is probably because the external workload was the same pre- and post-HA and there were slight improvements in exercise economy, i.e., slightly lower H_{prod} for a given external workload, post-HA (13, 21, 50). In the current study, the average attenuation in the increase in internal temperature during exercise following HA was $-0.3 \pm 0.3^\circ$C (Fig. 3). Recent evidence indicates that, to achieve differences in internal temperature of a similar magnitude (~0.4°C), H_{prod} (relative to body mass) would have to have been attenuated ~10-fold more than what we observed (~2.0 vs. ~0.2 W/kg) to fully account for the attenuated increases in internal temperature observed post-HA in this study (14). In support of this contention, post hoc correlational analysis indicates that changes in H_{prod} pre- to post-HA accounts for 9 to 10% of the variance in the attenuated rise in internal temperature observed post-HA (H_{prod} in W: $R^2=0.09$; H_{prod} in W/kg: $R^2 = 0.10$). Thus it is unlikely that subtle differences in H_{prod} explain the attenuated increases in internal temperature following HA (Fig. 3). Rather, it is likely that heat dissipation was enhanced, as evidenced by improvements in sweating for a given increase in internal temperature following HA (Fig. 5).

Factors mediating improvements in heat dissipation following HA are numerous and include improvements in sweating (23, 34, 37, 39, 45, 61) and skin blood flow (23, 34, 37–39, 45), reduced sweat electrolyte concentrations (1, 19), and increased plasma volume (38, 41, 53). Ultimately, these adaptations result in lower heart rates (37, 46), skin temperatures (33, 38), increases in internal temperature during exercise (38, 46, 55), and sensations of warmth (18, 32, 55) and perceived exertion (43, 58). In this light, the findings of the present study are a hallmark of HA. That is, plasma volume increased (Fig. 4), sweat sodium concentration decreased, and sweat rate relative to the increase in internal temperature was enhanced (Fig. 5). These adaptations resulted in lower heart rates at the end of exercise (Fig. 4), lower ungrafted skin temperatures (Fig. 3), attenuated increases in internal temperature during exercise (Fig. 3), and reduced perceptions of warmth and perceived exertion at the end of exercise (Fig. 6).

Importantly, in the present study the magnitude of HA-induced improvements in heat dissipation, in addition to the underlying adaptations, did not differ between groups (Fig. 3–5). Rather, impairments in heat dissipation were still evident between groups following HA (Fig. 3). This suggests that, in the current paradigm, the degree of adaptation with HA was independent of the BSA available for heat dissipation, and that the adaptations in the ungrafted skin of burn survivors were not enhanced such that impairments in heat dissipation between groups were abolished following HA. The observed improvements in sweating perhaps best highlight this point. That is, despite whole-body sweat rate not increasing with HA, sweat rate for a given increase in internal temperature did improve (Fig. 5), a finding that has been demonstrated previously (12, 38). Interestingly, although this absolute sweat rate response was impaired with increased skin grafting, the increase in sweat rate for a given increase in internal temperature in the ungrafted skin was not different between groups and improved similarly with HA in all groups (Fig. 5). Thus the ungrafted skin seemingly adapted to the same extent in all groups, independent of the BSA available for heat dissipation. This finding suggests that impairments in heat dissipation in burn survivors with grafted skin, even following HA, are due, primarily, to reductions in the BSA available for heat dissipation (i.e., grafted skin).

Unfortunately, the precise mechanisms underlying the improvements in heat dissipation cannot be discerned from the current study. That is, although classic adaptations indicative of HA were observed, the neural, structural, and/or chemical manner in which these adaptations were elicited remains uncertain. For instance, the augmentation of sweat rate relative to the increase in internal temperature with HA in the current study can be explained by a number of factors, including 1) enhanced sensitivity of the “central” neural control of sweating (37), i.e., a given change in temperature eliciting a greater neural drive to increase sweat production; 2) improvements in postjunctional sensitivity of the sweat glands (7, 30, 34); and/or 3) improvements in sweating efficiency such that more evaporation occurred for a given sweat rate. The latter of which may be due to improvements in the capacity to produce a skin wetness that is optimal for heat dissipation, e.g., by altering sweat distribution and/or reducing dripping (9). Regrettably, the current data do not allow for further speculation. Nevertheless, despite this lack of mechanistic insight, the importance of these findings, i.e., that burn survivors with grafted skin maintain the capacity to heat acclimate and that these adaptations improve heat tolerance, cannot be understated.
Methodological considerations. We chose 7 days of exercise in the heat to induce HA. This approach was chosen given that 1) upwards to 70% of the improvements in heat dissipation occur within the first 7 days (21, 44, 46), and 2) such an approach has a high external validity for clinicians and burn survivors. As a result, however, we may have underestimated the magnitude of improvements in heat dissipation compared with if we had used, for instance, a 14-day HA regimen (44, 56) and/or an isothermal approach (56). For instance, we cannot exclude the possibility that the rate of HA-induced adaptations were different between groups across the 7-day period. We also cannot exclude the possibility that the grafted subjects may have continued to improve their heat loss capacity had we used a longer HA regimen. Thus the conclusions drawn herein are constrained to the HA regimen utilized as well as the range of BSA grafted (17–75%) that were studied. Furthermore, it should be noted that by measuring whole-body sweat rate from changes in nude body weight pre- to postexercise, we were unable to provide insights regarding HA-induced shifts in sweating dynamics that may be occurring during exercise (e.g., the internal temperature threshold for the onset of sweating and the rate of increase in sweating per increase in body temperature following that threshold). Despite these limitations, the current study provides an important benchmark, indicating that HA can improve heat tolerance and heat dissipation in burn survivors with grafted skin. Therefore, further work is required to identify whether the maximum achievable level of adaptation is altered by grafted skin.

Perspectives and significance. Because of medical advances, improvements in survival following a burn injury have resulted in a shift in medical treatment from issues involving mortality to those regarding rehabilitation, quality of life, and returning to work (42). It is clear that ambient temperature and the ability to regulate body temperature affects such factors in burn survivors. For instance, upward to 74% of burn survivors have subjective intolerance to hot temperatures, which continue many years, if not indefinitely, after burn injury (29). This is not inconsistent, as ambient temperature and humidity can be a barrier in returning to work following such an injury (22). These subjective measures are in line with the findings that heat dissipation is impaired in burn survivors (4, 25, 27, 54). Importantly, the current study demonstrates that impairments in both heat dissipation and heat tolerance can be, at least partially, mitigated by short-term HA. Such findings indicate that the ability to adapt to heat is possible despite burn injuries and that HA or natural acclimatization (e.g., as would occur during the summer) is an effective strategy for improving heat tolerance, safety, and comfort in hot environments that are typically encountered during both work and recreation. Notably however, impairments in heat dissipation remain evident even following HA. Thus caution and medical oversight should still be used when burn survivors with grafted skin undertake work and/or exercise in hot conditions, especially in those with greater than 40% BSA grafted.

CONCLUSIONS

The present study indicates that a short-term 7-day HA regimen improves heat tolerance and heat dissipation in burn survivors with grafted skin. Responses classically indicative of HA were observed in burn survivors and nonburned individuals alike, which included improvements in heat exercise tolerance, increases in plasma volume, a higher sweat rate for a given increase in internal temperature, attenuated increases in internal temperature during exercise, and lower sweat electrolyte concentrations, ungrafted skin temperatures, and perceptions of warmth and perceived exertion. Interestingly, the magnitudes of the HA-induced adaptations were not different between groups. Collectively, these data indicate that HA is a useful tool for improving heat tolerance and heat dissipation in burn survivors. Furthermore, within the scope of the HA regimen employed herein, these data suggest that the degree of adaptation with HA in ungrafted skin is independent of the BSA available for heat dissipation.

ACKNOWLEDGMENTS

We would like to thank the subjects for participating in our study. We would also like to thank Jena Korn, RN, Naomi Kennedy, RN, Linda Eggert, RN, Diane Bedenkop, RN, Gary Purdum, MD. R. Matthew Brothers, PhD, Jixiu Zhao, PhD, and Kim Hubing for their technical assistance.

GRANTS

This study was supported by National Institutes of Health Grants R01 GM-068865 and F32AG-04328.

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the author(s).

AUTHOR CONTRIBUTIONS

REFERENCES

11. CDC. Mass casualties: Burn. *In: Injury Fact Sheets. 2007*.

