Automatic identification of physical activity types and sedentary behaviors from triaxial accelerometer: laboratory-based calibrations are not enough

Thomas Bastian,1 Aurélie Maire,1 Julien Dugas,1 Abbas Ataya,2,3 Clément Villars,1 Florence Gris,2,3 Emilie Perrin,4 Yanis Caritu,4 Maeva Doron,2,3 Stéphane Blanc,5 Pierre Jallon,2,3 and Chantal Simon1,6

1 CarMeN INSERM U1060, University of Lyon 1, INRA U1235, Centre de Recherche en Nutrition Humaine Rhône-Alpes, Centre Européen pour la Nutrition & la Santé, Pierre-Bénite, France; 2 University of Grenoble Alpes, Grenoble, France; 3 Commissariat à l’Énergie Atomique, Leti, Département Microtechnologies pour la Biologie et la Santé, Laboratoire Électronique et Systèmes pour la Santé, MINATEC, Grenoble, France; 4 Movea, Grenoble, France; 5 Hubert Curien Pluridisciplinary Institute, Department of Ecology, Physiology and Ethology, University of Strasbourg, UMR CNRS 7178, Strasbourg, France; and 6 Service d’Endocrinologie, Diabètes, Nutrition, Centre Hospitalier Lyon Sud, Pierre-Bénite, France

Submitted 29 October 2013; accepted in final form 26 December 2014

Bastian T, Maire A, Dugas J, Ataya A, Villars C, Gris F, Perrin E, Caritu Y, Doron M, Blanc S, Jallon P, Simon C. Automatic identification of physical activity types and sedentary behaviors from triaxial accelerometer: laboratory-based calibrations are not enough. J Appl Physiol 118: 716–722, 2015. First published January 15, 2015; doi:10.1152/japplphysiol.01189.2013.—“Objective” methods to monitor physical activity and sedentary patterns in free-living conditions are necessary to further our understanding of their impacts on health. In recent years, many software solutions capable of automatically identifying activity types from portable accelerometry data have been developed, with promising results in controlled conditions, but virtually no reports on field tests. An automatic classification algorithm initially developed using laboratory-acquired data (59 subjects engaging in a set of 24 standardized activities) to discriminate between 8 activity classes (lying, slouching, sitting, standing, walking, running, and cycling) was applied to data collected in the field. Twenty volunteers equipped with a hip-worn triaxial accelerometer performed at their own pace an activity set that included, among others, activities such as walking the streets, running, cycling, and taking the bus. Performances of the laboratory-calibrated classification algorithm were compared with those of an alternative version of the same model including field-collected data in the learning set. Despite good results in laboratory conditions, the performances of the laboratory-calibrated algorithm (assessed by confusion matrices) decreased for several activities when applied to free-living data. Recalibrating the algorithm with data closer to real-life conditions and from an independent group of subjects proved useful, especially for the detection of sedentary behaviors while in transports, thereby improving the detection of overall sitting (sensitivity: laboratory model = 24.9%; recalibrated model = 95.7%). Automatic identification methods should be developed using data acquired in free-living conditions rather than data from standardized laboratory activity sets only, and their limits carefully tested before they are used in field studies.

actimetry; physical activity; sedentary behaviors; machine learning and classification methods; field study

DEEPPENING OUR UNDERSTANDING of the impacts of physical activity and sedentary behaviors on health requires objective methods to measure these behaviors both quantitatively and qualitatively in free-living conditions (2, 8). This is even more critical as it becomes increasingly clear that sedentary occupations and low nonexercise activities can have significant health impacts, independent of exercise (10, 18).

For several years now, accelerometers have been one of the main instruments used by physical activity researchers and epidemiologists to investigate these questions (7, 13). Over the past few years, new generations of accelerometers have emerged, which have enabled raw triaxial acceleration signals to be recovered at high frequency. Combined to advances in signal processing techniques and machine-learning algorithms, this paved the way for the development of methods capable of automatically identifying postures or types of physical activity from raw acceleration signals (6). A lot of research has been conducted in that area, and a wide range of machine-learning approaches and classification techniques have been developed and tested in controlled conditions (27). Most activity sets used to generate the data necessary to calibrate these tools in the laboratory now include real-life situations of the continuum from light activities to full sedentariness, which still remain challenging to accurately dissociate (6). Although there have been attempts to include sitting (e.g., watching TV, reading, desk-based occupations), “household” (e.g., hovering, washing dishes), and locomotory (e.g., walking, climbing stairs) activities (25) in activity sets used in laboratory studies, only a few studies have considered the case of riding a bicycle on the street (19) or sitting in a motorized vehicles (24). Those activities are now recognized as important targets for public health campaigns aiming at decreasing sedentary time and increasing daily physical activity levels at population level, but further studies are needed (26). Clearly, the identification of these activities might also be useful to improve the assessment of activity-related energy expenditure (5). Most importantly, studies testing the algorithms obtained in controlled laboratory conditions on independent samples out of highly controlled laboratory conditions (i.e., in the field) remain very scarce (5, 12, 14, 23).

In the present work, two versions of an automatic posture identification tool based on a machine-learning algorithm were tested on data collected in free-living conditions. The first version tested was “trained” only with data acquired in the laboratory, whereas the second version was initialized with additional triaxial acceleration signals from activities performed out of the laboratory, including cycling the street and sitting in motorized vehicles (car, bus, subway). Comparing the performances of the two tested versions highlighted the importance of using data acquired in free-living conditions to pa-
rameterize and test activity identification and classification algorithms before using them in the field, but also demonstrated some remaining limits of this approach.

MATERIAL AND METHODS

Classification algorithm. The algorithm used in the present study is based on a Bayesian machine-learning approach, which enables an automatic identification of postures or activity classes from the raw signals recorded by a single hip-worn triaxial accelerometer (9). The devices used were MotionLogs (Movea, Grenoble, France). Acceleration signals were acquired at 100 Hz and subsequently downsampled to 25 Hz (by keeping one of every four data points) to ease computations, while keeping a high enough frequency to assess physical activities [most of human movements occur at < 10 Hz (33)].

Three features from the time (mean) and frequency domains (total energy and dominant frequency) were extracted for the vertical axis; signal magnitude area and inclination angle, two features calculated from values on the three axes (3, 28).

Those features are used in the algorithm “learning phase,” during which each class of activity is modeled using a Gaussian mixture models with \(K \) components. The probability distribution of each one of the considered activity classes \(i \) is given by:

\[
p(F \mid A = i) = \sum_{k=1}^{K} \lambda_{ik} \exp \left(-\frac{1}{2} \sum_{j=1}^{3} (x_{ij} - \mu_{ijk})^2 \right)
\]

where \(F \) is the feature vector, and the parameters \(\lambda_{ik}, \mu_{ijk}, \) and \(\sum_{ik} \) represent, respectively, the weight, mean, and variance of the mixture’s \(k \)-th component (note that \(\forall k \in \{1, \ldots, K\}, 0 < \lambda_{ik} < 1, \) and \(\sum_{k=1}^{K} \lambda_{ik} = 1 \)). For each activity \(i \), these parameters are estimated using an expectation-maximization algorithm (34). The number of components \(K \) is defined in advance. In our work, we used \(K = 3 \), a value that we considered sufficient to model the activities.

Once this training phase is completed, the determined models for the different activity classes are used to classify new acceleration data. For a given acceleration data window, the feature vector is evaluated and is fed into our classification models to identify the activity whose corresponding model gave the greatest probability (9). The choice of this classification algorithm among others was mainly motivated by its rapidity in the learning and classification phase and to its simplicity for implementation. Because activities are time correlated, the classification algorithm was coupled with a graph-based analysis method (1, 21), which temporally stabilizes the decisions taken by the classifier (thus taking into account the fact that not all activity sequences are possible, e.g., “walking” cannot occur after “lying down” without getting first through “standing”).

In the present study, the algorithm was initially set to discriminate between eight postures or activity classes: “lying,” “sitting,” “standing,” “SUM” (for small utilitarian movements), “walking,” “running,” and “cycling.” We identified as SUM the interspersed ambulatory movements that occur in many daily activities (sweeping the floor, grocery shopping, etc., i.e., neither standing still nor clearly walking from point A to B, but instead quickly and irregularly alternating between staying on spot and making a couple of steps). Final outputs are at 1/6 Hz frequency (i.e., 10 times a minute). There is no consensus in the literature on the window width to use. Van Hees et al. (19) used a 4-s time window, while Bonomi et al. (4) reached maximum accuracy with 6.2- and 12.8-s time windows. The 6-s time window (i.e., 10 times a minute) was chosen as a compromise.

Data acquisition in the laboratory and initial learning phase. The data to initialize the first version of the algorithm were collected as follows: Fifty-nine volunteers, aged 19–55 yr (mean ± SD = 37.3 ± 10.6 yr), were recruited to perform a set of standardized activities in the laboratory. Subjects were selected according to their body mass index (BMI) (26 with a BMI < 25, 16 with 25 < BMI < 30, and 17 with BMI > 30), sex (30 men, 29 women), and physical activity level (31 active, 28 inactive subjects), according to the Monica Optional Study of Physical Activity questionnaire (29). The activity set included 23 activities of various intensities (rest to vigorous activity), performed in consecutive bouts of 5 min, after an initial time period of 45 min lying down. Each activity was associated with one of the eight activity classes predefined for the training of the algorithm, and the learning phase was conducted. The algorithm resulting from this procedure will be hereafter referred to as the laboratory model.

A cross-validation using a take-one, leave-one-out procedure was performed to evaluate the performances of this algorithm. Results of this cross-validation are reported as the aggregate detection accuracy or “good detection rate” for each activity. This aggregate accuracy is obtained by averaging the activity detection accuracy for each activity over all the subjects. For an activity \(i \), the aggregate accuracy is given by:

\[
\frac{1}{N} \sum_{n=1}^{N} 100 \times \frac{1}{T_i} \sum_{t=1}^{T_i} \delta(A_{i,t} - i)
\]

where \(N \) is the total number of subjects in the database, \(\delta(x) \) is a function that is equal to 1, if \(x = 0 \), and 0 otherwise, \(A_{i,t} \) represents a detected activity instant at instant \(t \) subject \(n \), and \(T_i^n \) represents the real number of instants during which subject \(n \) practiced activity \(i \).

Out-of-the-laboratory tests. The performances of this laboratory model were tested on an independent set of data collected in semifree-living conditions, outside of the laboratory. Twenty other volunteers, aged 18–39 yr, engaged in a different set of activities, this time including more real-life field situations, e.g., walking in the street, riding a true bicycle, getting on the bus (full list in Table 1). Subjects were instructed to perform activities at their own pace in bouts of ~3 min or more. In other words, the subjects walked as they wanted, were able to climb the stairs up and down as fast as it pleased them (one step at a time, or two at a time), and while cycling they did as much turns as they wanted. Data for sitting or standing in transport were recorded while the subjects used the actual public transport system (bus, tramway, subway) of the city of Lyon (France), except for sitting in a car, during which the subject was sitting as a passenger in a private car engaged on highways and city-center small streets. The beginning and the end of each activity bouts were precisely timed (hour, minutes, seconds) and noted by an observer. Data were then extracted from the devices and treated with the classification algorithm. For each activity, classification outputs were compared with the corresponding a priori expected activity class (Table 1). To do so, the 1/6-Hz classification outputs were rescaled to 1 Hz by constant interpolation and then compared second by second to the observers’ notes. Performances of the classification tool were characterized by confusion matrices, and results are reported as sensitivity (i.e., recall value or true positive rate), specificity, and precision (i.e., positive predictive value) for each posture.

Recalibration. In an effort to improve the initial classification algorithm (the laboratory model), one-half of the “out-of-the-laboratory” dataset (see previous paragraph) was added to the initial training set, and a new learning phase was initialized with three additional classes: “riding a bicycle” (in contrast to an exercise bicycle), “sitting in a vehicle,” and “standing in a vehicle.” This resulted in a recalibrated algorithm (or model), which discriminates between 11 postures. Performances (sensitivity, specificity, and precision) of this new model were tested using the second half of the out-of-the laboratory dataset and compared with performances of the laboratory-calibrated model on the same data.
Table 1. List of the activities performed during the laboratory trial (from which the initial laboratory-calibrated model was developed) and of the activities of the semi-free-living condition trial

<table>
<thead>
<tr>
<th>Activities</th>
<th>Details</th>
<th>Activity Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory conditions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lying down</td>
<td>Lying on the back, on a bed, still</td>
<td>Lying down</td>
</tr>
<tr>
<td></td>
<td>Lying on the back, on a bed, moving arms up and down every 30 s</td>
<td>Lying down</td>
</tr>
<tr>
<td></td>
<td>Lying on the back, on a bed, moving arms up and down every 15 s</td>
<td>Lying down</td>
</tr>
<tr>
<td>Slouching</td>
<td>Slumped/slouched in a comfortable armchair</td>
<td>Slouching</td>
</tr>
<tr>
<td>Sitting</td>
<td>On a chair, back straight, still</td>
<td>Sitting</td>
</tr>
<tr>
<td></td>
<td>On a chair, lifting a 50-cl bottle up and down with both arms</td>
<td>Sitting</td>
</tr>
<tr>
<td></td>
<td>At a desk, inactive, elbows on the desk</td>
<td>Sitting</td>
</tr>
<tr>
<td></td>
<td>At a desk, typing a text on a computer</td>
<td>Sitting</td>
</tr>
<tr>
<td>Standing up</td>
<td>Standing still</td>
<td>Standing</td>
</tr>
<tr>
<td></td>
<td>Lifting a 50-cl bottle up and down with both arms</td>
<td>Standing</td>
</tr>
<tr>
<td></td>
<td>Lifting a 100-cl bottle up and down with both arms</td>
<td>Standing</td>
</tr>
<tr>
<td></td>
<td>Throwing a ball to the experimenter</td>
<td>Standing</td>
</tr>
<tr>
<td></td>
<td>Making few steps, pacing/stalling</td>
<td>SUM</td>
</tr>
<tr>
<td>Interpersed ambulation</td>
<td>Standing up, occasionally making few steps to sweep a small area of the rooms' floor</td>
<td>SUM</td>
</tr>
<tr>
<td>Sweeping the floor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cleaning windows</td>
<td>Standing up, cleaning a window</td>
<td>Standing</td>
</tr>
<tr>
<td>Walking on a treadmill</td>
<td>Walking at 20% VO2 reserve, no inclination</td>
<td>Walking</td>
</tr>
<tr>
<td></td>
<td>Walking at 30% VO2 reserve, no inclination</td>
<td>Walking</td>
</tr>
<tr>
<td></td>
<td>Walking at 40% VO2 reserve, no inclination</td>
<td>Walking</td>
</tr>
<tr>
<td></td>
<td>Walking at moderate speed (subject dependent), 5% slope</td>
<td>Walking</td>
</tr>
<tr>
<td></td>
<td>Walking at moderate speed (subject dependent)</td>
<td>Walking</td>
</tr>
<tr>
<td></td>
<td>Running at 70% VO2 reserve</td>
<td>Running</td>
</tr>
<tr>
<td>Cycleing an ergometer</td>
<td>Cycling between 60 and 80 rpm at 50% VO2 reserve</td>
<td>Cycling</td>
</tr>
<tr>
<td></td>
<td>Cycling between 60 and 80 rpm at 70% VO2 reserve</td>
<td>Cycling</td>
</tr>
<tr>
<td>Semi-free-living conditions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lying down</td>
<td>On a bed</td>
<td>Lying down</td>
</tr>
<tr>
<td>Slouching</td>
<td>In a reclined chair</td>
<td>Slouching</td>
</tr>
<tr>
<td>Sitting</td>
<td>On a chair, at a table</td>
<td>Sitting</td>
</tr>
<tr>
<td>Housecleaning</td>
<td>Sweeping the floor, washing dishes</td>
<td>SUM</td>
</tr>
<tr>
<td>Climbing stairs</td>
<td>Up and down 3 levels, 2 or 3 times</td>
<td>Walking</td>
</tr>
<tr>
<td>Taking a lift/elevator</td>
<td>Up and down 3 levels, 2 or 3 times</td>
<td>Standing</td>
</tr>
<tr>
<td>Cycling on the street</td>
<td>On flat ground</td>
<td>Cycling</td>
</tr>
<tr>
<td></td>
<td>Downhill</td>
<td>Cycling</td>
</tr>
<tr>
<td></td>
<td>Uphill</td>
<td>Cycling</td>
</tr>
<tr>
<td>Running on the street</td>
<td>On flat ground, subject's own pace, 3 min</td>
<td>Running</td>
</tr>
<tr>
<td>Walking on the street</td>
<td>On flat ground</td>
<td>Walking</td>
</tr>
<tr>
<td></td>
<td>On flat ground and carrying bags</td>
<td>Walking</td>
</tr>
<tr>
<td></td>
<td>Uphill</td>
<td>Walking</td>
</tr>
<tr>
<td></td>
<td>Downhill</td>
<td>Walking</td>
</tr>
</tbody>
</table>

Protocol approval. The present study was approved by the French Sud-Est 2 Institutional Review Board. All subjects signed an informed consent.

RESULTS

Initial learning phase and cross-validation in laboratory conditions. Results of the cross-validation procedure on the initial training set are presented in Table 2. The best performances were achieved for lying down, walking, and running (93.4, 95.4, and 93.5%, respectively). The aggregate accuracy of cycling was 66.3%.

Application to semi-free-living condition data. When applied to data acquired in semi-free-living conditions, the true positive rate in the identification of lying down and running were very high (sensitivity of 96.6 and 100%, respectively), but the detection of walking decreased to 76%, and those of sitting, cycling, and standing dropped drastically (24.9, 5.4, and 2.4%, respectively) (see Tables 2 and 3). Low performances of sitting activities were due to the classification of sitting on a chair, in a car, or in the tramway being mostly identified as slouching (at 64.3, 44.13, and 46.6%, respectively). Cycling was mainly misclassified as SUM or walking (at 64.8 and 26.9%, respectively), and most of the periods when the subjects were standing in a motorized vehicle (in a bus, subway, or a tramway) were misclassified as SUM (65.4, 82.9, and 98.5%, respectively). Sitting at a desk was identified as sitting with a sensitivity of 59.9%, but misclassified as standing at 19.8%.

Tests after recalibration. After training the algorithm to recognize sitting times while in a vehicle (recalibrated model), the detection of all sitting activities (i.e., sitting and sitting in a vehicle considered altogether) was improved (see Tables 2 and 4). Specificity was high for all classes (minimum 90.9% for standing). The true positive rate of sitting on a chair was only 46%, but this time misclassification was with slouching (7.9%), sitting in a vehicle (30.9%), and standing (9.6%). Sitting in a vehicle was correctly identified with a sensitivity of 98.1%. The automatic classification worked relatively well for cycling on flat (sensitivity 75.9%), but cycling uphill and downhill proved more difficult to identify. Nonetheless, overall, the identification of cycling achieved high precision (90.9%) and specificity (99.6%). The performances in identifying lying and running were similar to those achieved with the initial laboratory-calibrated model. All walks considered together achieved a slightly lower true positive rate of 73.4%, but
precision and specificity increased. Precision increased also for lying, slouching, sitting, standing, and cycling.

DISCUSSION

Previous studies have suggested that promising automatic posture and activity recognition tools developed from data acquired in highly controlled environments (i.e., in the laboratory) may not perform as well when applied to real-life data (17, 19). Results of the present work clearly support this. Indeed, the initial laboratory-calibrated algorithm performed poorly when applied to data acquired in the semi-free-living trial. This loss of performances was induced by activities that were not present in the initial laboratory trial or not in similar conditions.

<table>
<thead>
<tr>
<th>Posture</th>
<th>Laboratory Data, GDR, %</th>
<th>Semi-free-living Data, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lying</td>
<td>93.4</td>
<td>96.6</td>
</tr>
<tr>
<td>Slouching</td>
<td>85.2</td>
<td>77.7</td>
</tr>
<tr>
<td>Sitting</td>
<td>52.7</td>
<td>24.9</td>
</tr>
<tr>
<td>Standing</td>
<td>81.3</td>
<td>2.4</td>
</tr>
<tr>
<td>SUM</td>
<td>79.4</td>
<td>51.6</td>
</tr>
<tr>
<td>Walking</td>
<td>95.4</td>
<td>76.1</td>
</tr>
<tr>
<td>Running</td>
<td>93.5</td>
<td>100</td>
</tr>
<tr>
<td>Cycling</td>
<td>66.3</td>
<td>5.4</td>
</tr>
</tbody>
</table>

Table 2. Performances of the original laboratory-calibrated classifier and of the version recalibrated with semi-free-living data, when applied to data acquired in semi-free-living conditions

<table>
<thead>
<tr>
<th>Posture</th>
<th>Sensitivity</th>
<th>Precision</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lying</td>
<td>93.4</td>
<td>83.4</td>
<td>99.4</td>
</tr>
<tr>
<td>Slouching</td>
<td>85.2</td>
<td>14.4</td>
<td>87.1</td>
</tr>
<tr>
<td>Sitting</td>
<td>52.7</td>
<td>72.4</td>
<td>96.8</td>
</tr>
<tr>
<td>Standing</td>
<td>81.3</td>
<td>13.2</td>
<td>97.9</td>
</tr>
<tr>
<td>SUM</td>
<td>79.4</td>
<td>9.0</td>
<td>74.4</td>
</tr>
<tr>
<td>Walking</td>
<td>95.4</td>
<td>84.7</td>
<td>90.2</td>
</tr>
<tr>
<td>Running</td>
<td>93.5</td>
<td>50.4</td>
<td>97.3</td>
</tr>
<tr>
<td>Cycling</td>
<td>66.3</td>
<td>29.7</td>
<td>98.8</td>
</tr>
</tbody>
</table>

N is the number of points (seconds) per activity. Lab. model, original laboratory-calibrated classifier; Recal. model, version recalibrated with semi-free-living data. Results of the initial cross-validation in laboratory conditions are also presented [reported as aggregate accuracy, or good detection rate (GDR)]. For the recalibrated algorithm, the categories “sitting” and “sitting in a vehicle” were pooled together, the same for “standing” and “standing in a vehicle,” and for “cycling” and “cycling an exercise bicycle.” To allow for direct comparison, the original laboratory-calibrated model performances were calculated only for the 10 individuals who served as test individuals for the recalibrated algorithm. Detailed results for each activity can be found in Tables 3 and 4.

Table 3. Outputs of the laboratory-calibrated classification algorithm, for each activity performed during the semi-free-living condition trial

<table>
<thead>
<tr>
<th>Detailed Activities</th>
<th>Lying</th>
<th>Slouching</th>
<th>Sitting</th>
<th>Standing</th>
<th>SUM</th>
<th>Walking</th>
<th>Running</th>
<th>Cycling</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lying on a bed</td>
<td>96.62</td>
<td>3.38</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1,743</td>
</tr>
<tr>
<td>Slouching</td>
<td>10.25</td>
<td>77.67</td>
<td>10.25</td>
<td>4.40</td>
<td>4.40</td>
<td>20.98</td>
<td>4.58</td>
<td>5.85</td>
<td>1,639</td>
</tr>
<tr>
<td>Sitting at a desk</td>
<td>0.00</td>
<td>9.53</td>
<td>9.53</td>
<td>19.75</td>
<td>31.49</td>
<td>20.98</td>
<td>4.58</td>
<td>5.85</td>
<td>7,465</td>
</tr>
<tr>
<td>Sitting in a car</td>
<td>0.00</td>
<td>64.30</td>
<td>13.16</td>
<td>39.47</td>
<td>40.94</td>
<td>40.38</td>
<td>4.58</td>
<td>4.58</td>
<td>1,752</td>
</tr>
<tr>
<td>Walking on flat ground</td>
<td>0.00</td>
<td>0.35</td>
<td>7.02</td>
<td>16.54</td>
<td>71.40</td>
<td>5.79</td>
<td>0.35</td>
<td>0.35</td>
<td>17,061</td>
</tr>
<tr>
<td>Walking carrying a bag</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>20.00</td>
<td>25.00</td>
<td>55.00</td>
<td>0.00</td>
<td>0.00</td>
<td>20</td>
</tr>
<tr>
<td>Walking uphill</td>
<td>0.00</td>
<td>0.00</td>
<td>18.42</td>
<td>39.47</td>
<td>28.95</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>38</td>
</tr>
<tr>
<td>Mechanical stairs down</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>59.62</td>
<td>40.38</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>369</td>
</tr>
<tr>
<td>Mechanical stairs up</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.26</td>
<td>43.06</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>555</td>
</tr>
<tr>
<td>Elevator down</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>14.52</td>
<td>67.40</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>303</td>
</tr>
<tr>
<td>Elevator up</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>20.00</td>
<td>25.00</td>
<td>55.00</td>
<td>0.00</td>
<td>0.00</td>
<td>20</td>
</tr>
<tr>
<td>Standing still</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>11.00</td>
<td>65.42</td>
<td>5.50</td>
<td>0.00</td>
<td>0.00</td>
<td>28.28</td>
</tr>
<tr>
<td>Mechanical stairs down</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>5.20</td>
<td>82.88</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1,492</td>
</tr>
<tr>
<td>Mechanical stairs up</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.10</td>
<td>5.20</td>
<td>82.88</td>
<td>0.00</td>
<td>0.00</td>
<td>6.85</td>
</tr>
<tr>
<td>Standing in the bus</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>11.00</td>
<td>65.42</td>
<td>5.50</td>
<td>0.00</td>
<td>0.00</td>
<td>28.28</td>
</tr>
<tr>
<td>Standing in the subway</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>5.20</td>
<td>82.88</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>6.85</td>
</tr>
<tr>
<td>Standing in the tramway</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.10</td>
<td>5.20</td>
<td>82.88</td>
<td>0.00</td>
<td>0.00</td>
<td>6.85</td>
</tr>
<tr>
<td>Cycling on flat</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.51</td>
<td>19.63</td>
<td>71.57</td>
<td>4.78</td>
<td>4.78</td>
<td>1,987</td>
</tr>
<tr>
<td>Cycling on stairs</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.51</td>
<td>19.63</td>
<td>71.57</td>
<td>4.78</td>
<td>4.78</td>
<td>1,987</td>
</tr>
<tr>
<td>Running</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>100.00</td>
</tr>
</tbody>
</table>

N is the total number of points per activity. To allow for direct comparison, results were calculated with only the data from the 10 individuals on whom the recalibrated algorithm (Table 4) was tested. Nos. in bold highlight a positive match between expected results and classification outputs.
conditions. In particular, sitting in a bus or a car ended up being largely misidentified as SUM instead of sitting. This was probably due to the movements induced by the vehicle motion and vibrations, which are obviously absent from the signal generated when sitting at a desk. With sitting times becoming an important criterion for estimating sedentariness (11), the inability to correctly capture the time spent in transport may lead to serious underestimations of total daily sitting times in free-living monitoring trials. Here the introduction of specific activity classes for “sitting in transport” and “standing in transport” defined with data collected out of the laboratory largely corrected this issue, but in the meantime this introduced other errors. For example, more than one-third of the signals from sitting at a desk ended up classified as sitting in transport. However, if the primary aim of a study is to measure the time spent sitting by a subject, this error is less of an issue compared with the initial inability of the laboratory-calibrated model to classify times spent sitting in a vehicle as sitting times.

In a similar way, the poor results of the laboratory-calibrated model in the identification of outdoor cycling resulted from the differences in the acceleration signals generated while cycling on the street and those recorded when riding an anchored exercise bicycle. Interestingly, cycling was successfully identified with high precision and specificity, although this behavior is usually considered difficult to capture with a single hip-worn accelerometer (13). However, these encouraging results were limited to the phases during which the subjects were cycling on flat ground; the sensitivity of downhill or uphill cycling detections remained low, even with the recalibrated algorithm.

However, perhaps the main limitation of the recalibrated algorithm was that the introduction of a “standing in vehicle” class further decreased the positive detection rate of SUM, showing that these two behaviors cannot be reliably discriminated with the current method. There may be a case in saying that the SUM class should be dropped, since interspersed ambulatory movements could be defined as a succession of standing and walking events, which are distinct classes that should be picked up by the algorithm. This was impossible to address in the present study, since the annotations made by the external observer during the trial could not reach the required level of precision to record every stop-and-go movements.

Table 4. Outputs of the recalibrated classification algorithm, for each activity performed by the 10 test subjects during the semi-free-living condition trial

<table>
<thead>
<tr>
<th>Activities</th>
<th>Lying</th>
<th>Slouching</th>
<th>Sitting</th>
<th>In transport</th>
<th>Standing</th>
<th>In transport</th>
<th>SUM</th>
<th>Walking</th>
<th>Running</th>
<th>Exercise bicycle</th>
<th>Outdoor cycling</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sitting at a desk</td>
<td>0.00</td>
<td>96.29</td>
<td>0.00</td>
<td>30.94</td>
<td>0.00</td>
<td>1.16</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.643</td>
</tr>
<tr>
<td>Sitting in the bus</td>
<td>0.00</td>
<td>0.00</td>
<td>96.29</td>
<td>0.00</td>
<td>0.00</td>
<td>3.71</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.645</td>
</tr>
<tr>
<td>Sitting in the subway</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>98.81</td>
<td>0.00</td>
<td>1.19</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.346</td>
</tr>
<tr>
<td>Sitting in the tramway</td>
<td>0.00</td>
<td>4.96</td>
<td>0.00</td>
<td>94.21</td>
<td>0.00</td>
<td>0.35</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>3.144</td>
</tr>
<tr>
<td>Standing still</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>14.52</td>
<td>0.00</td>
<td>80.53</td>
<td>4.95</td>
<td>0.00</td>
<td>0.00</td>
<td>303</td>
</tr>
<tr>
<td>Elevator down</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>10.00</td>
<td>20.00</td>
<td>15.00</td>
<td>0.00</td>
<td>55.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>20</td>
</tr>
<tr>
<td>Elevator up</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>7.89</td>
<td>31.58</td>
<td>31.58</td>
<td>0.00</td>
<td>28.95</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>38</td>
</tr>
<tr>
<td>Mechanical stairs (down)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>42.88</td>
<td>28.18</td>
<td>29.54</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Mechanical stairs (up)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>35.14</td>
<td>31.35</td>
<td>33.51</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Standing in the bus</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>16.89</td>
<td>0.00</td>
<td>70.64</td>
<td>0.00</td>
<td>4.29</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Standing in the subway</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>64.13</td>
<td>28.62</td>
<td>3.70</td>
<td>0.00</td>
<td>0.00</td>
<td>0.35</td>
<td>0.00</td>
</tr>
<tr>
<td>Standing in the tramway</td>
<td>0.00</td>
<td>0.00</td>
<td>0.80</td>
<td>0.00</td>
<td>52.76</td>
<td>44.90</td>
<td>1.54</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>2.138</td>
</tr>
<tr>
<td>SUM</td>
<td>0.07</td>
<td>0.00</td>
<td>0.00</td>
<td>3.04</td>
<td>1.91</td>
<td>36.29</td>
<td>14.17</td>
<td>44.52</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>2.830</td>
</tr>
<tr>
<td>Walking on flat ground</td>
<td>0.25</td>
<td>0.00</td>
<td>4.61</td>
<td>2.87</td>
<td>0.57</td>
<td>8.79</td>
<td>8.87</td>
<td>69.58</td>
<td>4.48</td>
<td>0.00</td>
<td>0.00</td>
<td>17.061</td>
</tr>
<tr>
<td>Walking carrying a bag</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.06</td>
<td>0.00</td>
<td>97.80</td>
<td>0.00</td>
<td>0.00</td>
<td>2.14</td>
<td>1.773</td>
</tr>
<tr>
<td>Walking uphill</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>8.56</td>
<td>0.00</td>
<td>9.31</td>
<td>5.79</td>
<td>71.26</td>
<td>5.08</td>
<td>0.00</td>
<td>0.00</td>
<td>1.987</td>
</tr>
<tr>
<td>Walking downhill</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>3.00</td>
<td>0.00</td>
<td>29.71</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.725</td>
</tr>
<tr>
<td>Walking upstairs</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.56</td>
<td>40.61</td>
<td>56.14</td>
<td>0.00</td>
<td>0.00</td>
<td>0.953</td>
</tr>
<tr>
<td>Running</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>100.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.648</td>
</tr>
<tr>
<td>Cycling</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>24.07</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>75.93</td>
</tr>
<tr>
<td>Cycling uphill</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.13</td>
<td>0.00</td>
<td>26.58</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>41.13</td>
</tr>
<tr>
<td>Cycling downhill</td>
<td>0.18</td>
<td>3.30</td>
<td>0.00</td>
<td>5.31</td>
<td>0.00</td>
<td>52.56</td>
<td>5.62</td>
<td>16.54</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>16.48</td>
</tr>
</tbody>
</table>

N is the total number of points per activity. Bolded nos. highlight positive match between expected results and classification outputs.
real-time annotations, future validation studies could probably benefit from using devices enabling continuous video records throughout the trial (22) and a posteriori annotation procedures. Furthermore, with connected objects integrating accelerometers or other actimizers (phone, watch, shoes) becoming more readily available to the public, and the quick development of crowd-sourcing techniques (20), the constitution of databases of annotated signals collected by volunteers in a wide range of everyday life situations (16) is now technically feasible (31). Our experience nevertheless shows that the level of details required for annotating the signals is difficult to achieve.

Several studies have considered the possibility of improving posture and activity detection by increasing the number of sensors worn by the subjects (15). It is indeed unrealistic to hope to capture every possible movement with a single device. Combining several sensors might, therefore, appear as a valid strategy, but, for studies in free-living conditions, this may seriously decrease compliance (6, 32). This is why a single device worn on the hip or the wrist is common practice in free-living trials, with hip-worn accelerometers still offering more reliable results (19).

In a recent study, van Hees et al. (19) quantified the errors in estimations of daily walking time resulting from the application of an algorithm “trained” with a limited number of activities to more complex daily routines. With their work, van Hees et al. provided an elegant proof of concept that study design can greatly affect the performances and evaluation of activity classifiers. The present work is complementary to this, in that it explicitly demonstrated the shortfalls of a laboratory-calibrated-only classifier when applied to data acquired outside the laboratory, but also how some of these shortfalls can be overcome by training the classifier with appropriate datasets. It, however, also showed that, as the complexity of the classifier and the learning set develops, other issues may arise, and we willingly acknowledge that even further issues may appear when moving toward total free-living conditions. It is, therefore, critical to test automatic classification tools in real life before they are used in the field. Finally, considering the complexity of human occupations and activities, intra- and interindividual variability in their execution, and practical limitations regarding the number of sensors one can bear in real-life situations (32), we believe that the idea of coming up with a comprehensive and 100% reliable classification method might be illusory. Choices and compromises will always have to be made in accordance with research questions.

ACKNOWLEDGMENT

Many thanks are expressed to Stéphanie Auboussier, Caroline Gastebois, and Opheïlie Maire for help during data collection, and to all volunteers of the study.

Present addresses: T. Bastian, Université du Littoral Côte d’Opale, LOG UMR 8187, MREN, Avenue Foch, 62930 Winneux, France. F. Gris, MOVEA, Grenoble, France.

GRANTS

This work was part of the SVELTE Project, funded by the French National Research Agency and the General Directorate for Armament through the TECSAN call (ANR-09-TECS-019). Additional support was provided by a Danone R&D research grant to C. Simon.

DISCLOSURES

The accelerometer devices used in the study were prototypes from MOVEA SA, a company specialized in providing motion-processing technologies, including software, embeddable solutions, and semiconductor IP. E. Perrin and Y. Caritu were working with MOVEA at the time of the study, F. Gris was not, but is now. P. Jallon worked there briefly. However, data acquisition and performance tests presented in this article were conducted by researchers of the CRNH Rhone-Alpes (C. Simon, C. Villars, A. Maire, T. Bastian, J. Dugas), with no conflict of interest for the research.

AUTHOR CONTRIBUTIONS

REFERENCES

