Altering blood flow does not reveal differences between nitrogen and helium kinetics in brain or in skeletal muscle in sheep

David J. Doolette, Richard N. Upton, and Cliff Grant

Acute Care Medicine, The University of Adelaide, Adelaide, Australia; and Australian Centre for Pharmacometrics, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia

Submitted 22 October 2014; accepted in final form 10 December 2014

Doolette DJ, Upton RN, Grant C. Altering blood flow does not reveal differences between nitrogen and helium kinetics in brain or in skeletal muscle in sheep. J Appl Physiol 118: 586–594, 2015. First published December 18, 2014; doi:10.1152/japplphysiol.00944.2014.—In underwater diving, decompression sickness is a consequence of nitrogen and helium accumulation in the body. It is caused by the formation of microbubbles within blood vessels, which leads to muscle pain and other symptoms. The risk of decompression sickness can be managed by controlling the rate of decompression and the level of nitrogen and helium in the body. However, the precise mechanisms underlying decompression sickness are not well understood. In this study, we investigated the effects of altering blood flow on the kinetics of nitrogen and helium in the brain and skeletal muscle of sheep. We found that altering blood flow does not reveal differences between nitrogen and helium kinetics in brain or in skeletal muscle. This suggests that blood flow is not a major factor in the development of decompression sickness. Further studies are needed to understand the mechanisms underlying decompression sickness and to develop effective strategies for its prevention and treatment.

Glossary

- **Fractional size of compartment 1 (B1)**
- **Compartment 1 helium or nitrogen concentration (ml/ml) (c1)**
- **Compartment 2 helium or nitrogen concentration (ml/ml) (c2)**
- **Arterial helium or nitrogen concentration (ml/ml) (carter)**
- **Precapillary (end-arterial) helium or nitrogen concentration (ml/ml) (cpre-cap)**
- **End-capillary helium or nitrogen concentration = C1 (ml/ml) (cend-cap)**
- **Sagittal sinus or femoral vein helium or nitrogen concentration (ml/ml) (cven)**
- **Fraction of blood flow directed to first compartment (Fl)**

COMPARTIMENTAL MODELS OF BLOOD: tissue exchange of inert gases is used to describe the pharmacokinetics of anesthetic gases, calculate tissue blood flow, and manage the risk of decompression sickness. A compartment is a tissue volume across the tissue region represented by the compartment is much faster than transport in and out of the compartment. The most simple and commonly used tissue model is the single, well-mixed compartment, in which perfusion is often considered the rate-limiting process. In this model, arterial-tissue inert gas chemical activity difference declines monoeponentially and can be characterized by a single time constant.

Tissue kinetics of inert gases are often better described by multiple exponentials. Multieponential kinetics can be accommodated by models with multiple compartments. Multieponential kinetics are often attributed to heterogeneous tissue perfusion and represented by a collection of perfusion-limited compartments with different time constants. However, multieponential kinetics may arise because of diffusion-limited exchange of gas between tissue regions. Such diffusion phenomena can be described with multiple compartments separated by diffusion-permeable membranes.

Blood:tissue exchange has been examined for a variety of inert gases, which we define as gases that are nonionizable and not metabolized. Hydrogen, xenon, krypton, and nitrous oxide have received the most attention because they are used as tracers for calculation of blood flow using the indirect Fick method. Nitrogen and helium are of interest for two reasons. First, nitrogen and helium differ in diffusivities and solubilities from each other and from other gases. Second, nitrogen and helium are components of breathing mixtures for deep sea diving. Decompression sickness occurs in people who use compressed gas for underwater diving, and during space flight and aviation, as a result of intracorporeal bubble formation from excess dissolved gas upon reduction in

Address for reprint requests and other correspondence: D. Doolette, Navy Experimental Diving Unit, 321 Bullfinch Road, Panama City, FL 32407 (e-mail: david.doolette.as@navy.mil).
amphibious. The risk of decompression sickness is managed by using decompression schedules calculated by use of compartmental models of the kinetics of nitrogen and helium in tissues. In decompression models, time constants for nitrogen and helium in any compartment are often presumed to differ substantially, but these time constants are not based on direct measurement of nitrogen and helium kinetics.

Very few data exist that have examined the tissue kinetics of nitrogen, and none exist in which the tissue nitrogen is mass-balanced and suitable for fit of kinetic models (1, 8). We have previously reported mass-balanced kinetic data for helium in cerebral and skeletal muscle tissue, and evaluated competing compartmental models on the basis of their fit to the data collected from individual animals (11, 12). At the time of collecting these helium data, we simultaneously measured the kinetics of nitrogen in some animals; however, owing to contamination of some samples with atmospheric nitrogen, the remaining nitrogen data from individual animals was sparse, and not suitable for evaluating models. In this report, we fit conventional perfusion-limited models and diffusion-limited models previously found to best fit individual animal data, to mean data across all animals to explore any major differences in the isobaric exchange of nitrogen and helium.

METHODO

Ethical approval. All surgical and experimental procedures were approved by the University of Adelaide and Institute of Medical and Veterinary Sciences animal ethics committees and were conducted in accordance with the Australian Code of Practice for the Care and Use of Animals for Scientific Purposes (22a).

Initial surgical preparation and brain study design. Eight healthy adult Merino ewes weighing ~50 kg were anesthetized and instrumented as previously described (30, 31). Two 7-Fr gauge catheters were positioned in the thoracic aorta via the right femoral artery for measurement of blood pressure and arterial blood sampling. We have previously shown that the arterial helium concentration-time curves determined simultaneously from aorta and more peripheral arterial sampling sites are indistinguishable within the precision of the present assay (12). A multilumen pulmonary artery flotation catheter was introduced via the right jugular vein and used in these experiments for intravenous drug administration and monitoring core temperature. Via a craniotomy, a 20-MHz ultrasonic Doppler flow probe (Titronics Medical Instruments, Tiffin, IA) was placed on the sagittal sinus for measurement of an index global cerebral blood flow and a 4-Fr catheter was placed in the sagittal sinus for sampling of effluent blood from the cerebral hemispheres. The craniotomy was sealed with dental acrylic. On recovery from anesthesia the sheep were housed in metabolic crates with free access to food and water for at least 2 days to recover from surgery and between experimental days.

Five of the eight sheep were used in the brain studies. On the experimental day, sheep were anesthetized with 250 mg iv propofol (David Bull Laboratories, Lidcombe, NSW, Australia) induction, 1.5% isoflurane (Abbott Australia, Botany, NSW, Australia) maintenance and mechanically ventilated via an endotracheal tube. Sheep were placed on their side. The closed-circuit anesthetic system was supplied with a fresh gas flow of 5 liters/min of 22% oxygen and the balance, nitrogen. Carbon dioxide partial pressure was maintained over a 10- to 15-s period with a fresh 3-ml syringe and immediately injected via a 26-gauge needle through the butyl rubber septum of a sealed, weighed, argon-filled glass headspace vial with a volume of precisely 22 ml. Dead space blood was replaced and the catheter flushed with 5 ml of heparinized 0.9% saline. To minimize sample contamination with environmental gas, Safti-ject SV valves (Codan, Santa Ana, CA) that have no luer hub dead space were used on the catheters, and the hubs of the syringes and 26-gauge needles were filled with heparinized saline. To exclude atmospheric nitrogen, the sampling apparatus was sealed inside a clear plastic bag accessed via latex wrist seals and continuously flushed with argon.

Sixty minutes after helium administration the alternative cerebral blood flow state was produced and, once end tidal carbon dioxide and cerebral blood flow were stable at the new level, helium administration and blood sampling described above were repeated.

Hind limb surgical preparation and study design. Five of the eight sheep (two of which had been used in the brain study) were used in the hind limb studies. On the experimental day, sheep were anesthetized, mechanically ventilated, and monitored in the same manner as in the brain study. Sheep were placed on their back, and the left femoral artery and vein were exposed. A cuffed ultrasonic Doppler flow probe was mounted around the left femoral vein. Doppler frequency shift provides an index of femoral vein blood flow and was recorded at a sampling rate of 1 Hz using a four-channel pulsed Doppler flow meter, digitized, and recorded continuously to a microcomputer. A 4-Fr blood sampling catheter was introduced into the left femoral vein 2.5 cm proximal to the Doppler probe, and the tip was advanced toward the leg close to the probe. Heparin (25,000 IU) was then given intravenously to prevent clots forming in the femoral vein that hindered blood sampling. Cotton tape was tied around the tarsal region of the left leg to reduce contamination of femoral venous blood with blood from the hoof and Shank. Validation of this hind limb blood flow method in these sheep has been previously described, and resulting femoral vein blood is predominantly skeletal muscle effluent (31).

Throughout the experimental day surgery and subsequent study the sheep were mechanically ventilated via an endotracheal tube, and the closed-circuit anesthetic system was supplied with a fresh gas flow of 5 liters/min of 22% oxygen and the balance, nitrogen. End tidal carbon dioxide partial pressure was maintained between 37 and 42 mmHg. Mean arterial pressure was maintained near 100 mmHg using a fresh gas flow (no net change in oxygen or total gas flow) for 15 min.

Paired arterial and sagittal sinus blood samples for nitrogen and helium analysis were taken during the baseline period and then at 1, 2, 3, 4, 6, 8, 11, 15, 16, 17, 18, 19, 21, 23, 26, 30, and 35 min from the beginning of helium breathing. Additional arterial samples were taken at 0.5 and 15.5 min. For each sample, after withdrawal of 5 ml of blood to remove catheter dead space, ~3 ml of blood was drawn over a 10- to 15-s period with a fresh 3-ml syringe and immediately injected via a 26-gauge needle through the butyl rubber septum of a sealed, weighed, argon-filled glass headspace vial with a volume of precisely 22 ml. Dead space blood was replaced and the catheter flushed with 5 ml of heparinized 0.9% saline. To minimize sample contamination with environmental gas, Safti-ject SV valves (Codan, Santa Ana, CA) that have no luer hub dead space were used on the catheters, and the hubs of the syringes and 26-gauge needles were filled with heparinized saline. To exclude atmospheric nitrogen, the sampling apparatus was sealed inside a clear plastic bag accessed via latex wrist seals and continuously flushed with argon.
5-min baseline period. Then nitrogen was replaced by helium in the anesthetic circuit fresh gas flow (no net change in oxygen or total gas flow) for 20 min. Paired arterial and femoral vein blood samples for nitrogen and helium analysis were taken during the baseline period and then at 1, 2, 3, 4, 6, 8, 11, 15, 20, 21, 22, 23, 24, 26, 28, 31, 35, 40, and 50 min from the beginning of helium breathing. Blood samples were taken in the same manner as described for the brain study.

Next, a 26-gauge needle was inserted into the left femoral artery and a low hind limb blood flow state was produced by an infusion of epinephrine (Astra Pharmaceuticals, North Ryde, NSW, Australia) diluted to 1 mg in 50 ml in saline and infused at 0.3 to 1 ml/min. Once flow was stable at the new level for ~10 min and washout for a minimum of 70 min after the previous helium administration, helium administration and blood sampling described above were repeated. At the end of the study, the femoral vein Doppler probe signal was calibrated against timed collections of femoral venous blood outflow, and blood flow in milliliters per minute were calculated.

Nitrogen and helium analysis. Nitrogen and helium concentrations in blood samples were analyzed using a headspace gas chromatographic system comprising an 8500 series gas chromatograph with thermal conductivity detector and an HS-101 series automated headspace sampler (Perkin Elmer, Beaconsfield, UK) in line between the carrier gas supply and column. Argon carrier gas flow was 15 ml/min. Samples were passed through a precolumn (1 m long by 2 mm ID) packed with 50% silica gel/50% activated charcoal to absorb water and CO₂, and sample gas separation was achieved on a stainless steel column (2 m long by 2 mm ID) packed with molecular sieve 5A 80/100 mesh. The reference channel of the thermal conductivity detector was also supplied with argon at 15 ml/min via another molecular sieve 5A column. Column temperature was 75°C, detector temperature was 80°C.

Sample volume was determined from sample weight (in milligrams) assuming a blood specific gravity of 1.03 g/ml. The headspace sample vials were left unagitated at room temperature for a minimum of 1 h (generally 3 to 8 h) to allow equilibration of the blood and headspace. We previously determined that blood and headspace equilibrated in less than 1 h by equilibrating blood with helium and then injecting samples of this blood into argon-filled headspace vials as previously described (12) and then analyzing these samples at different times after injecting the blood. Vial headspace was pressurized with carrier gas (246 kPa) and sampled using a timed (6 s) injection. Blood nitrogen and helium concentrations, expressed as milliliters of gas per milliliter of blood at room temperature and atmospheric pressure was estimated by comparison of blood sample headspace nitrogen and helium peak area with six-point standard curves produced by injecting argon-filled headspace vials with measured volumes of helium or nitrogen (0 to 25 μl) using a gas-tight syringe and analyzing these standards in the identical manner as were the blood samples. The mean r² value for the standard curves was 0.967 (SD = 0.028). Blood sample headspace nitrogen and helium peak areas were adjusted for sample volume by multiplying by Vhs/Vb where Vhs and Vb are the volumes of the vial headspace and blood sample, respectively, and Vhs is the published helium or nitrogen Ostwald blood solubility at room temperature (22). We previously determined that Vhs for helium in sheep blood is similar to published values from other species, and any differences have negligible effects because Vhs/Vb is ~800 times larger than Vhs and nitrogen and helium partition predominantly into the headspace. Assay sensitivity was approximately 10⁻⁴ ml gas/ml blood.

Data for individual animals was examined and data points were excluded by the following criteria: for both nitrogen and helium data, occasional assay failures resulted in unusually low values that were excluded, and nitrogen data points were excluded if they were considered to have resulted from atmospheric contamination; for instance, values higher than those corresponding to blood equilibrated with air. Figure 1 shows an example of the nitrogen and helium data from the individual animals, and the forcing functions representing the mean arterial data and the mean venous values used for model fitting.

Data analysis. A collection of compartment models was used as structural models for inert gas kinetics in brain and hind limb tissue and these were constructed as ordinary differential equations using the Scientist for Windows software package (version 2.01; MicroMath Scientific Software, St. Louis, MO). Diagrammatic representations of the models are given in Figures 2 and 5. The model equations are given below.

Perfusion-diffusion model:

\[V_1 \frac{dc_{ven}}{dt} = Q(c_{art} - c_{ven}) + PS(c_2 - c_{ven}) \]

Perfusion-limited model:

\[V_1 \frac{dc_{ven}}{dt} = Q(c_{art} - c_{ven}) \]

Perfusion-limited countercurrent diffusion model:

\[V_1 \frac{dc_1}{dt} = Q(c_{art} - c_{ven}) \]
In the present models, because inert gases are freely diffusible, intravascular, extravascular, extracellular, and intracellular spaces could comprise a single compartment. A unity partition coefficient between tissue and blood ($\lambda_{\text{tot}} = 1$, where λ is the Ostwald tissue solubility) and between compartments 1 and 2 was assumed. In the countercurrent diffusion models, diffusion of gas is assumed to occur between precapillary vessels and postcapillary vessels that are parallel and have countercurrent flow, such as may occur between centrifugal arteries and centrifugal veins in the brain or transverse arterioles and venules in skeletal muscle. As a simplifying assumption, the change in inert gas concentration along any element of the arterial vessel is accompanied by an equivalent change along the corresponding element of the venous vessel so that there is a constant arterial-venous nitrogen and helium concentration difference across the countercurrent exchange region and $c_{\text{art}} - c_{\text{ven}} = c_{\text{pre-cap}} - c_{\text{end-cap}}$. This model of countercurrent exchange is illustrated in Figure 1 in reference (25).

Additional general assumptions were that the system was linear and of countercurrent exchange is illustrated in Figure 1 in reference (25).

\[
V_{\text{ven}} \frac{dc_{\text{ven}}}{dt} = Q(c_{i} - c_{\text{ven}}) + PSC(c_{\text{art}} - c_{\text{ven}})
\]

where V_{ven} is the Ostwald venous blood volume (ml). c_{i} is the number of parameters required to obtain the fit. A large MSC indicates good model fit to the data but the MSC is penalized for model complexity (number of estimated parameters, p).

RESULTS

The parameter estimates and MSC for the various structural models of the brain fit to the mean brain data are given in Fig. 2. The fit of the single perfusion-limited compartment model to the mean sagittal sinus nitrogen and helium concentrations is illustrated in Fig. 3. This single-compartment model provides good fit to the high cerebral blood flow data, but overestimates the uptake and washout of nitrogen and helium in the low-flow state. All models with multieponential kinetics provided improved fit to the low blood flow data compared with the single-compartment model, without compromising fit to the high blood flow data.

<table>
<thead>
<tr>
<th>Model name</th>
<th>Model picture</th>
<th>Parameter name</th>
<th>He/He</th>
<th>Nitrogen</th>
<th>He/N2</th>
<th>Parameter value (SD) and MSC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perfusion-limited base</td>
<td></td>
<td>V_1</td>
<td>60.3</td>
<td>51.9</td>
<td>54.2</td>
<td>3.93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MSC</td>
<td>2.50</td>
<td>3.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Two parallel perfusion-limited</td>
<td></td>
<td>V_{tot}</td>
<td>73.0</td>
<td>74.4</td>
<td>74.7</td>
<td>3.93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F_1</td>
<td>0.504</td>
<td>0.500</td>
<td>0.500</td>
<td>3.93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B_1</td>
<td>0.874</td>
<td>0.932</td>
<td>0.917</td>
<td>3.93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MSC</td>
<td>3.00</td>
<td>3.79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perfusion-diffusion base</td>
<td></td>
<td>V_2</td>
<td>38.2</td>
<td>24.9</td>
<td>28.3</td>
<td>3.93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PS</td>
<td>18.3</td>
<td>13.1</td>
<td>13.9</td>
<td>4.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MSC</td>
<td>3.20</td>
<td>3.96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perfusion-limited countercurrent diffusion</td>
<td></td>
<td>V_1</td>
<td>82.3</td>
<td>93.2</td>
<td>78.3</td>
<td>3.93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_{ven}</td>
<td>10.1</td>
<td>18.9</td>
<td>7.97</td>
<td>5.19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PSC</td>
<td>12.1</td>
<td>170 (50)</td>
<td>12.5</td>
<td>4.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MSC</td>
<td>3.14</td>
<td>3.73</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 2. Brain models, parameter estimates, and Model Selection Criterion (MSC). B_1, fractional size of compartment 1; F_1, fraction of blood flow directed to first compartment; PSC, permeability × surface area coefficient between arterial and venous blood (ml/min); V_1, compartment 1 apparent volume (ml); V_2, compartment 2 apparent volume (ml); V_{tot}, total apparent volume = $V_1 + V_2$ (ml); V_{ven}, countercurrent venous blood volume (ml).
There was little difference in the MSC between the multiexponential models, but for the combined nitrogen and helium data, the perfusion-diffusion model of the brain achieved the highest MSC. The fit of the perfusion-diffusion model to the mean sagittal sinus nitrogen and helium concentrations is illustrated in Fig. 4. This model, in which nitrogen and helium have identical kinetics, appears to fit these data well.

The parameter estimates and MSC for the various structural models of the hind limb fit to the mean data are given in Fig. 5. A single perfusion-limited tissue compartment model fit the hind limb data poorly (MSC 1.81 for fit to the combined nitrogen and helium data) and is not shown in Fig. 5, but the data are well described by two exponentials. The countercurrent model of the hind limb achieved the best fit to nitrogen alone, helium alone, and the combined data sets. The fit of the countercurrent model to the mean femoral vein nitrogen and helium is illustrated in Fig. 6. This model, in which nitrogen and helium have identical kinetics, appears to fit these data well.

Unlike what was found for the brain, structural models of the hind limb with common estimates of permeability \(\times \) surface area coefficient parameters (PS and PSC) across flow states provided poor fit to the data (not shown), and the models in Fig. 5 have a separate estimate of PS and PSC for each flow state.

For all the structural models of the brain and hind limb, similar parameter estimates arose from fit to the mean helium data alone, fit to the mean nitrogen data alone, and simultaneous fit to the nitrogen and helium data, with few exceptions. In fitting the countercurrent diffusion model of the brain to the nitrogen data alone, the best MSC was achieved with an estimate for PSC an order of magnitude higher than for fit to the helium or the combined inert gases data. For all the structural models of the hind limb, estimated apparent volumes from fit to the helium data alone were higher than for the nitrogen data alone, suggesting that helium may equilibrate with the hind limb more slowly than nitrogen. This difference may not be large because the models with a single value for apparent volume provided good fit to the nitrogen and helium data. There was no systematic variation in the estimated apparent volumes for the brain models, indicating that nitrogen and helium exchange at similar rates in the brain.

DISCUSSION

Ranking the structural models on the basis of present fits to mean nitrogen and helium data is consistent with previous results of model fits to helium data from individual animals.
The single perfusion-limited tissue compartment predicts that the arterial-venous concentration difference declines monoexponentially. Such a model fit the high blood flow data for the brain, but this model does not fit the low blood flow brain data or either flow state for the hind limb data. This adds to the considerable body of evidence for multiexponential kinetics of inert gases in brain and skeletal muscle (2, 11, 12, 20, 23, 28, 29). Two parallel perfusion-limited compartments

<table>
<thead>
<tr>
<th>Model name</th>
<th>Model picture</th>
<th>Parameter name</th>
<th>Parameter value (SD) and MSC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two parallel</td>
<td></td>
<td>V_{tot}</td>
<td>1667 (189) 1150 (150) 1369 (128)</td>
</tr>
<tr>
<td>perfusion-limited</td>
<td></td>
<td>F1</td>
<td>0.538 (0.020) 0.528 (0.025) 0.539 (0.016)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B1</td>
<td>0.975 (0.003) 0.971 (0.005) 0.977 (0.003)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MSC</td>
<td>2.72 2.42 4.04</td>
</tr>
<tr>
<td>Perfusion-diffusion base</td>
<td></td>
<td>V_{1}</td>
<td>177 (12) 132 (13) 144 (9)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_{2}</td>
<td>1472 (120) 1033 (112) 1156 (85)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PS_{R}</td>
<td>82.4 (6.5) 82.0 (9.7) 82.1 (6.5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PS_{L}</td>
<td>11.2 (0.9) 10.9 (1.2) 11.0 (0.8)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MSC</td>
<td>3.14 2.60 4.30</td>
</tr>
<tr>
<td>Perfusion-limited countercurrent</td>
<td></td>
<td>V_{1}</td>
<td>1868 (145) 1336 (150) 1500 (117)</td>
</tr>
<tr>
<td>diffusion</td>
<td></td>
<td>V_{ven}</td>
<td>187 (16) 160 (21) 171 (16)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PSC_{R}</td>
<td>47.5 (2.8) 50.3 (4.7) 48.9 (3.2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PSC_{L}</td>
<td>16.0 (1.0) 17.1 (1.7) 16.8 (1.2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MSC</td>
<td>3.40 2.69 4.34</td>
</tr>
</tbody>
</table>

Fig. 4. Perfusion-diffusion compartment model fit to the mean brain data. The fit shown is for simultaneous fit to the nitrogen and helium data. Nitrogen was replaced with helium in the breathing gas during the interval zero to 15 min. Symbols and lines are the same as those in Fig. 3 except that the calculated nitrogen and helium concentrations in the deep compartment are shown as a dashed line (c2 calc).

Fig. 5. Hind limb models, parameter estimates, and HSC. PS, permeability × surface area coefficient between compartments 1 and 2 (ml/min). Separate parameters for resting and low-flow states are denoted by subscripts R and L, respectively.
with large differences in relative compartmental blood perfusion fit the data quite well. However, the estimated differences in perfusion are larger than have been measured between different tissue regions in the brain (17, 21) or in the hind limb (4, 18, 23). The perfusion-diffusion model and the countercurrent model provided the best fits to the data. There was little difference in the fits of these two models to the data.

In the present study, all models were lumped models, which assume well-mixed compartments. The consequence of assuming instantaneous mixing of the gases in the compartments can be examined by order of magnitude comparison of time constants for compartment mixing by diffusion and flow into and out of the compartments. Compartment mixing can be characterized by time constants for radial (perpendicular to capillary) diffusion and axial (parallel to capillary) diffusion. Mixing to less than 1% difference occurs, by definition, in 4.6 time constants (ln100/rate constant, where rate constant = 1/time constant). Of the two tissues investigated, skeletal muscle has the larger intercapillary distance (2r) = 0.005 cm (16, 27), and unlike the brain, skeletal muscle has a parallel arrangement of capillaries that can allow for axial concentration gradients. Of the two gases, nitrogen has the lower diffusion coefficient, (D) = 1.3 × 10⁻⁵ cm²·s⁻¹ (22). Nitrogen exchange in the hind limb is therefore most likely to depart from the well-mixed behavior. The time constant for radial diffusion of nitrogen in skeletal muscle is r²/D = 0.48 s, and radial mixing time is ln100 r²/D = 0.037 min. Skeletal muscle capillary tissue unit length (x) = 0.1 cm, and mean capillary blood velocity (v) = 0.05 cm/s (16, 27). The time constant for axial diffusion of nitrogen is x²/D = 769 s, and the time constant for capillary perfusion is x/v = 2 s. Axial mixing is dominated by capillary perfusion, and that mixing time is ln100 x/v = 0.15 min. Both radial and axial mixing times are an order or more of magnitude smaller than the fastest time constant for flow into and out of any hind limb model compartment: V_{ven}/Q = 2.7 min (countercurrent model, combined nitrogen and helium hind limb parameter estimates, high blood flow state). Other hind limb time constants are one to two orders of magnitude larger, indicating that consideration of concentration gradients across capillary tissue units is not relevant to the time course of the present studies and the well-mixed assumption is appropriate.

Fit of all the structural models of the hind limb to the nitrogen data alone resulted in estimated compartment volumes about 25% smaller than those estimated by fit to the helium data alone. This difference in compartment apparent volumes (V₁, V₂, V_{tot}) can be partially accounted for by the use of a
unity partition coefficient for both gases; the apparent volume is equal to the true volume times the partition coefficient. Published solubility coefficients for nitrogen and helium, all in species other than sheep (22), indicate a helium partition coefficient between muscle and blood of about 1.18 and a nitrogen partition coefficient between brain and blood of about 1.06. The difference between these latter values and unity accounts for only about a 10% difference in hind limb apparent volume estimates. It is possible the remaining difference in apparent volumes for the two gases may be due to loss of helium from the system, but models that include a term for loss of helium were not justified by the data (data not shown). The remaining differences in estimated apparent volumes for the two gases indicates slower kinetics of helium than nitrogen in the hind limb. Such a difference may not be truly resolvable by fit of the structural models to the mean data. Indeed, models with the same volume estimates for the two gases, and therefore the same kinetics, fit the data well.

These findings have implications for decompression algorithms. The majority of decompression algorithms model the kinetics of inert gases in a collection of compartments with different time constants spanning the range of tissue kinetics relevant to decompression sickness. Decompression algorithms that accommodate multiple gases may assign different time constants to nitrogen and helium for the same compartment. This structure is appropriate for compartments with slow gas exchange, as evidenced by slower whole-body washout of nitrogen than of helium (3, 14). This slower washout of nitrogen than helium from tissues with slow gas exchange probably underlies the slower required decompression from nitrogen-oxygen than from helium-oxygen saturation dives (15). Saturation dives are hyperbaric exposures of sufficient duration that all body tissues have equilibrated with inspired inert gas partial pressure, and the slowest washout of gas from tissues limits the rate of decompression from such dives. However, some decompression algorithms assign faster time constants for helium than for nitrogen in all compartments (6). The present findings indicate this latter structure is not appropriate to the data. Indeed, models with the same volume estimates for the two gases, and therefore the same kinetics, fit the data well.

Exchange of nitrogen is similar to that of helium. These processes are best described by two exponential processes, possibly as a consequence of arterial-venous shunt of these highly diffusible solutes.

ACKNOWLEDGMENTS

We thank A. Martinez for technical assistance. The Australian Centre for Pharmacometrics is an initiative of the Australian Government as part of the National Collaborative Research Infrastructure Strategy.

GRANTS

This work was conducted in part while Dr. Doolette was a Jean B. Reid Medical Research Associate, Health Science Research Committee, the University of Adelaide. Partial support for this study was provided by the National Health and Medical Research Council of Australia Grant 970067 (Pharmacokinetics of gases: development of integrated experimental and modeling methods). Partial support for this study was also provided by the University of Adelaide Division of Health Sciences Research Committee.

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the author(s).

AUTHOR CONTRIBUTIONS

D.J.D. and R.N.U. conception and design of research; D.J.D., R.N.U., and C.G. performed experiments; D.J.D. and C.G. analyzed data; D.J.D. and R.N.U. interpreted results of experiments; D.J.D. prepared figures; D.J.D. drafted manuscript; D.J.D., R.N.U., and C.G. edited and revised manuscript; D.J.D., R.N.U.,. and C.G. approved final version of manuscript.

REFERENCES

13. Doolette DJ, Upton RN, Zheng D. Diffusion-limited tissue equilibration and arteriovenous diffusion shunt describe skeletal muscle nitrous oxide

