Differential sensitivity of oxidative and glycolytic muscles to hypoxia-induced muscle atrophy

C. C. de Theije,1,2 R. C. J. Langen,1,3 W. H. Lammers,1,2 H. R. Gosker,1,3 A. M. W. J. Schols,1,3 and S. E. Köhler1,2
1NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands; 2Department of Anatomy and Embryology, Maastricht University Medical Center+, Maastricht, The Netherlands; and 3Department of Respiratory Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands

Submitted 11 July 2014; accepted in final form 20 November 2014

WEIGHT LOSS AND MUSCLE ATROPHY are common features associated with respiratory diseases such as advanced chronic obstructive pulmonary disease (COPD) (9, 35, 57), acute exacerbations of COPD (29), idiopathic pulmonary arterial hypertension (1), and acute respiratory distress syndrome (ARDS) (21). Loss of muscle mass is a strong predictor of mortality and significantly increases disease burden (20, 35, 57). Hypoxia is well-known for its negative effect on muscle mass (5). Episodes of both acute and chronic hypoxia are hallmark features of the above-mentioned respiratory disorders (51); therefore, understanding the mechanisms by which hypoxia induces muscle atrophy may benefit disease management. Interestingly, muscle atrophy in advanced COPD patients is characterized by a reduction of the muscle fiber cross-sectional area (FCSA) and particularly affects the glycolytic type IIX and IIA/IIX hybrid fibers (16, 40). Moreover, a fiber-type shift with a decrease of type I (slow, oxidative) and an increase of type II fibers (fast, glycolytic) (17, 24, 40, 44) as well as a reduced capillarity (12) are observed, potentially rendering these patients even more vulnerable to hypoxia-induced muscle atrophy. Differential sensitivity of glycolytic and oxidative muscle to atrophy stimuli other than hypoxia has previously been observed in animal models (34, 37, 48). To disentangle which muscle (fiber) types are most sensitive to hypoxia-induced muscle atrophy, we analyzed the effects of severe, acute, and chronic hypoxia on muscle mass and capillarity on the soleus, as a typical example of an oxidative muscle, and the extensor digitorum longus (EDL), as representative for a glycolytic muscle in mice (8). As oxidative fibers show higher oxygen consumption, we hypothesized that oxidative muscle fibers are less resistant to hypoxia-induced muscle atrophy than glycolytic muscle fibers. To test our hypothesis, mice were exposed to severe hypoxia for either 4 (acute) or up to 21 days (chronic) and compared with control mice kept under normoxic conditions. Since we have previously demonstrated a hypoxia-induced reduction of food intake (10), we also included a pair-fed control group in our experimental design. Muscle atrophy and gene expression profiles of relevant catabolic pathways were determined (Table 1). In addition, muscle capillarity was assessed. Our study shows that both oxidative and glycolytic muscles show structural adaptations to hypoxia that result in a reduced FCSA per capillary contact, and that hypoxia-induced atrophy mainly affects glycolytic fibers.

MATERIALS AND METHODS

Animals and tissue collection. Twelve-week-old C57BL/6J male mice (Charles River Laboratories International, Wilmington, MA) (n = 48) were randomly divided into three groups: normoxia (N), normoxic animals pair fed to hypoxic animals (PF), and normobaric hypoxia (H). Oxygen levels in the H group were reduced in a stepwise manner from ambient levels to 12% on day 1, to 10% on day 2, and finally to 8% on day 3, and maintained at 8% for the remainder of the experiment. Of each group, eight mice were killed on day 4 (“acute” hypoxia) and another eight on day 21 (“chronic” hypoxia). The soleus and the EDL muscles were isolated and frozen for immunohistochemical analysis and RNA extraction. Tissue weights were corrected for starting body weight. Procedures are described in more detail in Ref. 10. Briefly, at the start of the experiments, four mice were placed in

Address for reprint requests and other correspondence: S. E. Köhler, Dept. of Anatomy and Embryology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht Univ. Medical Center+, PO Box 616, 6200 MD, Maastricht, The Netherlands (e-mail: leo.koehler@maastrichtuniversity.nl).
Table 1. Pathways and marker genes tested in this study

<table>
<thead>
<tr>
<th>Gene Function</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ubiquitin 26S-proteasome system (UPS)</td>
<td></td>
</tr>
<tr>
<td>Marf1 (Trin63)</td>
<td>E3 ubiquitin protein ligase (14)</td>
</tr>
<tr>
<td>Atrogin1 (Fbox32)</td>
<td>E3 ubiquitin protein ligase (14, 15)</td>
</tr>
<tr>
<td>Nedd4</td>
<td>E3 ubiquitin protein ligase (27)</td>
</tr>
<tr>
<td>Autophagy-lysosome pathway (ALP)</td>
<td></td>
</tr>
<tr>
<td>Buip3</td>
<td>Regulation autophagy/mitophagy (2)</td>
</tr>
<tr>
<td>Map1lc3B</td>
<td>Regulation autophagy/mitophagy (47)</td>
</tr>
<tr>
<td>Atg5 (Apg5)</td>
<td>E3 ubiquitin protein ligase (38)</td>
</tr>
<tr>
<td>Glucocorticoid receptor (GR) signaling</td>
<td></td>
</tr>
<tr>
<td>Glul</td>
<td>Ammonia and glutamine metabolism (36)</td>
</tr>
<tr>
<td>Mstn</td>
<td>Inhibitor of myogenesis (33)</td>
</tr>
<tr>
<td>Klf15</td>
<td>Transcription factor, upregulates Marf1, Atrogin1, negative modulation of myofiber size (50)</td>
</tr>
</tbody>
</table>

Sequences of primers used for RT-qPCR to assess expression of the indicated genes

<table>
<thead>
<tr>
<th>Gene</th>
<th>Forward Primer (5' to 3')</th>
<th>Reverse Primer (5' to 3')</th>
</tr>
</thead>
<tbody>
<tr>
<td>18S</td>
<td>TGGATGCAGCTGGAGAGTGGG</td>
<td>TGGATGCAGCTGGAGAGTGGG</td>
</tr>
<tr>
<td>Marf1 (Trin63)</td>
<td>AGTCGATGATCCGAGAGTGGG</td>
<td>TGGATGCAGCTGGAGAGTGGG</td>
</tr>
<tr>
<td>Atrogin1 (Fbox32)</td>
<td>ACCGGCAGTATGAGGAAAGAG</td>
<td>CTTCTCAGGAGAGATGTTG</td>
</tr>
<tr>
<td>Nedd4</td>
<td>GTCGAGAACAGGACACACTGTC</td>
<td>CAGACGAAACTGACACCTGT</td>
</tr>
<tr>
<td>Buip3</td>
<td>CAGCTGCGGCCAGAGGGG</td>
<td>GACGAGCGTGGAGACCG</td>
</tr>
<tr>
<td>Map1lc3B</td>
<td>CCTGAGACACCGACACAGAT</td>
<td>CTGTGACTGACGACACAGAC</td>
</tr>
<tr>
<td>Atg5 (Apg5)</td>
<td>CTGAAATAGGAAGGACACCCC</td>
<td>TGTCGATGATCCAAGGAGG</td>
</tr>
<tr>
<td>Gr</td>
<td>GCGCAATGACCATGCGGAG</td>
<td>GTCGACGCTGGAGAGATGTTG</td>
</tr>
<tr>
<td>Glul</td>
<td>GCCGCAGGGGAGAGGAGG</td>
<td>TGGATGCAGCTGGAGAGTGGG</td>
</tr>
<tr>
<td>Mstn</td>
<td>GCCGCAGGGGAGAGGAGG</td>
<td>TGGATGCAGCTGGAGAGTGGG</td>
</tr>
<tr>
<td>Klf15</td>
<td>TGCGAGAAATGACGACACAGAC</td>
<td>TGTCGATGATCCAAGGAGG</td>
</tr>
<tr>
<td>Glat</td>
<td>TGACATGACGCCGTCGCTT</td>
<td>GGGGATCGGCCTGGGAT</td>
</tr>
<tr>
<td>Vegta</td>
<td>CGTGACACTCCACCCATGGCAGT</td>
<td>TGTCGATGATCCAAGGAGG</td>
</tr>
<tr>
<td>Cal9</td>
<td>CAGGAGGCGTGGCGAGGTTT</td>
<td>TGGATGCAGCTGGAGAGTGGG</td>
</tr>
</tbody>
</table>

RESULTS

Hypoxia-specific decrease of glycolytic muscle mass. Exposure to hypoxia affects food intake as we have shown previously (see Fig. 2 in Ref. 10). In our model, hypoxia-mediated decrease in food intake was maximal after 4 days of hypoxia.
and then increased to stabilize from day 11 onward, albeit at a lower level than in normoxic animals (9). We, therefore, included an extra group of mice, which were kept under normoxic conditions and pair fed to the mice exposed to hypoxia. This allowed us to separate effects of hypoxia into a hypoxia-specific component (independent of food intake) and a component that can be mimicked by a reduction in food intake. Accordingly, hypoxia-specific responses refer to comparisons between pair-fed (PF) groups and mice exposed to hypoxia (H), whereas the response to hypoxic conditions refers to the comparison between normoxic control (C) and hypoxic mice and include the combined effects of hypoxia and reduced food intake. Compared with the pair-fed group, the EDL muscle of hypoxic mice already showed significant weight loss at 4 days, which was progressive during the next 2.5 wk (Fig. 1A). The soleus, on the other hand, was less sensitive to hypoxia but still showed a decrease to 93% after 21 days compared with normoxic animals (H vs. N: P < 0.05; Fig. 1B), but did not differ from the pair-fed mice, who showed a comparable trend (H vs. PF: P = 0.10). These data reveal a hypoxia-specific reduction of tissue mass in the glycolytic EDL muscle only, whereas the weight reduction of the soleus was slower and partially mimicked by the reduction in food intake (N vs. PF: P = 0.10).

Hypoxia reduces the FCSA in the EDL only. Transverse sections of the EDL (Fig. 2A) and the soleus muscles (Fig. 2B) were stained with antibodies against myosin heavy chains and laminin to identify individual fiber types (Fig. 2, A and B, left) and their contours (Fig. 2, A and B, right). In the EDL a small but significant reduction of the number of type IIB fibers was observed after 21 days (H vs. PF: P < 0.01) (Fig. 2C), whereas in the soleus, the numbers of individual fibers were not changed under any of the experimental conditions (Fig. 2D). In the EDL, a significant reduction of the size of all fibers (Total) was already observed after 4 days of hypoxia, was progressive, and had a clear hypoxia-specific component (PF vs. H: P < 0.05). Analysis of the FCSA of individual fibers revealed that the changes were mostly due to a decrease in type IIB fibers and a smaller decrease in type IIA fibers, whereas type IIX fibers were not affected (Fig. 3A). In the soleus, the mean FCSA of individual fiber types and, accordingly, of all fiber types (Total) was not significantly changed under any of the experimental conditions (Fig. 4A). Further analysis of the size distribution of specific fibers of the EDL revealed a small shift with the disappearance of the largest IIB type and IIA type fibers. Small changes were already visible at day 4 (Fig. 3C) and were more pronounced at day 21 (Fig. 3D). In the soleus, we did not find this decrease in size for any of the fiber types throughout the experiment (Fig. 4, B and C).

Fig. 1. Hypoxia-specific decrease of glycolytic but not oxidative muscle weights. Mice were exposed to normoxia or hypoxia, and one normoxic group was pair fed to the hypoxia group. Mice were killed at the indicated time points, and muscle weights were determined: extensor digitorum longus (EDL) (A) and soleus (B). Muscle weights were corrected for starting body weight and expressed as the percentage of the normoxic value for the corresponding time point. Significant differences between groups at a given time point: *P < 0.05, **P ≤ 0.01, ***P ≤ 0.001 (n = 6–8 per group).

Fig. 2. Hypoxia-specific decrease of glycolytic but not oxidative muscle weights. Mice were exposed to normoxia or hypoxia, and one normoxic group was pair fed to the hypoxia group. Mice were killed at the indicated time points, and muscle weights were determined: extensor digitorum longus (EDL) (A) and soleus (B). Muscle weights were corrected for starting body weight and expressed as the percentage of the normoxic value for the corresponding time point. Significant differences between groups at a given time point: *P < 0.05, **P ≤ 0.01, ***P ≤ 0.001 (n = 6–8 per group).

Table 3. Antibodies used for Western blotting

<table>
<thead>
<tr>
<th>Target</th>
<th>Product number</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC3B</td>
<td>2775</td>
<td>Cell Signaling</td>
</tr>
<tr>
<td>Polyubiquitin conjugates</td>
<td>BML-P188050</td>
<td>ENZO Life Sciences</td>
</tr>
<tr>
<td>GR S211</td>
<td>4161</td>
<td>Cell Signaling</td>
</tr>
<tr>
<td>GR</td>
<td>3660</td>
<td>Cell Signaling</td>
</tr>
</tbody>
</table>

and previously, we demonstrated lowered SaO2 (saturation level of oxygen in hemoglobin) and PaO2 (partial pressure of oxygen in arterial blood) values in the blood of mice after acute (2 and 4 days) and chronic (21 days) exposure to hypoxia (10). To assess hypoxia-associated signaling, expression of the HIF1α-responsive target genes Glut1 (glucose transporter 1, Fig. 5A), Vegfa (vascular endothelial growth factor A, Fig. 5B), and Ca9 (carbonic anhydrase 9, Fig. 5C) was determined. Glut1 expression was most sensitive to hypoxia and Ca9 least responsive. Basal expression levels of Glut1 and Vegfa were 1.4-fold higher in the soleus than the EDL, and Ca9 3.1-fold higher in the EDL. Glut1 expression was induced in both muscles already at day 4 (~1.5-fold, H vs. N). In the soleus, the increased expression was independent of food intake and similar under acute and chronic hypoxia, whereas in the EDL, the increase at day 4 was partially accounted for by reduced...
Increased expression of Atrogin-1 response in the EDL was larger for both genes and faster for Murf1 was comparable in EDL and soleus, and both muscles showed differential activation of UPS-mediated protein degradation pathways, we measured the expression of the E3 ubiquitin ligases Murf1, Atrogin-1, and Nedd4 (Fig. 6, A–C) and determined the amount of polyubiquitin conjugates in muscle (Fig. 6, D and E). Basal expression of Atrogin-1 and Murf1 was comparable in EDL and soleus, and both muscles responded with increased expression under hypoxia, but the response in the EDL was larger for both genes and faster for Atrogin-1. Increased expression of Murf1 could be mimicked by a reduction in food intake in both muscles, whereas the increased Atrogin-1 expression showed a clear hypoxia-specific component, but only in the EDL. Basal Nedd4 expression was almost 5 times higher in the EDL than the soleus and was further increased in a hypoxia-specific manner in the EDL. These data show that Nedd4 was most sensitive to hypoxia-specific induction, whereas induction of both Murf1 and Atrogin-1 also showed a response to the decreased food intake. The increased gene expression of ubiquitin ligases was not reflected in an increase of polyubiquitin conjugates in either the EDL or soleus.

Effects of hypoxia on the autophagy-lysosome pathway. To investigate autophagy-lysosome pathway (ALP) mediated protein degradation, the expression of Map1lc3b, Bnip3, and Atg5 was measured (Fig. 7, A–C), whereas LC3B activation was determined by quantifying lipilated LC3B-II (Fig. 7, D and E). Basal expression of Map1lc3b was similar in EDL and soleus, and both muscles showed increased expression after acute and chronic hypoxia. In the soleus, this increase depended on food restriction, whereas the more pronounced increase in the EDL contained a hypoxia-specific element. Basal expression of Bnip3 was 2-fold higher in the soleus, but both muscles showed a hypoxia-specific upregulation. In the EDL, this was partly due to the hypoxia-mediated reduction in food intake. Basal Atg5 expression was slightly higher in the soleus, but hypoxia-specific increased expression was only observed in the EDL. Induction of Atg5 expression was hypoxia-specific, whereas Map1lc3b and Bnip3 showed also a response to the lowered food intake. LC3B protein concentration was ~2-fold and that of the active lipilated form, LC3B-II, even 3.2-fold higher in the soleus than the EDL. Hypoxia led to a hypoxia-specific reduction of LC3B-II in both soleus and EDL in the acute phase. In the chronic phase the reduction also showed a food intake–dependent component.

Hypoxia-induced glucocorticoid signaling is more prominent in the glycolytic EDL. To assess whether oxidative and glycolytic muscles showed differential activation of UPS-mediated protein degradation pathways, we measured the expression of the E3 ubiquitin ligases Murf1, Atrogin-1, and Nedd4 (Fig. 6, A–C) and determined the amount of polyubiquitin conjugates in muscle (Fig. 6, D and E). Basal expression of Atrogin-1 and Murf1 was comparable in EDL and soleus, and both muscles showed increased expression after acute and chronic hypoxia. In the soleus after 4 days. A significant, hypoxia-specific increase of polyubiquitin conjugates in either the EDL, changes in GR content and phosphorylation at S211 determined by quantifying lipilated LC3B-II (Fig. 7, D and E). Basal expression of Map1lc3b was similar in EDL and soleus, and both muscles showed increased expression after acute and chronic hypoxia. In the soleus, this increase depended on food restriction, whereas the more pronounced increase in the EDL contained a hypoxia-specific element. Basal expression of Bnip3 was 2-fold higher in the soleus, but both muscles showed a hypoxia-specific upregulation. In the EDL, this was partly due to the hypoxia-mediated reduction in food intake. Basal Atg5 expression was slightly higher in the soleus, but hypoxia-specific increased expression was only observed in the EDL. Induction of Atg5 expression was hypoxia-specific, whereas Map1lc3b and Bnip3 showed also a response to the lowered food intake. LC3B protein concentration was ~2-fold and that of the active lipilated form, LC3B-II, even 3.2-fold higher in the soleus than the EDL. Hypoxia led to a hypoxia-specific reduction of LC3B-II in both soleus and EDL in the acute phase. In the chronic phase the reduction also showed a food intake–dependent component.
Basal expression of the GR target gene Klf15 was comparable in both muscles, and both responded with increased expression to acute and chronic hypoxia. In the soleus, however, this response was dependent on the reduced food intake, whereas in the EDL it was partially hypoxia-specific (Fig. 8E). Basal expression of Mstn was 27-fold higher in the EDL than the soleus (Fig. 8F). Whereas expression was insensitive to hypoxia in the soleus, expression was increased in the EDL after 21 days, which was partially accounted for by reduced food intake. Basal expression of Glul was 2.3-fold higher in the EDL than the soleus (Fig. 8G). This expression was increased almost 2-fold in a hypoxia-specific manner at day 21 in the EDL, whereas only a trend (H vs. N, P = 0.06) toward an increased expression was seen in the soleus. To summarize, expression of Gr and Glul were upregulated in a hypoxia-specific manner, whereas Klf15 was regulated by food intake. The glycolytic EDL muscle was more sensitive to hypoxia-specific induction of glucocorticoid signaling than the soleus.

Hypoxia results in muscle-specific adaptations of the capillary network. Hypoxia triggers angiogenesis (26, 28, 54, 56). We used CD31 staining to identify and quantify capillaries in the EDL and the soleus (Figs. 9, A and B). The increased Vegfa expression suggests adaptations of the capillary network within the muscles. Under normoxic conditions, the CD in the EDL (Fig. 9C) was significantly lower than in the soleus (807 vs. 1,079 capillaries/mm², respectively). The number of capillaries per square millimeter (Fig. 9C) and of CC per square millimeter (Fig. 9D) were both 1.4-fold higher in the soleus than the EDL. Capillaries were also slightly larger in the soleus (Fig. 9E), and a hypoxia-specific reduction of the interstitial space between fibers was found in the soleus after 21 days (Fig. 9G). Together, these changes explain the more frequent CC in this muscle, resulting in a smaller FCSA per capillary contact (Fig. 3).
which may facilitate a better blood supply to the muscle fibers of the soleus. In the EDL, a hypoxia-specific increase in CD was observed, but no change in the CC per unit surface. In both muscles, hypoxia, therefore, caused a decrease of the FSCA per capillary contact and thereby a better blood supply of the fibers. The effects of reduced food intake on CD, contacts, and perimeter were small.

DISCUSSION

In this study we investigated the atrophy responses of a mainly oxidative muscle, the soleus, and a predominantly glycolytic muscle, the EDL. The effects of hypoxia on muscle consisted of a food intake–dependent effect and a hypoxia-specific effect (independent of the hypoxia-mediated reduction in food intake). The main findings were that 1) both muscles adapted to chronic hypoxia with a similar result, namely a decrease of FCSA in the EDL and an increase of CC in the soleus; 2) the increased sensitivity of the EDL to hypoxia was reflected in increased hypoxia-specific expression of genes of the UPS and the ALP, whereas in the soleus this response was smaller and showed a stronger dependence on food intake; 3) expression of Gr mRNA and target genes of GR was hypoxia-specific in the EDL and stronger than in the soleus; and 4) the ubiquitin ligase Nedd4 and the autophagy-related factor Atg5 are upregulated in a hypoxia-specific manner.

In the present study, we showed a rapid decrease of muscle mass and FCSA in the glycolytic EDL muscle, but not the oxidative soleus muscle in response to normobaric hypoxia. After 3 wk of hypoxia, muscle atrophy was still most prominent in the EDL, suggesting that loss of glycolytic muscle mass is a feature of chronic hypoxia. The reduction in muscle mass was reflected in a reduction of the FCSA of the predominant type IIB muscle fibers in the EDL. Rats that were exposed for 10 wk to hypobaric hypoxia also showed a selective reduction of the FCSA of the glycolytic EDL (23). A consistent finding in COPD patients is a fiber-type redistribution from oxidative type I fibers toward more glycolytic type II fibers (17, 18, 24, 40, 44), which may already be present in mild to moderate

Fig. 4. The oxidative soleus muscle shows no changes in fiber size distribution. Muscle sections were analyzed histologically using fluorescence-labeled antibodies. A: mean FCSA of all fibers (Total) and individually stained fibers (type IIB/IIX) of the soleus muscle. B: FCSA distribution of the soleus muscle per fiber-type on day 4. C: FCSA distribution of the soleus muscle per fiber-type on day 21; no significance indicated. Panels at top: type I fibers; panels at middle: type IIA fibers; panels at bottom: type IIB/IIX fibers.
disease (53). We previously showed selective atrophy of type II fibers in COPD patients relative to age-matched control subjects (16). The findings of the present study suggest that this may be due to an unfortunate series of events, initiated by a shift toward type II fibers, that is, toward a muscle phenotype that subsequently renders COPD patients more sensitive to disease-related episodes of hypoxia and cachexia in advanced disease.

Activation of GR signaling in muscle induces atrophy (49, 55). Sensitivity of fast-twitch muscle fibers, like the EDL, to glucocorticoid-induced atrophy was previously demonstrated in rats (46). Here, we show that basal Gr mRNA concentrations were the same in both muscles, but that acute and chronic hypoxia upregulated Gr expression only in the glycolytic EDL muscle. Interestingly, GR protein levels did not respond accordingly. However, GR recycling and degradation are tightly

Fig. 5. Differential expression of HIF1α target genes. mRNA expression of HIF1α target genes was determined: Glut1 (A), Vegfa (B), and Ca9 (C). mRNA concentration was corrected for 18S RNA concentration and normalized to the normoxic value of the EDL at day 4. Significant differences of normoxia (basal) values between muscles are indicated with $;$ significant differences between groups at a given time point: */$P < 0.05, **$/P ≤ 0.01, ***$/P ≤ 0.001 (n = 6–8 per group).

Fig. 6. Hypoxia affects the expression of genes of the ubiquitin-proteasome system (UPS), predominantly in the glycolytic EDL muscle, but does not lead to accumulation of polyubiquitin conjugates. mRNA expression of genes belonging to the UPS: Murf1 (A), Atrogin-1 (B), and Nedd4 (C); mRNA concentration was corrected for 18S RNA and normalized to the normoxic value of the EDL at day 4. D: representative Western blots of polyubiquitin conjugates in protein extracts of EDL (left) and soleus muscles (right) from mice of all three experimental groups at 4 and 21 days. E: total polyubiquitin conjugates per condition. Ponceau S staining was used to correct for protein loading. Significant differences of normoxia (basal) values between muscles are indicated with $;$ significant differences between groups at a given time point: */$P < 0.05, **$/P ≤ 0.01, ***$/P ≤ 0.001 (n = 6–8 per group).
controlled following GR activation and may have been affected by hypoxia (52). It was shown previously that severe hypoxia potentiates glucocorticoid activity through the induction of the glucocorticoid receptor in human kidney cells and that HIF1α/HIF-2α is responsible for at least part of this induction (30). The observed predominant GR response to hypoxia in the EDL is in line with a higher sensitivity of this glycolytic muscle to glucocorticoids (31).

Klf15 is a GR-sensitive gene required for amino acid degradation to provide carbohydrate backbones for gluconeogenesis under fasting conditions (19). In line with this function, increased expression was observed in soleus and EDL muscles in response to reduced food intake. KLF15, glutamine synthetase (*Glul*), and myostatin have been implicated in protein catabolism and inhibition of muscle growth, respectively (22, 50). The additional hypoxia-induced increase of their mRNAs in the EDL corresponds with the accentuated hypoxia-specific loss of mass of this muscle.

The observed hypoxia-induced skeletal muscle atrophy involves increased expression of genes of the UPS and ALP-mediated protein degradation pathways (10). During UPS-mediated protein degradation, proteins are labeled through the addition of ubiquitin chains by E3 ubiquitin ligases. The lack of accumulation of polyubiquitin conjugates indicates that proteasomal capacity is not limiting and ubiquitin homeostasis is not disturbed (42). Basal expression and induction by hypoxia-induced reduction of food intake of the E3 ubiquitin ligases *Murf1* and *Atrogin-1*, both downstream targets of KLF15 (50). The increased expression of *Murf1* and *Atrogin-1* may be the consequence of an increased sensitivity of the EDL to corticosterone and GR signaling. Expression of the E3 ubiquitin ligase *Nedd4* did not mimic the expression patterns of *Murf1* and *Atrogin-1*. This ligase is highly expressed in the glycolytic EDL muscle but not the oxidative soleus muscle. In addition, increased *Nedd4* expression is dependent on hypoxia only and not on reduced food intake. Increased *Nedd4* expression was previously identified as a marker to distinguish muscle atrophy caused by reduced muscle tension from cachexia-induced atrophy (27). Our findings indicate that *Nedd4* expression may also be a marker for hypoxia and hypoxia-induced atrophy in glycolytic muscle.

The elevated expression of *Bnip3*, *Maplc3b*, and *Atg5* in the hypoxic EDL suggested that the ALP is involved in hypoxia-specific atrophy of this muscle. In addition, expression of *Bnip3*, a hypoxia-inducible member of the Bcl-2 family and a regulator of cardiomyocyte mitophagy under hypoxic conditions (45), was increased in the oxidative soleus muscle by hypoxia, and this was independent of food intake. *Bnip3* may therefore contribute to muscle adaptations other than atrophy, such as mitochondrial loss by mitophagy (2, 59). The increased hypoxia-specific expression of *Maplc3b* and *Atg5* in the EDL, together with the decreased concentration of LC3B-II may be interpreted as increased flux through the ALP (25). It has to be noted, however, that relations between LC3B-I and LC3B-II
depend on the type of cell and the type of stress and cell-specific transcriptional regulation, rendering the interpretation of these data notoriously difficult (25). Although the main objective of this study was to characterize the different sensitivities of oxidative and glycolytic muscle toward hypoxia and underlying mechanisms, it seems worthwhile to note that the expression of \textit{Atg5}, a crucial component of the autophagy machinery, is entirely dependent on hypoxia and independent of food intake, so that it qualifies, like \textit{Nedd4}, as a marker for hypoxia-induced atrophy in glycolytic muscle.

Glycolytic muscles in mice have higher concentrations of HIF1α protein and mRNA than oxidative muscles (32). HIF1α activation can regulate the expression of its downstream targets \textit{Ca9}, \textit{Vegfa}, and \textit{Glut1}, as well as \textit{Bnip3}. Expression of \textit{Glut1} and \textit{Vegfa} increased in both muscles upon exposure to hypoxia, whereas \textit{Ca9} was only upregulated in the glycolytic EDL muscle and only after chronic exposure. This latter finding suggests a delayed response to hypoxia for this gene, although the exact function of \textit{Ca9} remains unclear. The early increase in glucose transporter 1 (\textit{Glut1}) expression probably reflects the increased glucose uptake under hypoxia as shown by others (13).

Vascular endothelial growth factor (VEGF) is a potent angiogenic factor in hypoxic tissues (7). Basal \textit{Vegfa} expression was higher in oxidative soleus than in glycolytic EDL muscle. This may relate to the higher CD in oxidative muscles, as expression of \textit{Vegfa} in endothelial cells is 2-fold higher than in skeletal muscle cells (3). Chronic hypoxia resulted in a significantly increased expression of \textit{Vegfa} in both muscles. The angiostatic effect of glucocorticoids has been explained by their inhibition of VEGF expression (41), which at least in vitro, is potentiated by hypoxia (30). It is, therefore, tempting to speculate that the effects of increased \textit{Vegfa} expression were attenuated in glycolytic muscles like the EDL by their higher

Fig. 8. Hypoxia-induced glucocorticoid signaling is more prominent in the glycolytic EDL muscle. Phosphorylation of GR at serine 211 was measured as an indication of its activation in the EDL and the soleus of mice exposed to one of the three experimental conditions [normoxia (N), pair-fed (PF), or (H) hypoxia] for 4 or 21 days. **A:** representative Western blots of total GR and phosphorylated GR. **B:** GR S211. **C:** total GR. Ponceau S staining of Western blots was used to correct for protein loading. mRNA expression of \textit{Gr} and its target genes was determined: \textit{Gr} (D), \textit{Klf15} (E), \textit{Mstn} (F), and \textit{Glul} (G). mRNA concentration was corrected for 18S RNA and normalized to the normoxic value of the EDL at day 4. Significant differences of normoxia (basal) values between muscles are indicated with *; significant differences between groups at a given time point: *\(P < 0.05\), **\(P \leq 0.01\), ***/$$$\ P \leq 0.001\ (n = 6–8 per group).
sensitivity to increased circulating corticosterone concentrations. Such an attenuated angiogenic response may well account for the poor adaptation of the capillary structure to hypoxia in glycolytic muscles. The CD was lower in glycolytic EDL than in oxidative soleus muscle confirming earlier studies (39). The resulting larger FCSA per capillary further predisposes the glycolytic EDL muscle to oxygen and nutrient deficiency. The hypoxia-induced reduction in muscle fiber diameter in the EDL may have partially compensated for the cited increases in sensitivity to hypoxia. In the oxidative soleus muscle, hypoxic conditions increased the number of CC per muscle fiber (7, 11), which reduces its sensitivity to hypoxia. The deep, more oxidative region of the plantaris muscle in rats also responded with an increase in capillarity to chronic hypoxia, whereas the superficial, more glycolytic region of the same muscle did not (58). These findings reveal two distinct structural changes to adapt to hypoxia, that is, via a decrease in fiber diameter (EDL) or an increase in CC per fiber. In patients with moderate to severe COPD, no difference of FCSA per capillary contact was observed, although the number of capillaries per fiber was decreased compared with controls, except for type IIB fibers (24). The loss of capillaries may be a
long-term adaptive mechanism following the reduced FCSA observed in our relatively short-term study.

Increased protein turnover plays a role in muscle homeostasis under stress and does not necessarily result in severe muscle atrophy as long as the size of the stress falls within the adaptive capacity of the organism or cell. We showed in our previous article (10) that hypoxia stimulated both protein synthesis and degradation pathways. Furthermore, we showed that hypoxia activated the UPR without completely blocking mRNA translation. This may explain why the effects of severe hypoxia are relatively small in otherwise healthy mice. Similarly, it was recently shown that endoplasmic reticulum-stress and hypoxia-response pathways potentiated HIF-1 transcriptional activity of targets like VEGF (43), thereby promoting adaptation. In COPD patients, however, where stress due to multiple stressors probably exceeds the adaptive capacity, certainly in the long run, the outcome is muscle atrophy.

Limitations of the study. We have not analyzed the effects of hypoxia-mediated inactivity, which may also contribute to muscle atrophy. We cannot exclude that hypoxia-associated inactivity contributes to the hypoxia-specific reduction in FCSA of IIB fibers found in our study. However, muscle unloading in rodents usually results in type I fiber atrophy. It has been shown that short-term hypoxia (10% O₂ for 2.5 days) resulted in clearly decreased activity levels (4), but the effects of chronic hypoxia on activity were not investigated in that study. Our hypoxic mice seemed drowsy during the first week of the experiment, but we noticed no obvious differences in activity with the normoxic group at later time points.

CONCLUSION

This study shows that hypoxia-induced muscle atrophy is more prominent in the glycolytic EDL than the oxidative soleus muscle. The atrophy observed in the EDL contained a hypoxia-specific effect that was independent of food intake, which involved activation of the catabolic proteasomal and lysosomal protein degradation pathways as well as increased expression of the glucocorticoid receptor gene and its target genes. Both muscles adapted to hypoxia by a decrease of the fiber volume supported by one capillary contact, but this was achieved by a decrease in muscle fiber size in the EDL and an increase in the number of CC in the soleus muscle. The more pronounced atrophic response of glycolytic fibers in mice suggests that COPD patients may be more susceptible to hypoxia-induced muscle atrophy because of the predominance of glycolytic fibers in their muscles.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the technical support provided by Els Terwindt, Paul van Dijk, Greet Momen, Patricia Niedoba, Marleen Hendrikx, and Aafke Duisters.

GRANTS

This study was performed within the framework of the Dutch Top Institute Pharma, project T1-201. Partners in this project are Maastricht University Medical Center+–University Medical Center Groningen, University Medical Center Utrecht, GlaxoSmithKline, AstraZeneca, Nycomed, and Danone Research.

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the author(s).

AUTHOR CONTRIBUTIONS

REFERENCES