Heat stress protects against mechanical ventilation-induced diaphragmatic atrophy

Noriko Ichinoseki-Sekine, Yoshitari T, Kakigi R, Sugita T, Powers SK, Naito H. Heat stress protects against mechanical ventilation-induced diaphragmatic atrophy. J Appl Physiol 117: 518–524, 2014. First published July 24, 2014; doi:10.1152/japplphysiol.00170.2014.—Mechanical ventilation (MV) is a life-saving intervention in patients who are incapable of maintaining adequate pulmonary gas exchange due to respiratory failure or other disorders. However, prolonged MV is associated with an increased expression of heat shock protein in the diaphragm. We hypothesized that a single exposure to whole body heat stress would protect against MV-induced diaphragmatic atrophy. Adult male Wistar rats (n = 38) were randomly assigned to one of four groups: an acute anesthetized control group (CON) with no MV; 12-h controlled MV group (CMV); 1-h whole body heat stress (HS); or 1-h whole body heat stress 24 h prior to 12-h controlled MV (HSMV). Compared with CON animals, diaphragmatic HSP72 expression increased significantly in the HS and HSMV groups (P < 0.05). Prolonged MV resulted in significant atrophy of type I, type IIa, and type IIx fibers in the costal diaphragm (P < 0.05). Whole body heat stress attenuated this effect. In contrast, heat stress did not protect against MV-induced diaphragm contractile dysfunction. The mechanisms responsible for this heat stress-induced protection remain unclear but may be linked to increased expression of HSP72 in the diaphragm.

MATERIALS AND METHODS

Animals. All experimental protocols were approved by the institutional ethics review committee of Juntendo University (H24-03), and the experiments were performed according to the American Physiological Society “Guiding Principles in the Care and Use of Animals.” Adult male Wistar rats (3 mo old) were randomly assigned to one of four groups: 1) an acutely anesthetized control group (CON, n = 9) with no MV; 2) a 12-h controlled MV group (CMV, n = 10); 3) 1-h whole body heat stress group (HS, n = 10); or 4) 1-h whole body heat stress 24 h prior to 12-h controlled MV (HSMV, n = 9). All rats were maintained under a 12:12-h light-dark cycle with standard Chow and water ad libitum for at least 1 wk before use.

Experimental design. Control animals were acutely anesthetized using pentobarbital sodium (ip injection of 60 mg/kg body wt) and the diaphragm was quickly removed. Animals in the HS and HSMV groups were exposed to 1-h whole body heat stress using a heat chamber. To ensure the same time intervals between heat stress and dissection with HSMV rats, rats from the HS group were anesthetized and the diaphragm was removed 36 h after completion of heat stress. Immediately following the 12-h controlled MV, CMV and HSMV animals were killed and diaphragm was removed. The time intervals between completion of heat stress and initiation of controlled MV in the HSMV group was 24 h. After the entire diaphragm was removed, the costal diaphragm was divided into several segments for subsequent analysis.

Application of heat stress. Animals in HS and HSMV groups were exposed to heat stress (40–41°C, 60 min) in a heat chamber (TVG321AA; Advantec, Tokyo, Japan) without anesthesia (26, 41).
This heat stress increased the colonic temperature of the animals to \(\sim 40^\circ C\) following 30 min of heat exposure (LT8A; Grum, Saitama, Japan). Specifically, following 60 min of heat stress, colonic temperature increased to 41.1–41.4°C, suggesting that colonic temperature was maintained above 40°C for 30 min.

Mechanical ventilation. All surgical procedures were performed using aseptic technique. Animals from the CMV and HSMV groups were anesthetized by intraperitoneal injection of pentobarbital sodium (60 mg/kg body wt), tracheostomized, and mechanically ventilated (tidal volume = 0.6 ml/100 g body wt, 80 breaths/min, humidified ambient air) with a volume-cycled ventilator (SAR-1000; CWE, Ardmore, PA) for 12 h. ECG and heart rate were monitored via a lead-II ECG using needle electrodes placed subcutaneously. The carotid artery was cannulated to permit the continuous measurement of arterial blood pressure and periodic blood sampling (every 4 h) for analysis of arterial blood gas (cobas b 221; Roche Diagnostics, Tokyo, Japan). Arterial \(P_O_2\), \(P_CO_2\), and \(P_H_2O\), and \(P_H_2O\) were maintained within their respective normal ranges by adjustment of tidal volume. A venous catheter was placed in the jugular vein for continuous infusion of pentobarbital sodium (10 mg·kg\(^{-1}\)·h\(^{-1}\)). Body (i.e., colonic) temperature was maintained at 36.5–37.5°C with a water-circulating warming pad. Continuous care during MV included expressing the bladder, lubricating the eyes, rotating the animal, and passive limb movement. Animals also received intramuscular injections of glycopyrrolate (0.04 mg/kg) prior to MV every 2 h during MV to reduce airway secretions.

Histological measures. Serial cross-sections from frozen costal diaphragm muscle samples were cut at a thickness of 10 μm using a microtome (CM3050S; Leica, Wetzlar, Germany) at \(-20^\circ C\). Immunohistochemical staining was performed to identify muscle fiber types. Unfixed cryosections were rinsed in 0.01 M phosphate-buffered saline (PBS) and incubated in 0.3% Triton X-100/0.1 M PBS before blocking with 3% bovine serum albumin (BSA) in 0.1 M PBS at room temperature. Primary antibodies used for fiber typing were: M8421 (type I, 1:500; Sigma, St. Louis, MO), M4276 (type II, 1:500; Sigma), SC-71 (type IIa, 1:400), and BF-35 (all fibers except type Ix, 1:200). All antibodies were diluted in 3% BSA/0.1 M PBS and applied to sections overnight at 4°C. After rinsing with 0.01 M PBS, Alexa Fluor 488 goat anti-mouse IgG antibody (A11003; Invitrogen, Carlsbad, CA) was applied as a secondary antibody (1:500). Hematoxylin and eosin staining was also performed for measurement of cross-sectional area (CSA). Sections were viewed under a fluorescence microscope (DM5000B; Leica) with a 10× objective and captured using a digital camera (IM 500; Leica). Diaphragm muscle fiber CSA was determined using Scion Image (NIH, Bethesda, MD).

Biochemical measures. Frozen costal diaphragm muscle samples were minced, and a portion of the muscle (\(-80^\circ g\)) was homogenized in 10 volumes of ice-cold homogenization buffer [20 mM HEPES, pH 7.4, 60 mM dithiothreitol, 1% (wt/vol) Triton X-100] containing protease inhibitor cocktail (Complete EDTA-free and PhosSTOP; Roche, Penzberg, Germany). The homogenates were centrifuged at 12,000 \(g\) for 20 min at 4°C to collect the cytosolic fraction. The supernatant protein concentration was determined using a Bio-Rad protein assay kit (Bradford). Protein assay kit (Bio-Rad, Hercules, CA). The insoluble pellets corresponding to the particulate fraction were subsequently washed three times in 5 volumes of ice-cold homogenization buffer and centrifuged at 12,000 \(g\) for 5 min at 4°C. The pellets were then resuspended in 10 volumes of lysis buffer consisting of 20 mM HEPES (pH 7.4), 250 mM NaCl, and 1% (wt/vol) sodium dodecyl sulfate (SDS), and centrifuged at 17,000 \(g\) for 5 min at 4°C. The supernatant was saved and the protein concentration of the solubilized particulate fraction was determined using a BCA Protein Assay kit (Thermo Scientific, Rockford, IL).

Protein extracts were solubilized in sample buffer [30% glycerol, 5% 2-mercaptoethanol, 2.3% SDS, 62.5 mM Tris-HCl (pH 6.8), and 0.05% bromophenol blue] at 2 mg/ml and incubated at 95°C for 5 min. Proteins were then loaded onto 6.5–12.5% SDS-polyacryl-
Table 1. *Initial body weight, blood gas, and arterial blood pressure at completion of 12-h of mechanical ventilation*

<table>
<thead>
<tr>
<th>Variable</th>
<th>CON</th>
<th>HS</th>
<th>CMV</th>
<th>HSMV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body weight, g</td>
<td>303.6 ± 3.4</td>
<td>307.5 ± 2.0</td>
<td>304.1 ± 2.9</td>
<td>304.2 ± 2.9</td>
</tr>
<tr>
<td>PaO2, mmHg</td>
<td>NA</td>
<td>NA</td>
<td>82.2 ± 2.5</td>
<td>84.7 ± 2.5</td>
</tr>
<tr>
<td>PaCO2, mmHg</td>
<td>NA</td>
<td>NA</td>
<td>35.1 ± 1.0</td>
<td>36.1 ± 1.0</td>
</tr>
<tr>
<td>pH</td>
<td>NA</td>
<td>NA</td>
<td>7.49 ± 0.01</td>
<td>7.49 ± 0.01</td>
</tr>
<tr>
<td>Arterial blood pressure, mmHg</td>
<td>NA</td>
<td>NA</td>
<td>81.7 ± 14.2</td>
<td>85.1 ± 18.6</td>
</tr>
</tbody>
</table>

Values are means ± SE. PaO2, arterial PO2; PaCO2, arterial PCO2; NA, not applicable; CON, control (n = 9); HS, 1-h whole body heat stress (n = 10); CMV, 12-h controlled mechanical ventilation (n = 10); HSMV, 1-h whole-body heat stress 24 h prior to 12-h controlled mechanical ventilation (n = 9). No significant differences were observed among groups for any of the variables.

Fig. 1. Fiber cross-sectional area (CSA) in diaphragm muscle fibers from all four experimental groups. Values are means ± SE. *Significantly different from all groups (*P < 0.05; **P < 0.01). CON, control (n = 9); HS, 1-h whole body heat stress (n = 10); CMV, 12-h controlled mechanical ventilation (n = 10); HSMV, 1-h whole body heat stress 24 h prior to 12-h controlled mechanical ventilation (n = 9).

Table 2. *Percentage of total cross-sectional area occupied by each diaphragmatic fiber type*

<table>
<thead>
<tr>
<th>Group</th>
<th>Type I (%)</th>
<th>Type IIa (%)</th>
<th>Type IIx (%)</th>
<th>Type IIb (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CON</td>
<td>19.8 ± 0.8</td>
<td>20.8 ± 1.5</td>
<td>51.7 ± 1.5</td>
<td>7.7 ± 2.2</td>
</tr>
<tr>
<td>HS</td>
<td>19.6 ± 1.0</td>
<td>19.2 ± 1.1</td>
<td>51.7 ± 2.4</td>
<td>9.5 ± 2.3</td>
</tr>
<tr>
<td>CMV</td>
<td>23.4 ± 1.08</td>
<td>21.7 ± 0.8</td>
<td>52.4 ± 1.5</td>
<td>2.5 ± 0.98</td>
</tr>
<tr>
<td>HSMV</td>
<td>22.2 ± 0.8</td>
<td>22.4 ± 1.0</td>
<td>53.6 ± 1.0</td>
<td>1.8 ± 0.38</td>
</tr>
</tbody>
</table>

Values are means ± SE, n = 9. CON, control (n = 9); HS, n = 10; CMV, n = 10; HSMV, n = 9. #Significantly different from CON (P < 0.05). §Significantly different from HS (P < 0.05).

Fig. 2. Heat shock protein 72 (HSP72) expression in diaphragm muscle. Values are means ± SE. CON, n = 9; HS, n = 10; CMV, n = 10; HSMV, n = 9. Ichinoseki-Sekine N et al.

RESULTS

Systemic and biological responses to MV. The systemic and biological responses to MV are shown in Table 1. Blood gases and arterial blood pressure were maintained within their respective normal ranges during 12-h MV and did not differ between the two MV groups. Heart rate (300–400 beats/min) and body temperature (36.5–37.5°C) were maintained within their respective normal ranges during the MV period. On completion of MV, no visual abnormality of the lungs or peritoneal cavity was observed.

Diaphragmatic fiber atrophy. Fiber CSA was determined for individual fiber types in all groups (Fig. 1). Similar to previous studies, prolonged MV resulted in significant atrophy of type I, type IIa, and type IIx fibers in the costal diaphragm. Note that prolonged MV resulted in a greater rate of atrophy in type II fibers compared with type I fibers. This greater rate of fiber atrophy resulted in an increase in the percentage of CSA occupied by type I fibers (Table 2). No significant difference in CSA area was observed for type I, type IIa, or type IIx fibers between the CON and HSMV animals, indicating that heat stress performed prior to MV attenuated MV-induced diaphragmatic atrophy. Further, no differences existed in muscle fiber type among the experimental groups.

HSP72 expression in the diaphragm. Compared with CON animals, diaphragmatic HSP72 expression increased significantly in the HS and HSMV groups (Fig. 2). Moreover, HSP72 expression levels in the diaphragm were greater in HSMV than in CMV animals. These results indicate that whole body heat stress as performed in this study significantly increased HSP72 expression in diaphragm muscle.

Autolyzed calpain-1, cleaved caspase-3, and ubiquitinated protein expression in the diaphragm. Prolonged MV significantly increased cleaved (activated) caspase-3 expression in diaphragm muscle in the CMV group (Fig. 3). Heat stress
decreased MV-induced expression of cleaved caspase-3 by -39%; however, the difference was not significant. In contrast, no significant difference among groups was observed for autolyzed calpain-1 or ubiquitinated protein levels.

SOD levels in the diaphragm. No significant difference in SOD-1 or SOD-2 expression was observed among groups (Fig. 4). These results indicated that neither 12-h MV nor heat stress affected the expression levels of SOD-1 and SOD-2.

Levels of oxidized proteins in the diaphragm. Levels of oxidized proteins in the diaphragm increased significantly in response to prolonged MV (Fig. 5). Although heat stress tended to protect the diaphragm against MV-induced protein oxidation, the effect was not statistically significant.

Actin and myosin protein content. Actin content in the costal diaphragm decreased significantly as a result of prolonged MV, but this loss of actin protein was significantly attenuated by heat stress (Fig. 6). No change in myosin content was observed among groups.

Diaphragm contractile properties. To examine whether heat stress can protect against diaphragmatic contractile dysfunction, we measured both in vitro maximal isometric twitch force and the force-frequency responses in excised strips of costal diaphragm muscle. Compared with controls, 12 h of controlled MV resulted in a significant reduction in diaphragm muscle force production at all stimulation frequencies above 15 Hz (Fig. 7). Note that heat stress did not rescue the diaphragm from MV-induced contractile dysfunction.

DISCUSSION

Overview of principal findings. Application of heat stress did not protect against MV-induced diaphragmatic contractile dysfunction. A detailed discussion of these and other major findings follows.

Heat stress protects against MV-induced atrophy. In agreement with previous studies in limb skeletal muscle suggesting that heat stress can protect against muscle atrophy (11, 26, 35), our results indicated that whole body heat stress has a protective effect against MV-induced diaphragmatic atrophy. Importantly, this heat stress-induced protection against ventilator-induced atrophy was observed in all diaphragm muscle fiber types. Note that the magnitude of MV-induced diaphragmatic atrophy

Fig. 3. Autolyzed calpain-1, cleaved caspase-3, and ubiquitinated protein expression. Values are means ± SE. #Significantly different from CON (P < 0.05). §Significantly different from HS (P < 0.05). CON, n = 9; HS, n = 10; CMV, n = 10; HSMV, n = 9.

Fig. 4. Superoxide dismutase (SOD) expression. Values are means ± SE. CON, n = 9; HS, n = 10; CMV, n = 10; HSMV, n = 9.
atrophy observed in the present study was similar to those described in previous reports (10, 17, 22, 30, 38).

HSP72 level in type I fibers typically exceeds that in type II fibers (13, 18). Nonetheless, although heat stress increased HSP72 levels in the diaphragm, it did not alter the relative percentages of type I and II fibers in this key inspiratory muscle. Regarding HSP72 in skeletal muscle, previous studies have postulated that heat stress-induced expression of HSP72 in skeletal muscle is responsible for the protective effect of whole body heat stress against disuse locomotor muscle atrophy (26, 35). In this regard, exposing animals to brief periods of whole body heat stress has been shown to significantly elevate HSP levels in rat tissue (5), and the magnitude of this response depends on muscle fiber type. For example, Oishi et al. (28, 29) demonstrated that heat stress results in small increases in the expression of HSP72 in the soleus muscle, which has a high percentage of type I fibers, whereas heat stress promotes a much larger increase in HSP72 expression in the plantaris muscle, which is composed primarily of type II muscle fibers. Note that compared with a previous study (29) the magnitude of heat stress-induction of HSP72 in the diaphragm was lower than that of fast muscle fibers in locomotor skeletal muscles; however, it was similar to the magnitude of induced HSP72 expression in the diaphragm following a short period of endurance exercise training (38). Importantly, endurance exercise training prior to MV has been shown to have a preventive effect against MV-induced diaphragmatic atrophy (38). Therefore, it is possible that the protective effect of heat stress against MV-induced diaphragmatic atrophy is directly linked to the increase in HSP72 levels in the diaphragm.

With regard to the mechanisms underlying the protective effect of HSP72, it has been established that HSP72 can protect against calcium- and mitochondrial-related damage in muscle myotubes (21). In addition, HSP72 is known to inhibit apoptosis through caspase-dependent and -independent mechanisms (33). Previous work has shown that HSP72 attenuates the expression of the activated form of caspase-3, suggesting that HSP72 plays a role in protection against apoptosis (44). In the present study, the expression of cleaved caspase-3 increased significantly in the diaphragm following 12 h of MV (Fig. 3). In contrast, prior heat stress successfully protected the diaphragm against MV-induced cleaved caspase-3 expression in the diaphragm (Fig. 3). This finding is important because pharmacological inhibition of caspase-3 activation in the diaphragm can attenuate MV-induced diaphragmatic atrophy (22, 27). Therefore, prior heat stress may protect the diaphragm against MV-induced atrophy, at least in part, by preventing caspase-3 activation. With regard to the role of protease activation in MV-induced diaphragm atrophy, previous studies indicated that prolonged MV activates numerous proteolytic systems in the diaphragm, including calpain and caspase-3
Heat stress protects against MV-induced diaphragmatic atrophy

In the present study, calpain-1 expression increased in the diaphragm during prolonged MV, but the change did not reach statistical significance. Similarly, the levels of ubiquitinated proteins tended to increase in the diaphragm during MV, but these increases were not statistically significant. Nonetheless, these results do not preclude a potential role for the ubiquitin-proteasome pathway in diaphragmatic atrophy because the 20S proteasome can degrade nonubiquitinated proteins.

Heat stress does not protect against MV-induced decreases in diaphragmatic specific force production. Although several groups have investigated the effects of heat stress on locomotor muscle atrophy, there has been no investigation to date regarding the impact of heat stress on muscle contractile dysfunction induced by prolonged disuse. In this first report on this important issue, we found that 1 h exposure of animals to whole body heat stress 24 h prior to prolonged MV does not protect against MV-induced diaphragm contractile dysfunction but does provide protection against MV-induced diaphragmatic atrophy. The mechanisms underlying this heat stress-induced protection remain unclear but may be linked to increased expression of HSP72 and subsequent protection against caspase-3 activation in the diaphragm. Regardless of the mechanisms responsible for this protective effect, the discovery that heat stress provides protection against MV-induced diaphragmatic atrophy is a new and important finding that could have significant clinical implications in the prevention of MV-induced diaphragmatic weakness.

GRANTS

This work was supported by Japan Society for the Promotion of Science (JSPS) Kakenhi Grant No. 23700781 (N. Ichinoseki-Sekine) and JSPS Research Fellowships for Young Scientists Grant No. 11J11122 (T. Yoshihara).

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the author(s).

AUTHOR CONTRIBUTIONS

REFERENCES

Heat Stress Protects Against MV-Induced Diaphragmatic Atrophy • Ichinoseki-Sekine N et al.

