Dynamics of male pelvic floor muscle contraction observed with transperineal ultrasound imaging differ between voluntary and evoked coughs

Ryan E. Stafford,1 Stuart Mazzone,2 James A. Ashton-Miller,3 Christos Constantinou,4 and Paul W. Hodges1

1Centre for Clinical Research Excellence - Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Australia; 2School of Biomedical Sciences, The University of Queensland, Brisbane, Australia; 3Biomedical Engineering, Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan; and 4Department of Urology, School of Medicine, Stanford University, Palo Alto, California

Submitted 6 November 2013; accepted in final form 10 February 2014

Stafford RE, Mazzone S, Ashton-Miller JA, Constantinou C, Hodges PW. Dynamics of male pelvic floor muscle contraction observed with transperineal ultrasound imaging differ between voluntary and evoked coughs. J Appl Physiol 116: 953–960, 2014. First published February 13, 2014; doi:10.1152/japplphysiol.01225.2013.—Coughing provokes stress urinary incontinence, and voluntary coughs are employed clinically to assess pelvic floor dysfunction. Understanding urethral dynamics during coughing in men is limited, and it is unclear whether voluntary coughs are an appropriate surrogate for spontaneous coughs. We aimed to investigate the dynamics of urethral motion in continent men during voluntary and evoked coughs. Thirteen men (28–42 years) with no history of urological disorders volunteered to participate. Transperineal ultrasound (US) images were recorded and synchronized with measures of intraabdominal pressure (IAP), airflow, and abdominal/chest wall electromyography during voluntary coughs and coughs evoked by inhalation of nebulized capsaicin. Temporal and spatial aspects of urethral movement induced by contraction of the striated urethral sphincter (SUS), levator ani (LA), and bulbocavernousus (BC) muscles and mechanical aspects of cough generation were investigated. Results showed coughing involved complex urethral dynamics. Urethral motion implied SUS and BC shortening and LA lengthening during preparatory and expulsion phases. Evoked coughs resulted in greater IAP, greater bladder base descent (LA lengthening), and greater midurethral displacement (SUS shortening). The preparatory inspiration cough phase was shorter during evoked coughs, as was the latency between onset of midurethral displacement and expulsion. Maximum midurethral displacement coincided with maximal bladder base descent during voluntary cough, but followed it during evoked cough. The data revealed complex interaction between muscles involved in continence in men. Spatial and temporal differences in urethral dynamics and cough mechanics between cough types suggest that voluntary coughing may not adequately assess capacity of the continence mechanism.

STRESS URINARY INCONTINENCE (SUI), defined as unwanted urine leakage during events that increase intraabdominal pressure (IAP) (1), is common in men after prostatectomy (6) and is provoked by coughing (27). However, the mechanisms are surprisingly poorly understood (27), given the limited investigation of the mechanics of continence control in men. Few studies have investigated the control of continence during coughing in men and most relate to voluntary coughing [e.g., (16)], which may not reflect the continence strategy used during spontaneous or evoked coughing. Spontaneous coughing is more likely to be associated with SUI because the time-critical nature of involuntary coughs allows little time for volitional preparation.

The requirements for maintenance of urinary continence during dynamic events (such as coughing) are straightforward; urethral pressure must exceed bladder pressure to prevent leakage of urine. However, the temporal and spatial mechanics of continence control are complex and include coordinated input from different mechanisms [including smooth and striated levator ani (LA) and striated urethral sphincter (SUS) muscle activation] to control urethral pressure. Voluntary coughing is routinely used to investigate pelvic floor muscle function, particularly in women with SUI (14, 19, 35, 37). Spontaneous coughing is typically evoked by airway irritation, which requires contraction of the muscles of the chest wall and abdomen to rapidly elevate IAP and intrathoracic pressure (ITP) to forcefully expel air and irritants from the respiratory system (3, 12, 26, 36). Pelvic floor muscle activation is necessary to resist the downward displacement that would be caused by the increase in IAP, and to maintain continence against elevated bladder pressure (2, 30). Ultrasound (US) imaging measures of the bladder base [urethrovaginal junction (UVJ)] movement show greater caudal displacement of this structure in women with SUI during coughing as a result of decreased support by the LA muscle (14, 19, 35, 37). Reduced SUS function is also implicated in SUI (5, 9, 11) because maximal urethral closure pressure is reduced, and this depends on both the LA and SUS muscles (8).

In men, simultaneous cranial displacement of the UVJ, dorsal displacement of the midurethra (MU) distal to the prostate, and compression of the bulb of the penis, are clearly visualized with transperineal US imaging during voluntary pelvic floor muscle contractions (28, 29, 32). Based on the anatomy of the muscles of the pelvic floor in men, these movements are best explained by contraction of the LA, SUS, and bulbocavernous (BC) muscles, respectively, although other muscles could be involved. The LA muscle (which includes a group of muscles defined by different researchers as puborectalis, iliococcygeus, pubococcygeus, and pubovisceralis) elevate the bladder base (UVJ) and support the floor of the abdominal cavity (18). This muscle group, particularly puborectalis, which forms a loop behind the rectum, also moves the anorectal junction (ARJ) in a ventral direction. Tonic activity of puborectalis produces the ventral curvature in the rectum. Dorsal movement of the MU is best explained by activation of
the SUS because this is the only muscle with the appropriate anatomical location, origin, and insertion from and into the perineal body, forming an omega-shaped loop around the anterior and lateral aspects of the MU (33). No muscles other than BC have the appropriate anatomical orientation to directly compress the penile bulb, although this region could be distorted by movement of other pelvic structures.

Such imaging highlights complex dynamics (29) yet coordination of the LA, SUS, and BC muscles has not been studied during dynamic tasks. Previous investigations of dynamic events have been limited to either the temporal or spatial contributions from individual muscles. Hodges et al. (13) reported increased anal electromyography (EMG) before increased IAP associated with voluntary limb movements, in agreement with data of SUS EMG (31). This provides evidence of preparatory contribution of the pelvic floor muscles with predictable elevation of IAP. However, activation in voluntary efforts may not reflect that in spontaneous coughing. Recent functional magnetic resonance imaging studies highlight different supraspinal control of voluntary and evoked coughs (20). Compared with voluntary coughing, evoked coughs involve shorter duration (or absence) of inspiration prior to air expulsion (2, 3, 12, 34), earlier onset of abdominal muscle activity (17), and greater peak IAP (2). Each of these factors will influence the demand on the pelvic floor muscles. Perhaps most critically, voluntary coughs enable preparation and recruitment of the pelvic floor in a manner that may not be representative of spontaneous coughing.

Assessment of function of the pelvic floor muscles in men after prostatectomy is important to understand incontinence, particularly with respect to SUS, which may be injured or denervated during prostatectomy (33). A first step is to understand healthy function during natural behaviors, particularly those related to patient symptoms, such as coughing. However, this is not trivial because it remains unclear whether voluntary coughing is an adequate surrogate for spontaneous coughing. This study aimed to investigate the kinematics of urethral displacement in men during voluntary coughs, and to compare these with corresponding data obtained during evoked coughs. On the basis of data from women, predictions from anatomy, and our previous data of voluntary contractions we hypothesized that the dynamics of the urethra would differ between regions during coughing, involving some descent of the UVJ as noted that the dynamics of the urethra would differ between regions during coughing, involving some descent of the UVJ as compared with our previous data of voluntary contractions we hypothesized that the dynamics of the urethra would differ between regions during coughing, involving some descent of the UVJ as compared with our previous data of voluntary contractions we hypothesized that the dynamics of the urethra would differ between regions during coughing, involving some descent of the UVJ as compared with our previous data of voluntary contractions we hypothesized that the dynamics of the urethra would differ between regions during coughing, involving some descent of the UVJ as compared with our previous data of voluntary contractions we hypothesized that the dynamics of the urethra would differ between regions during coughing, involving some descent of the UVJ as compared with our previous data of voluntary contractions we hypothesized that the dynamics of the urethra would differ between regions during coughing, involving some descent of the UVJ as compared with our previous data of voluntary contractions we hypothesized that the dynamics of the urethra would differ between regions during coughing, involving some descent of the UVJ as compared with our previous data of voluntary contractions we hypothesized that the dynamics of the urethra would differ between regions during coughing, involving some descent of the UVJ as compared with our previous data of voluntary contractions we hypothesized that the dynamics of the urethra would differ between regions during coughing, involving some descent of the UVJ as compared with our previous data of voluntary contractions we hypothesized that the dynamics of the urethra would differ between regions during coughing, involving some descent of the UVJ as compared with our previous data of voluntary contractions we hypothesized that the dynamics of the urethra would differ between regions during coughing, involving some descent of the UVJ as compared with our previous data of voluntary contractions we hypothesized that the dynamics of the urethra would differ between regions during coughing, involving some descent of the UVJ as compared with our previous data of voluntary contractions we hypothesized that the dynamics of the urethra would differ between regions during coughing, involving some descent of the UVJ as compared with our previous data of voluntary contractions we hypothesized that the dynamics of the urethra would differ between regions during coughing, involving some descent of the UVJ as compared with our previous data of voluntary contractions we hypothesized that the dynamics of the urethra would differ between regions during coughing, involving some descent of the UVJ as compared with our previous data of voluntary contractions we hypothesized that the dynamics of the urethra would differ between regions during coughing, involving some descent of the UVJ as compared with our previous data of voluntary contractions we hypothesized that the dynamics of the urethra would differ between regions during coughing, involving some descent of the UVJ as compared with our previous data of voluntary contractions we hypothesized that the dynamics of the urethra would differ between regions during coughing, involving some descent of the UVJ as compared with our previous data of voluntary contractions we hypothesized that the dynamics of the urethra would differ between regions during coughing, involving some descent of the UVJ as compared with our previous data of voluntary contractions we hypothesized that the dynamics of the urethra would differ between regions during coughing, involving some descent of the UVJ as compared with our previous data of voluntary contractions we hypothesized that the dynamics of the urethra would differ between regions during coughing, involving some descent of the UVJ as compared with our previous data of voluntary contractions we hypothesized that the dynamics of the urethra would differ between regions during coughing, involving some descent of the UVJ as compared with our previous data of voluntary contractions we hypothesized that the dynamics of the urethra would differ between regions during coughing, involving some descent of the UVJ as compared with our previous data of voluntary contractions we hypothesized that the dynamics of the urethra would differ between regions during coughing, involving some descent of the UVJ as compared with our previous data of voluntary contractions we hypothesized that the dynamics of the urethra would differ between regions during coughing, involving some descent of the UVJ as compared with our previous data of voluntary contractions we hypothesized that the dynamics of the urethra would differ between regions during coughing, involving some descent of the UVJ as compared with our previous data of voluntary contractions.
works, USA) which enables users to identify pelvic structure borders. Points of interest are identified in a semiautomated manner on the basis of established criteria. Two-dimensional coordinates are referenced to an axis system referenced to a bony landmark (pubic symphysis). The orientation of each image is checked and corrected with respect to this axis system and is thus independent of pelvic motion. Repeatability of this method has been confirmed during voluntary contractions of the pelvic floor muscles (28).

On the basis of preliminary analysis, seven key elements of motion of the different urethral components were identified for comparison. These were the amplitudes of 1) initial ventral to dorsal motion of the MU, 2) initial caudal movement of vUVJ followed by 3) cranial movement of vUVJ, 4) initial caudal movement of dUVJ followed by 5) cranial movement of dUVJ, 6) initial ventral movement of ARJ, and 7) initial ventral movement of BP.

For the evoked cough trials, only the first cough from each of the three stimulated cough events (which could involve multiple coughs) was analyzed. Voluntary and evoked cough data were averaged over the three repetitions. Timing (milliseconds) and amplitude (millimeters) of urethral displacements associated with SUS, LA, and BC contraction were identified using Matlab (Mathworks). Temporal measures could be quantified to the nearest 100 ms based on the sampling frequency of the US images.

Statistical analysis. The times of onset and amplitudes of displacement of the urethral measures were compared between measures and between cough types with a repeated measures ANOVA [repeated measures included cough type (voluntary vs. evoked) and measure of urethral dynamics (seven standardized measures of motion of MU, vUVJ, dUVJ, ARJ, and BP)]. Pearson’s R^2 correlation coefficient was calculated to explore the relationship between the duration of the pressurization phase and each of the measures of displacement of the urethra. Paired, two-sided, students t-tests were used ($P < 0.05$) to compare phase duration, IAP amplitude, and flow variables between cough types. Data are presented as mean \pm SD throughout the text and figures.

RESULTS

Urethral kinematics during voluntary coughing. During the voluntary cough, IAP increased gradually without abdominal muscle activation as the participant breathed in during the inspiration phase. During the pressurization phase IAP increased synchronously with abdominal muscle activation. Displacement of the urethral structures was complex during these initial preparatory phases of the cough. Dorsal displacement of the MU (consistent with predicted action of SUS) began 400 \pm 200 ms before the onset of the expulsion phase in all partici-

![Image](fig1a.png)

![Image](fig1b.png)

pents. In 10 participants this was associated with downward/ caudal motion of the ARJ and vUVJ/dUVJ (indicating lengthening of the LA) at a similar time before the onset of the expulsion phase (ARJ = 400 \pm 300 ms; vUVJ/dUVJ = 400 \pm 400 ms; interaction, measure vs. cough $P < 0.001$; post hoc MU vs. dUVJ $P = 0.22$; MU vs. vUVJ $P = 0.25$; MU vs. ARJ $P = 0.21$) and associated with no motion in two participants.

During the pressurization phase, penile bulb compression (contraction of BC) was initiated 100 \pm 100 ms before the onset of the expulsion phase, thereby following the onset of motion of the other measures of urethral displacement (all $P < 0.001$). The duration of the pressurization phase varied between participants and had a coefficient of variation (0.67) that was 4.9 and 2.5 times that recorded for the inspiration and expulsion phases (see Fig. 1 for an example of a longer pressurization phase and Fig. 2 for an example of a shorter pressurization phase). The duration of the pressurization phase was not related to the amplitude of displacement of any measure of urethral displacement (all measures, $R^2 < 0.012$).

During the expulsion phase, IAP reached a maximum of 163 \pm 40 cmH$_2$O at 125 \pm 63 ms after the onset of expiratory airflow, and after the time of peak airflow. The latter occurred at 31 \pm 6 ms after the onset of expulsion. At the onset of expulsion, dynamics of urethral motion implied further shortening of the SUS and BC and lengthening of the LA as IAP increased toward maximum amplitude. Further dorso-caudal displacement of vUVJ and dUVJ was observed in most men ($n = 10$) [consistent with lengthening of the LA as observed in women] (14) and reached a maximum of 3.6 \pm 2.6 mm (Fig. 2) at 300 \pm 100 ms after the onset of expulsion (after peak IAP and peak airflow), at which time it began to move in the ventral-cranial direction. Maximum dorsal displacement of the MU (4.5 \pm 1.6 mm) occurred at a similar time to maximum vUVJ/dUVJ descent, 300 \pm 100 ms after the onset of the expulsion and \sim175 ms after the time of peak IAP (post hoc $P = 0.243$). Onset of dorsal motion of the MU (shortening of the SUS) preceded cranial motion of vUVJ/dUVJ and ventral motion of ARJ (shortening of LA), and ventral compression of BP (shortening of BC) (post hoc all $P < 0.001$). Urethral motions at vUVJ/dUVJ, ARJ, BC, and SUS were consistent with muscle shortening only after the time of peak IAP. Peak ventro-cranial motion (ascent) of vUVJ of 6.9 \pm 2.6 mm was reached either during the expulsion phase or after its comple-
tion, at an average of 800 ± 200 ms (range, 500–1,000 ms) after the onset of expulsion. Peak compression of the penile bulb and ventral motion of ARJ were reached 600 ± 200 ms and 700 ± 300 ms, respectively, after the onset of the expulsion phase. The MU position returned to its initial location at 1,200 ± 200 ms after the onset of expulsion.

Urethral kinematics during evoked coughing. Evoked coughs involved the same phases as described for the voluntary cough but differed in several respects. The inspiration phase was longer during voluntary (2,095 ± 287 ms) than evoked (1,272 ± 337 ms) coughs (interaction, phase vs. cough $P < 0.001$; post hoc voluntary vs. evoked $P < 0.001$). The duration of the pressurization (voluntary, 225 ± 150 ms; evoked, 156 ± 36 ms; post hoc $P = 0.37$) and expulsion (voluntary, 477 ± 129 ms; evoked, 415 ± 121 ms; post hoc $P = 0.47$) phases did not differ between cough types. The latency between the onset of expiration and key mechanical events of the cough also differed between tasks (Table 1). The latency from onset of expiration to peak airflow was longer in voluntary (43 ± 9 ms) than evoked (31 ± 6 ms t-test; $P < 0.001$) coughs, but the time to peak IAP was later relative to the onset of the expulsion phase during evoked coughs (voluntary, 125 ± 43 ms; evoked, 157 ± 43 ms, t-test; $P = 0.021$). Peak IAP amplitude was greater during evoked coughs (voluntary, 163 ± 35 cmH$_2$O; evoked, 209 ± 39 cmH$_2$O, t-test; $P = 0.001$), and there was a

Table 1. Timing and amplitude of mechanical events for voluntary and evoked coughs

<table>
<thead>
<tr>
<th>Subject</th>
<th>Time to peak air flow, s</th>
<th>Time to peak IAP, s</th>
<th>Flow, l/s</th>
<th>IAP AMP, cmH$_2$O</th>
<th>ITP AMP, cmH$_2$O</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vol</td>
<td>Evoked</td>
<td>Vol</td>
<td>Evoked</td>
<td>Vol</td>
</tr>
<tr>
<td>1</td>
<td>0.042</td>
<td>0.039</td>
<td>0.119</td>
<td>0.122</td>
<td>3.8</td>
</tr>
<tr>
<td>2</td>
<td>0.041</td>
<td>0.037</td>
<td>0.095</td>
<td>0.142</td>
<td>3.9</td>
</tr>
<tr>
<td>3</td>
<td>0.036</td>
<td>0.025</td>
<td>0.032</td>
<td>0.181</td>
<td>2.6</td>
</tr>
<tr>
<td>4</td>
<td>0.064</td>
<td>0.035</td>
<td>0.096</td>
<td>0.190</td>
<td>1.6</td>
</tr>
<tr>
<td>5</td>
<td>0.044</td>
<td>0.041</td>
<td>0.265</td>
<td>0.226</td>
<td>4.5</td>
</tr>
<tr>
<td>6</td>
<td>0.036</td>
<td>0.026</td>
<td>0.080</td>
<td>0.109</td>
<td>3.2</td>
</tr>
<tr>
<td>7</td>
<td>0.030</td>
<td>0.026</td>
<td>0.102</td>
<td>0.117</td>
<td>4.0</td>
</tr>
<tr>
<td>8</td>
<td>0.036</td>
<td>0.023</td>
<td>0.195</td>
<td>0.205</td>
<td>5.3</td>
</tr>
<tr>
<td>9</td>
<td>0.050</td>
<td>0.029</td>
<td>0.058</td>
<td>0.098</td>
<td>4.9</td>
</tr>
<tr>
<td>10</td>
<td>0.036</td>
<td>0.029</td>
<td>0.169</td>
<td>0.129</td>
<td>4.9</td>
</tr>
<tr>
<td>11</td>
<td>0.052</td>
<td>0.030</td>
<td>0.143</td>
<td>0.170</td>
<td>4.9</td>
</tr>
<tr>
<td>12</td>
<td>0.037</td>
<td>0.027</td>
<td>0.179</td>
<td>0.211</td>
<td>4.6</td>
</tr>
<tr>
<td>13</td>
<td>0.051</td>
<td>0.035</td>
<td>0.098</td>
<td>0.138</td>
<td>4.9</td>
</tr>
</tbody>
</table>

Mean (SD) 0.043 (0.009) 0.031 (0.006) 0.125 (0.063) 0.157 (0.043) 4.1 (1.1) 4.5 (1.0) 163 (40) 209 (36) 127 (38) 175 (42)

P values: <0.001 0.042 0.003 <0.001 <0.001.

Temporal data are listed as relative to onset of expiration. P values relate to the comparison between voluntary and evoked coughs. IAP, intraabdominal pressure; ITP, intrathoracic pressure; Vol, voluntary.
concomitant increase in airflow in the evoked cough (voluntary, 4.1 ± 1.1 liter/s; evoked, 4.5 ± 1.0 liter/s, t-test; \(P = 0.003 \)) (Table 1).

Temporal relationships between aspects of urethral motion and key cough variables differed between cough types (Fig. 3). MU displacement was initiated either during the inspiration or pressurization phase of evoked cough but with a shorter latency before onset of the expulsion phase for the evoked (200 ± 100 ms) than voluntary (400 ± 100 ms) coughs (interaction, cough × measure \(P = 0.001 \); post hoc \(P = 0.001 \)). Similar to the voluntary cough, peak MU displacement occurred after peak IAP in the expulsion phase but at a longer latency after the onset of expiration (400 ± 100 ms) than for voluntary (300 ± 100 ms) coughs (interaction, measure vs. cough \(P = 0.001 \); post hoc SUS \(P = 0.038 \)). Unlike the voluntary cough, maximal vUVJ/dUVJ descent preceded (300 ± 100 ms) peak MU displacement (interaction, measure vs. cough \(P = 0.001 \); post hoc \(P < 0.05 \)). Peak MU displacement consistently preceded time of peak cranial motion of UVJ (voluntary, 800 ± 200 ms; evoked, 900 ± 300 ms) during both cough types (peak dUVJ/vUVJ vs. peak SUS in both coughs post hoc \(P < 0.001 \)). Spatial features of urethral kinematics also differed between cough types (Fig. 3C). Dorsal displacement of the MU, caudal motion of the dUVJ and vUVJ, and ventral motion of ARJ were greater during evoked coughs (interaction, measure vs. cough \(P = 0.001 \); post hoc MU, vUVJ, dUVJ, and ARJ \(P < 0.05 \)), but dorsal motion of ARJ was less (post hoc \(P = 0.019 \)). There was no difference in the amplitude of the later vUVJ cranial motion or BP compression (post hoc UVJ and BP \(P > 0.05 \)). The later cranial motion of dUVJ was less in the evoked cough (post hoc \(P = 0.028 \)).

DISCUSSION

These data of coughing in healthy men show complex patterns of urethral movement that can be attributed to shortening and lengthening of different muscles of the pelvic floor. Urethral movement was consistent with shortening of the SUS and lengthening of the LA during the pressurization and expulsion phases of cough, in association with elevation of IAP. An important observation was that spatial and temporal aspects of urethral kinematics differed between voluntary and evoked coughs in several regards. First, evoked coughs involved greater elevation of IAP, and this was associated with greater caudo-dorsal displacement of the vUVJ/dUVJ and greater dorsal displacement of the MU. Second, the durations of the inspiratory and pressurization phases were shorter during evoked coughing with a shorter latency between onset of dorsal MU displacement (SUS shortening) and expulsion. Consequently, peak dorsal MU displacement followed maximum UVJ descent (LA lengthening), unlike voluntary coughs, in which these events occurred almost simultaneously. These spatial and temporal differences between cough types provide evidence that the challenge to maintain continence during evoked coughs is likely to be greater, and this may present a greater probability for identification of incompetence of the system in men with dysfunction. Thus, assessment of pelvic floor function with voluntary coughing may not be an optimal method to investigate and characterize dysfunction in some men.

Urethral dynamics during voluntary coughing and implications for continence control in men. Previous investigations of urethral dynamics during coughing have been limited to the study of movement of UVJ and ARJ in women during voluntary coughs. Similar to our data for continent men, Lovegrove Jones et al. (19) and Howard et al. (14) reported an initial phase of bladder base (dUVJ) descent (LA lengthening) in continent women [9.2 ± 2.8 mm (19) and 8.2 ± 4.1 mm (14)]. The greater magnitude of dUVJ descent in women than our data for men during voluntary (3.6 ± 2.5 mm) and evoked (4.9 ± 2.5 mm) coughs might be explained by differences in passive support for pelvic organs between genders (5). Despite the muscle lengthening, participants maintained continence, which implies that shortening of LA (observed via US) is not necessary for maintenance of continence. EMG data in men (30) and women (13) show activity of some pelvic floor muscles is necessary for maintenance of continence. EMG data in men (30) and women (13) show activity of some pelvic floor muscles is related to IAP amplitude. Taken together, this suggests that movements attributed to lengthening of LA probably reflect eccentric contraction.

Additional features of urethral dynamics observable in men with transperineal US were the dorsal movement of the MU (SUS shortening) and compression of the BP (BC shortening) during both voluntary and evoked coughs. Although the latter aspect is obviously specific to men, some dorsal motion of MU may be expected in women given the anatomical orientation of
the urethrovaginal and striated urogenital sphincter muscles, which compress the urethra toward the perineal body (5) and are active during voluntary contractions (7). Although displacement of the entire urethra is visualized with US in women, this aspect of MU displacement has not been comprehensively studied. There is some evidence of downward motion of this region during coughing (attributed to deep perineal muscles) (23) and support of this region of the urethra has been argued to be important for success of surgical management of SUI in women (24). In men, dorsal MU motion has been described caudal to the prostate (location of SUS (32)) during voluntary contractions and is inversely related to cranial motion of UVJ (activation of LA) (29).

The present study provides new data on MU dynamics during cough attributed to shortening of the SUS. In contrast to the caudal displacement of dUVJ and vUVJ (lengthening of LA), dorsal displacement of the MU (SUS shortening) occurred throughout the pressurization and expulsion phases of voluntary cough. Thus although both SUS and LA are likely to be active throughout the cough (as has been reported for women (7)), they undergo opposite length changes, and this combined displacement was clearly sufficient to maintain continence. BC is generally regarded to aid ejaculation and clear the urethra at the completion of micturition (38). Although not considered for maintenance of continence, BC activation would add pressure to the urethra and artificial sphincter mechanisms placed in a similar location to BC have been used to treat postprostatectomy incontinence with high rates of cure (25). In the present study, onset of BP compression preceded the expulsion phase of the voluntary cough and peak IAP. Pressure applied to the urethra at this time would be positive for maintenance of continence. Although it may be expected that the time of peak urethral pressure would coincide with the time of peak IAP, peak SUS shortening followed peak IAP amplitude and peak flow. This highlights that although motion may reflect activation, it is only one determinant of urethral pressure, and future work should study the relationship between these parameters in conjunction with other measures.

Differences in urethral dynamics between voluntary and evoked coughs. Although voluntary and evoked coughs shared key features such as the basic coordination of phases of pressurization and expulsion, they differed in several regards. Inhalation of a chemical stimulant has previously been reported to evoke stronger, more rapid coughs than voluntarily produced coughs (2). This difference in mechanical demand was also observed in the present study, and not surprisingly, was associated with differences in urethral kinematics.

Greater peak IAP was accompanied with greater dorsal displacement of the MU during the stronger evoked coughs, which implies greater activation of SUS. Previous work has shown a relationship between IAP and pelvic floor muscle activation; IAP amplitude is linearly related to SUS activation during repetitive arm movements performed with increasing acceleration (i.e., increasing reactive movement on the trunk) (31), anal EMG increases with coughing intensity (4), and anal and vaginal EMG increase with arm movements at greater speed (13). In contrast to SUS, lengthening of LA was greater with higher IAP. The lesser LA length change with voluntary cough may be the result of enhanced preparatory contraction of the pelvic floor muscles in this predictable task. This would concur with reduced bladder base descent during coughing with preparatory contraction in women (21). If true, investigation of voluntary coughing may overestimate the integrity of the continence mechanism.

The shorter inspiratory phase during evoked coughs affected the temporal relationship between MU displacement and bladder base descent. During evoked coughing, peak MU displacement followed maximal vUVJ/dUVJ descent in contrast to coincident timing of these events during voluntary coughing. The spatial and temporal relationships between MU displacement and UVJ descent may be an important feature of continence function. As UVJ descent increases with greater IAP, enhanced contribution from SUS may be required to maintain continence, and this may be reflected by the later peak.

Clinical implications. Previous studies of women with SUI have shown a range of changes in pelvic floor muscle (PFM) function. For instance, caudal displacement of the UVJ is greater in women with SUI (20.0 ± 7.1 mm (19) and 13.8 ± 5.4 mm (14)) than in continent control participants. Maximal urethral closure pressure is also lower in women with SUI (11), as is resting urethral pressure (10). In women, Dietz and Clarke (11) reported that urethral hypermobility (UVJ descent) was not associated with SUI. The authors hypothesized that their findings were indicative of SUS dysfunction, but US limitations prevented quantification of SUS thickness (as a measure of function). In men, elevation of the bladder base (measured with transabdominal US) after prostatectomy is less during voluntary contraction in those with incontinence than in those who are continent (22). Although no studies have investigated MU displacement in men with SUI after prostatectomy using transperineal US, Strasser et al. (32) reported atrophy and scarring of SUS using a transurethral technique. Changes to SUS function may be critical for this group because SUS is more likely to be affected by the surgery than the LA muscle. The new measure of MU displacement in the present study allows quantification of temporal and spatial features attributed to SUS activation. Delayed and/or reduced shortening of the SUS, coupled with more rapid and/or increased lengthening of LA, would likely compromise continence control and may be features of SUI. This requires investigation. Although the duration of the pressurization phase was not related to urethral dynamics in this study, the period of time available for preparation may have significance for men with incontinence and is worthy of further investigation.

Limitations. Several methodological issues require consideration. Data were analyzed by a single experienced investigator, and further investigation is required to test the reliability of the measures between investigators. Although the sample size was modest, most features of urethral motion and cough generation were consistent between participants. Participants were not blinded to the inhalation of capsaicin solution, therefore it is possible that some aspects of the pelvic floor muscle activity were initiated voluntarily during the evoked coughs. The temporal resolution of the US was limited to 100 ms, but was sufficient to detect differences between cough types. A temporal resolution that is an order of magnitude better would ensure that peak motions are not underestimated. An important issue for further investigation is to validate the interpretation of the relationship between urethral movements observed on US and activation of individual muscles. The current interpretation is based on anatomical descriptions of the muscles and pilot research using simultaneous recording of urethral motion and...
muscle activation. Although the length of preparatory phases of cough likely account for many of the differences in urethral dynamics observed between cough types, and this is likely to be independent of differences in cough intensity, we cannot be certain the differences are independent of cough strength. One feature that implies that cough strength does not account for the observed differences is that individuals with greater cough strength did not have later onset of MU motion relative to onset of expulsion ($R^2 = 0.03$) or greater vUJV descent ($R^2 = 0.003$). Further investigation that includes analysis of coughs of different type but with matched cough intensity is required to confirm the observation of this study. A further consideration is that pelvic support mechanisms are likely to be affected by gravitational load, and further work is required in upright positions to determine whether this changes the dynamics of urethral motion with coughing.

Conclusion. This study revealed complex interaction between multiple muscles involved in maintenance of continence in men during coughing. Spatial and temporal differences in urethral dynamics and cough mechanics differed between cough types. This suggests voluntary coughing may not be an adequate surrogate for assessment of competence of continence mechanisms.

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the author(s).

AUTHOR CONTRIBUTIONS

REFERENCES

