Fiber atrophy, oxidative stress, and oxidative fiber reduction are the attributes of different phenotypes in chronic obstructive pulmonary disease patients

Fares Gouzi,1,2 Aldjia Abdellaoui,1,3 Nicolas Molinari,4 Edith Pinot,5 Bronia Ayoub,1 Dalila Laoudj-Chenivesse,1 Jean-Paul Cristol,5 Jacques Mercier,1 Maurice Hayot,1 and Christian Préfaut1
1INSERM U-1046, CHRU Montpellier, Department of Clinical Physiology, University of Montpellier I and II, Montpellier, France; 2Pulmonary Rehabilitation Center “La Solane”, Fontalvie Group, Ossèja, France; 3Pulmonary Rehabilitation Center “La Vallonie”, Fontalvie Group, Lodève, France; 4UMR 729 MISTEA, CHRU Montpellier, Department of Medical Information, University of Montpellier I, Montpellier, France; and 5UMR 204 NutriPass, Institute of Research for Development, CHRU Montpellier, Department of Biochemistry, University of Montpellier I and II, Montpellier, France

Submitted 8 July 2013; accepted in final form 11 October 2013

Chronic obstructive pulmonary disease (COPD) is a composite disease with significant extrapulmonary effects that may contribute to the degree of severity in individual patients. Peripheral muscle dysfunction is one of these effects and constitutes a key outcome (7, 14), as reduced quadriceps muscle strength and mass have been linked to the patient prognosis (33, 51). The reduction in muscle mass is closely related to the reduction in fiber cross-sectional area (CSA) (19). In addition, a loss in muscle oxidative capacity, which is characterized by a reduction in type I fiber proportion, is another well-documented feature of COPD peripheral muscle (20, 53) directly impacting patient endurance (53).

Yet, the picture is complicated by the great heterogeneity of the muscle structure in COPD, with patients showing a wide variability in both fiber CSA and type I fiber proportion (20). Studies have suggested that the reduction in the fiber CSA and in the type I fiber proportion were not related (34, 53). Meanwhile, a significant proportion of COPD patients shows normal muscle structure (20), small fiber size and type I fiber regression can even be observed in healthy subjects (47) [older and sedentary subjects, in particular (21)]. This heterogeneity in peripheral muscle dysfunction and structure has limited research studies, as well as clinical care. Indeed, the variability in parameter values has made it difficult to identify the cellular mechanisms of fiber atrophy and type I fiber regression in COPD patients. In particular, it is unknown whether muscle oxidative stress, which has been incriminated in the muscle weakness (6) and impaired endurance (30), is specifically associated with the muscle fiber atrophy in COPD patients (17, 45). Second, patients with fiber atrophy, who present a worse prognosis, may be more responsive to specific therapeutics like muscle electromyostimulation (3). However, these patients remain generally unrecognized in routine care.

Using unsupervised clustering methods, recent studies have demonstrated that the clinical heterogeneity in COPD is the consequence of the different phenotypes of the disease (9, 10, 18). Phenotypes are homogeneous patient subgroups within the wide spectrum of COPD, with “unique prognostic or therapeutic characteristics” (24).

Previous studies in COPD have isolated a cluster characterized by the specific occurrence of a weight and fat-free mass loss and/or muscle weakness, indicating a muscle atrophy (9, 10, 16, 51), and thus, a possible link between the clinical phenotype and the muscle structure (45). However, in a recent study (34), COPD patients with fiber atrophy did not show reduced muscle mass and strength, but a better exercise capacity, as compared to COPD patient without fiber atrophy. These discrepancies with other studies (9, 10, 18) could be explained by the use of a supervised clustering approach, leading to misclassification of subjects. In addition, the clusters isolated cannot be considered as a “phenotype” because not prospec-
tively validated (24). Therefore, the aim of this study was to test the hypothesis that—using unsupervised clustering methods—the muscle fiber atrophy and increased oxidative stress constitute the attributes of validated COPD phenotypes that differ from phenotypes characterized by the reduction of type II fibers. Because of the redundancy in the multidimensional datasets obtained in COPD patients and healthy subjects of the same age and physical activity level, cluster analysis was performed on both populations.

MATERIALS AND METHODS

Study population. Sedentary healthy subjects (SHS) were recruited on the basis of the following criteria: age from 50 to 75 yr, no disease, and less than 150 min of moderate-to-vigorous physical activity per week (35). COPD patients were defined on the basis of the following criteria: dyspnea, chronic cough or sputum production, and/or a history of exposure to risk factors for the disease, and diagnosis confirmed by spirometry (postbronchodilator forced expiratory volume in 1 s/forced vital capacity (FEV1/FVC) < 70%) (43). Exclusion criteria were other respiratory diagnosis, decompensated comorbidity, and exacerbation in the last 2 mo. The severity of breathlessness was assessed via the Medical Research Council (MRC) scale (8). All subjects and patients performed the tests at INSERM U-1046, CHRU Montpellier, France, or at the “La Solane” and “La Vallonie” Pulmonary Rehabilitation Centers in Osseja and Lodève, France, respectively. An informed written consent was obtained from all subjects, and the research protocol was approved by the institutional ethics committee of the Montpellier University Hospitals (no. 2008-03-ESSS-V2 and no. 2009-04-BPCO-V2) and conducted in accordance with the Helsinki Declaration and the European Guidelines for “good clinical practice.”

Physical activity. In order to assess the physical activity (PA) level of our sedentary-selected healthy population, we used the Voorrips questionnaire (modified Baeecke’s questionnaire) validated and used in this indication (22, 56). “Objective” PA level was assessed in 25 COPD patients and 22 SHS who wore a triaxial accelerometer for 7 consecutive days (Tritrac RT3 Research, Stayhealthy, Monrovia, CA). This triaxial accelerometer is worn at the waist and records the acceleration in the three axes of the space (x, y, z), every minute. The parameter analysis is the Vector Magnitude Unit (VMU) or activity counts: VMU = $\sqrt{x^2 + y^2 + z^2}$ and has been validated in COPD (50).

The QUANTAP interview-administered survey is a computer-assisted tool designed to determine PA over a lifetime in four dimensions (sports at school, leisure sports, occupation, daily activities). This questionnaire is reliable to assess lifetime PA and has been validated for use in elderly French subjects and in the context of COPD (23).

Pulmonary function tests and arterial blood gases. All subjects underwent whole body plethysmography (Transmural Bodybox 2800; Sensomedics, Yorba Linda, CA). FEV1, FVC, functional residual capacity (FRC), total lung capacity (TLC), and residual volume (RV) were measured. The FEV1/FVC, RV/TLC and FRC/TLC ratios were calculated. The values were compared with normal values (44). Arterial blood samples were obtained while breathing room air. PaO2, was measured with a blood gas analyzer (Roche OMNI S, Roche Diagnostics, Mannheim, Germany).

Exercise capacity. The 6-min walking test (6MWT), which is routinely used by our group (39), was performed in a 30-m corridor. The distance walked during the test (6MWD) was compared with reference values (1). Arterial oxygen saturation (SpO2) and heart rate (HR) were monitored using a pulse oximeter (Nonin 8500 M; Nonin Medical, Minneapolis, MN).

Participants performed an incremental cycle ergometric test until exhaustion on an electrically braked cycle ergometer (Ergoselect 200P, Ergolyne, Bitz, Germany) following the individualized protocol usually used in our laboratory (46), and according to the international standards (2). Oxygen consumption (VO2) and carbon dioxide production (VCO2) were measured and calculated from breath-by-breath analysis (Sensormedics, Vmax 229, Autobox, Yorba Linda, CA). Maximal power output was the maximal workload sustainable, and symptom-limited (VO2sl) was the mean value during the last 20 s of the test. The ventilatory threshold was blindly and independently assessed for each subject by two experienced practitioners on the basis of noninvasive methods (ventilatory equivalent and V-slope methods), as recommended (2).

Muscle function assessment. The maximal voluntary contraction (MVC) and measurement of task failure time (Tlim) of the knee extensor were assessed with the usual methods of our group (14, 26, 42). Briefly, the MVC was measured at 90° on a bench (Kettler, Germany). Three reproducible measurements (within 10%) of the force of the dominant leg were recorded and the best value was retained as the MVC. The Tlim was then measured as the time (in s) during which the subjects were able to maintain a contraction at 30% of MVC, and at the rate of 10 movements per minute to exhaustion. Because MVC is a volitional test, a reduction in MVC >10% in 1 min was mandatory to validate the test. The fat-free mass index (FFMI) calculated from the fat-free mass determined with multifrequency bioelectrical impedance analysis (BIA) (QuadScan 4000, Bodystat, Isle of Man, UK) (19), using the validated equations of Kyle et al. (31).

Blood sample and muscle biopsy analysis. Venous blood was sampled in standard, sterile, heparinized tubes and muscle biopsies were performed in the vastus lateralis of the quadriceps using the usual methodology (25). Plasma-free and esterified isoprostanes (F2-Isop) were evaluated as markers of lipid (15). Muscle biopsies were performed in the vastus lateralis of the quadriceps. Muscle fiber type and CSA were assessed by immunohistochemistry on frozen sections from the muscle biopsies using a panel of antibodies (16) as previously described (3). Muscle oxidative stress markers were assessed by immunoblotting determination of protein and myosin heavy chains oxidation, lipid peroxidation, and the protein level of three enzymatic antioxidants (Mn superoxide dismutase, glutathione reductase, catalase) (5, 13, 32), as previously described (3). Blots were scanned and the optical densities (OD) of specific proteins were quantified with ImageJ.

Pulmonary rehabilitation in COPD patients. We analyzed the response to exercise training, in terms of exercise capacity (6MWD and VO2sl) in COPD patients only. The exercise training sessions were part of a multicomponent and comprehensive pulmonary rehabilitation course, including an education program, as recommended (36) and previously described (22). Briefly, twenty sessions of endurance exercise (stationary cycling, walking) were condensed into 4–6 wk. The training sessions were performed 3 or 4 times per week on a cycloergometer or a treadmill. The exercise intensity was set as the heart rate at the ventilatory or dyspnea threshold (36, 42, 52) assessed during the exercise test. This intensity was continuously monitored with a cardiofrequency meter. The duration of the training session was progressively increased to 1 h 30 min, with a maximum of 45 min of endurance training (10 min of work at the intensity of the ventilatory threshold followed by 5 min of active recovery, repeated 3 times) completed by strength-building exercise (8–10 exercises, with sets of 10–15 repetitions). The load for the resistance exercise was initially set at 40% of the isotonic one-repetition maximum (1-RM) of each muscle (deltoid, biceps, triceps, and quadriceps), and then progressively increased using a perceived exertion scale [with a target of 5–6 on a 10-point scale (35)]. All sessions were supervised by an experienced clinician, and the training intensity was increased during the training protocol.

Prospective follow-up of the COPD patients. We performed a prospective assessment of clinically relevant outcomes (all-cause mortality, hospital admissions, and acute exacerbations) up to March 1, 2013, in COPD patients. Acute exacerbations and admissions were
Muscle Histomorphology and Phenotypes in COPD • Gouzi F et al.

Results are expressed in means ± SD or median [interquartile range (IQR)]. Definition of abbreviations: M, male; F, female; COPD, chronic obstructive pulmonary disease; SHS, sedentary healthy subjects; MRC, Medical Research Council; BMI, body mass index; %pred, % of the predicted value; FFMI, fat-free mass index; FEV1, forced expiratory volume in 1 s; RV, residual volume; FRC, functional residual capacity; TLC, total lung capacity; PaO2, arterial oxygen partial pressure; 6MWD, 6-minute walking distance; VO2sl, symptom-limited oxygen uptake; VT, ventilatory threshold; VO2max, maximum oxygen uptake; qMVC: quadriceps maximal voluntary contraction; T.lim, endurance time; fiber CSA, fiber cross-sectional area.
When comparisons were made with the SHS, taking into account the sex, reduction in the fiber CSA occurred only in male COPD patients in cluster 1, and not in male COPD patients in cluster 2, vs. the healthy males of cluster 4 (3,715 ± 1,316 vs. 5,657 ± 1,098 vs. 5,725 ± 1,164 μm², respectively; P < 0.05). In females, we found no significant difference in fiber CSA in clusters 1 and 2 vs. the healthy females of cluster 3. Nevertheless, compared with the SHS clusters, both COPD clusters showed significantly reduced type I fiber proportion (P < 0.05). In summary, the main muscle features in the clusters of COPD patients were a reduction in the type I fiber proportion with preserved fiber size for cluster 2, and both fiber atrophy and severe type I fiber loss in cluster 1.

Validation of the phenotypes of COPD patients. Exercise training was performed at the intensity of the ventilatory (n = 27/34) or dyspnea (n = 7/34) threshold in COPD patients only (n = 34/64). After training, we observed a significant improvement of the 6MWD (n = 34) and VO2sl (n = 19) in patients (45 ± 47 m; P < 0.001 and +1.5 ± 2.5 ml·kg⁻¹·min⁻¹; P < 0.05, respectively). If we did not observe a significant greater relative improvement of the 6MWD in cluster 1 vs. cluster 2 (+15.2 ± 28.2% vs. +6.5 ± 6.3%; P = 0.21), there was a greater relative improvement of the VO2sl after training in cluster 1 vs. cluster 2 (+24 ± 16% vs. +6 ± 13%; P < 0.01). The relative improvement of the VO2sl was significantly correlated with the pretraining VO2sl (r = −0.53; P < 0.05, n = 19, Fig. 3). If the improvement of VO2sl was higher in cluster 1 vs. cluster 2, the training intensity (in % of the predicted maxVO2) was even lower in cluster 1 vs. cluster 2 (40 ± 4.6% vs. 49.9 ± 10.7%; P < 0.05).

The mean length of the follow-up in COPD patients was 1,040 ± 418 days (n = 54/64). At 1,500 days of follow-up, the higher all-cause mortality in cluster 1 vs. cluster 2 was not significant (log-rank: 1.15; P = 0.26). Kaplan-Meier analysis of hospital admissions and exacerbations between the 2 clus-
ters are presented in Fig. 4 and show that cluster 1 COPD patients were at higher risk of hospital admissions and exacerbations than cluster 2 (log-rank: 7.4 and 13.0, respectively; \(P < 0.001 \)). After adjustment for FEV\(_1\), the observed difference for hospital admission (hazard ratio: 1.41; \(P = 0.50 \)) and exacerbations (hazard ratio: 2.43; \(P = 0.11 \)) did not reach statistical significance.

Oxidative stress in clusters. We observed a significant increase in plasma isoprostane in cluster 1 of COPD patients \((P < 0.05) \) compared with the others (Table 4). Given the differences regarding the plasma and muscle oxidative stress between males and females, comparisons between clusters were performed per sex. In males only, we observed a significant increase in the protein carbonylation (/IC\%) of COPD patients in cluster 1 compared with patients in cluster 2 and SHS in cluster 4 \((197.5 \ [106.3–214.9] vs. \ 80.8 \ [65.2–98.9] \text{ and } \ 87.1 \ [70.9–103.9]; \ P < 0.05) \). A similar increase in MHC oxidation (/IC\%) was found in cluster 1 \((117.5 \ [98.2–171.0]\) vs. \ 53.1 \ [30.3–124.5] \text{ and } \ 62.5 \ [43.1–94.8]; \ P < 0.05). Cluster comparisons in females revealed no significant difference for any marker of oxidative stress. The level of total muscle protein carbonylation and MHC oxidation was correlated with qMVC in the clusters of COPD patients \((r = −0.60; \ P < 0.01 \text{ and } r = −0.54; \ P < 0.01; \text{Fig. 5A}) \). Moreover, total protein and MHC carbonylation were inversely correlated with fiber CSA in COPD patients \((r = −0.64; \ P < 0.001 \text{ and } r = −0.67; \ P < 0.05; \text{Fig. 5B}) \), as was catalase expression level \((r = −0.45; \ P < 0.05) \).

DISCUSSION

Using unsupervised cluster analysis, we identified and validated two phenotypes of COPD patients (with different outcomes and response to exercise training) showing a different peripheral muscle histomorphology and level of oxidative stress. While cluster 1 “atrophic” COPD patients showed reduced BMI,

Table 3. Clinical, functional, and muscle characteristics in clusters of subjects/patients

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Cluster 1</th>
<th>Cluster 2</th>
<th>Cluster 3</th>
<th>Cluster 4</th>
<th>(P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>COPD/SHS</td>
<td>26/0</td>
<td>36/0</td>
<td>2/15</td>
<td>0/14</td>
<td>0.93</td>
</tr>
<tr>
<td>Age, yr</td>
<td>60.4 ± 8.8</td>
<td>60.8 ± 9.0</td>
<td>61.2 ± 6.4</td>
<td>62.1 ± 4.4</td>
<td>0.45</td>
</tr>
<tr>
<td>Sex, M/F</td>
<td>20/6</td>
<td>25/11</td>
<td>0/17</td>
<td>13/1</td>
<td><0.001</td>
</tr>
<tr>
<td>FEV(_1), %pred</td>
<td>30 [25–32]*</td>
<td>52 [44–70]##</td>
<td>102 [91–116]</td>
<td>105 [99–112]</td>
<td><0.001</td>
</tr>
<tr>
<td>Comorbidities, n</td>
<td>1.5 [1.0–3.0]##</td>
<td>2.0 [1.0–3.0]##</td>
<td>0.0 [0.0–0.75]</td>
<td>0.0 [0.0–1.0]</td>
<td><0.001</td>
</tr>
<tr>
<td>RV, %pred</td>
<td>207 [191–224]*</td>
<td>162 [143–187]##</td>
<td>116 [94–129]</td>
<td>103 [93–111]</td>
<td><0.001</td>
</tr>
<tr>
<td>PaO(_2), mmHg</td>
<td>70.5 ± 11.0</td>
<td>69.9 ± 8.4</td>
<td>25.3 ± 4.1</td>
<td>24.2 ± 2.3</td>
<td>0.84</td>
</tr>
<tr>
<td>BMI, kg/m(^2)</td>
<td>21.5 ± 3.4*</td>
<td>18.6 ± 2.1*##</td>
<td>26.5 ± 3.1</td>
<td>16.5 ± 1.0*</td>
<td>0.001</td>
</tr>
<tr>
<td>FFMI, kg/m(^2)</td>
<td>16.9 ± 1.8*</td>
<td>18.6 ± 2.1*##</td>
<td>20.7 ± 2.6</td>
<td>16.5 ± 1.0*</td>
<td>0.001</td>
</tr>
<tr>
<td>Breathlessness, MRC</td>
<td>3.0 [2.0–5.0]</td>
<td>1.0 [1.0–2.0]##</td>
<td>106.3 ± 13.9</td>
<td>108.6 ± 15.1</td>
<td><0.001</td>
</tr>
<tr>
<td>VO(_2)sl, %pred</td>
<td>46.7 ± 17.7*</td>
<td>68.3 ± 12.2*##</td>
<td>106.3 ± 13.9</td>
<td>108.6 ± 15.1</td>
<td><0.001</td>
</tr>
<tr>
<td>VT, %pred VO(_2)max</td>
<td>42.0 [37.5–45.3]*</td>
<td>47.0 [42.0–50.0]*##</td>
<td>63.5 [58.0–67.0]</td>
<td>62.0 [54.0–73.0]</td>
<td><0.001</td>
</tr>
<tr>
<td>Tlim, s</td>
<td>178 [129–248]*</td>
<td>243 [139–328]*##</td>
<td>260 [177–352]*</td>
<td>496 [285–847]</td>
<td><0.001</td>
</tr>
<tr>
<td>6MWD, %pred</td>
<td>55.9 [31.8–62.3]*</td>
<td>80.0 [70.6–81.6]##</td>
<td>80.0 [73.3–82.2]*</td>
<td>93.3 [84.2–101.0]</td>
<td><0.001</td>
</tr>
<tr>
<td>qMVC, kg</td>
<td>12.6 [7.6–20.0]##</td>
<td>17.6 [14.0–22.2]*##</td>
<td>11.9 [10.5–18.0]*</td>
<td>26.6 [24.4–30.9]</td>
<td><0.001</td>
</tr>
<tr>
<td>Type I, %</td>
<td>26.0 ± 13.97*</td>
<td>39.8 ± 12.6*##</td>
<td>42.1 ± 11.0</td>
<td>47.5 ± 14.25</td>
<td><0.001</td>
</tr>
<tr>
<td>Fiber CSA, (\mu)m(^2)</td>
<td>3731 ± 1233*</td>
<td>5657 ± 1098*##</td>
<td>3212 ± 799*</td>
<td>5725 ± 1164*</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Results are expressed in means ± SD or median [interquartile range (IQR)]. \(*P < 0.05\) vs. cluster 4. \(#P < 0.05\) vs. cluster 1.
FFMI, fiber CSA, and increased oxidative stress, cluster 2 COPD patients showed a moderate fiber switch. Thus our study robustly demonstrates that the muscle heterogeneity is the translation of different phenotypes of the disease.

Clusters of COPD patients correspond to different disease’s phenotypes. If COPD patients with a reduction in their type I fiber proportion and without fiber atrophy have previously shown different attributes in previous studies (9, 10, 18, 34, 54), it cannot be considered as a proof of different disease’s phenotype. Indeed, a COPD phenotype is “a single or combination of disease attributes that describe differences between individuals with COPD as they relate to clinically meaningful outcomes [...]”. The ultimate goal of phenotyping in medicine is to allow the identification of patient groups with unique prognostic or therapeutic characteristics” (24). Our clusters of COPD patients match this definition, because they showed a different response to a therapeutic intervention (i.e., exercise training): cluster 1 atrophic COPD showed a greater improvement of their relative VO2sl, which was significantly correlated with their baseline VO2sl (r=-0.53; p=0.02) in 19 COPD patients (cluster 1: black, cluster 2: red) (C).

In addition, our clusters of COPD patients showed a different occurrence of clinically relevant outcomes: cluster 1 of COPD patients had more frequent hospitalizations and exacerbations. However, if no significant difference was detected...
after adjustment for FEV\(_1\) in the occurrence of exacerbations and hospital admissions because of a small sample size (\(n = 54\)), the observed FEV\(_1\)-adjusted hazard ratio for exacerbations is in agreement with the higher frequency of exacerbations in COPD patients with reduced muscle mass or strength (11). In addition, a higher risk of hospital admission in the phenotype COPD patients with the lowest FFMI has already been observed, independently of the FEV\(_1\) (18). More generally, in terms of BMI, FFMI, and/or muscle weakness, our cluster 1 of COPD patients match a “cachectic” COPD population already isolated in five previous studies (9, 10, 18, 54, 55), and prospectively validated in one of them (18).

A last observation argues for a difference of phenotypes, and not for a simple difference in the disease severity between groups. It was striking to note that the “cachectic” patients in cluster 1 (with body and fat-free mass loss) were not older than those in cluster 2 (60.4 ± 8.8 vs. 60.8 ± 9.0 yr; \(P = 0.87\)). Another study also showed that the most cachectic phenotype was the youngest (9). In a larger population of COPD patients (\(n = 121\)) recruited at the same time and place and on the basis of the same inclusion criteria as the COPD patients of the present study, we found no significant difference for the age at breathlessness onset or the age of diagnosis, between clusters 1 and 2 (47.5 ± 14.1 vs. 47.3 ± 13.6 yr, \(P = 0.97\); and 54.3 ± 11.3 vs. 52.3 ± 11.8 yr, \(P = 0.48\)). Then, assuming a similar age of disease onset, the disease course must have been more rapid in the “cachectic” patients of cluster 1 than in cluster 2. This hypothesis has been confirmed by the longitudinal study of FEV\(_1\) decline in COPD patients: the “rapid decliner” phenotype was the most cachectic, like our cluster 1 (37). Moreover, a longitudinal study of qMVC and FFMI also showed faster decline in the patients with the lowest muscle mass (27).

Last, oxidative stress has been shown to alter the decline in qMVC and FFMI also showed faster decline in the patients with the lowest muscle mass (27). Further, a longitudinal study of qMVC and FFMI also showed faster decline in the patients with the lowest muscle mass (27).

COPD patient clusters: different mechanisms in muscle? In our study, the COPD patients in cluster 1 showed fiber atrophy which was not observed in cluster 2 patients. We identified an increase in markers of plasma and muscle oxidative stress (protein oxidation) only in cluster 1. This specific increase in the atrophic fibers of cluster 1 COPD patients may indicate a specific mechanism leading to the fiber atrophy in cluster 1 COPD patients, adding more evidence that cluster 1 COPD constitutes a real COPD phenotype. Indeed, it is currently admitted that oxidative stress has deleterious effects on muscle/fiber mass in COPD (6, 7, 17, 40). In addition, in vitro studies have shown that increased protein oxidation directly results in the activation of the calpain-dependent proteolysis pathway (40, 47, 48) and the acceleration of myofibrillar degradation. An increased level of oxidative stress and activation of this pathway have been incriminated in various atrophy-related conditions (6, 48, 49), and the significant correlations between total protein and MHC carbonylation and fiber CSA observed in our study support that this mechanism has occurred in the

Table 4. Oxidative stress markers in clusters of subjects/patients

<table>
<thead>
<tr>
<th></th>
<th>Cluster 1</th>
<th>Cluster 2</th>
<th>Cluster 3</th>
<th>Cluster 4</th>
<th>(p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasma isoprostan</td>
<td>394.3 ± 57.1*</td>
<td>315.3 ± 88.1</td>
<td>295.9 ± 69.3</td>
<td>248.9 ± 72.7</td>
<td><0.05</td>
</tr>
<tr>
<td>Muscle protein carbonylation</td>
<td>131.5 [83.6–200.3]</td>
<td>83.0 [68.3–105.1]</td>
<td>103.7 [88.5–111.5]</td>
<td>91.8 [74.3–126]</td>
<td>0.12</td>
</tr>
<tr>
<td>Muscle oxidized MHC</td>
<td>117.5 [98.2–171.0]</td>
<td>53.2 [30.3–124.5]</td>
<td>51.3 [31.3–120.3]</td>
<td>54.5 [42.2–89.7]</td>
<td>0.07</td>
</tr>
<tr>
<td>trans-4-Hydroxy-2-nonenal (HNE)/GAPDH</td>
<td>1.160 ± 0.486</td>
<td>1.032 ± 0.246</td>
<td>1.151 ± 0.381</td>
<td>1.028 ± 0.217</td>
<td>0.727</td>
</tr>
<tr>
<td>MnSOD/GAPDH</td>
<td>2.10 ± 0.84</td>
<td>1.76 ± 0.97</td>
<td>1.67 ± 0.74</td>
<td>1.47 ± 0.51</td>
<td>0.455</td>
</tr>
<tr>
<td>Glutathione reductase/GAPDH</td>
<td>0.78 ± 0.49</td>
<td>0.96 ± 0.36</td>
<td>0.93 ± 0.34</td>
<td>0.92 ± 0.22</td>
<td>0.814</td>
</tr>
<tr>
<td>Catalase/GAPDH</td>
<td>59.9 ± 27.9</td>
<td>35.5 ± 17.1</td>
<td>43.9 ± 32.1</td>
<td>45.4 ± 34.9</td>
<td>0.188</td>
</tr>
</tbody>
</table>

Results are expressed in median [IQR]. MHC, myosin heavy chains; MnSOD, manganese superoxide dismutase; GAPDH, glyceraldehyde-3-phosphate dehydrogenase. *P < 0.05 in post hoc analysis.

Fig. 5. Total protein carbonylation levels correlations with muscle strength and fiber cross-sectional areas (CSA). Total protein carbonylation levels, expressed as percentage of the internal control, were inversely correlated with the quadriceps maximal voluntary contraction (\(r = −0.60; P < 0.01\)) in all COPD patients (cluster 1: black, cluster 2: red) (44); and total protein carbonylation levels, expressed as percentage of the internal control, were inversely correlated with the fiber cross-sectional area of the quadriceps (\(r = −0.64; P < 0.001\)) in all COPD patients (cluster 1: black, cluster 2: red) (44).
Muscle Histomorphology and Phenotypes in COPD • Gozzi F et al.

skeletal muscle of our COPD patients. Therefore, although we provide simple correlations and not a cause-effect relationship, cluster 1 COPD patients with fiber atrophy may have experienced a specific mechanism of accelerated oxidative stress-induced myofibrillar proteolysis (40). As “Phenotypes should exhibit [...] a similar underlying biologic or physiologic mechanism” (24), our results regarding oxidative stress markers argue also in favor of a phenotype grouping. Last, this observation appears relevant for the design of future studies exploring the mechanisms of the muscle atrophy in COPD. Indeed, our study showed that the combination of a poor lung function, a low exercise capacity, and a reduction of muscle mass or strength, rather than the use of a single parameter (4, 55), accurately isolated patients in which the specific processes leading to fiber atrophy are likely to occur.

Study critique. Our study was not designed to isolate all the potential phenotypes in COPD, because our aim was rather to test whether the fiber atrophy and type I fiber switch were the attributes of different phenotypes. Accordingly, the sampling size of our cluster analysis appears adequate (41) and consistent with previous published studies [number of subjects to the number of variables = 3.27 vs. 2.28 (18)]. However, the question of potential unidentified phenotypes can be addressed. Indeed, in contrast with our observations and the study of Garcia-Aymerich et al. (18), two COPD phenotypes with evidence of muscle atrophy (high prevalence of muscle weakness) have been isolated in the study of Burgel et al. (10). Nonetheless, increasing the sample size could have allowed the isolation of an additional phenotype. Yet, regarding the similar level of muscle weakness (indicating similar degree of muscle atrophy) in phenotypes 2 and 3 in the study of Burgel et al. (10), it is probable that other COPD phenotypes would have a similar muscle structure.

A second limitation is the missing data, in particular for the PA level assessment. If most of the healthy subject had objective accelerometry recordings (22/27), 25 of the 64 COPD patients had this objective assessment. However, several precautions have been taken in order to include sedentary healthy controls (accelerometry, Voorrips score, clinical interview, QUANTAP system), and in COPD patients, the VMU and Voorrips score were equally distributed between cluster 1 and cluster 2 of COPD patients (VMU, n = 12 vs. n = 13; and Voorrips score, n = 15 vs. n = 17).

In conclusion, we identified and validated two phenotypes of COPD patients differing in terms of muscle dysfunction and histomorphology, with a specific occurrence of fiber atrophy in one of them. Thus our study demonstrates that the muscle heterogeneity is the translation of different phenotypes of the disease. The increased level of muscle oxidative stress in the phenotype with fiber atrophy suggests a specific pathobiological mechanism. The definition of these phenotypes may improve the identification of COPD patients requiring specific muscle inter-ventions, as well as the identification of the cellular pathways involved in the muscle remodeling.

ACKNOWLEDGMENTS

We gratefully acknowledge A. Bouret and G. Hugon for technical support in the laboratory, all the team of “La Solane” and “La Vallonie” Pulmonary Rehabilitation Centers for their contribution to this work, and C. Stott, P. Pomiès, J. Maury and F. Bughin for critical reading of the manuscript. G. Caris and A. Suc are acknowledged for help with muscle biopsies.

GRANTS

This study was supported by joint grants from the CHRU Montpellier and the patient associations, APARD. Fr. Gozzi and A. Abdellaoui were supported by a “CIFRE grant” (Conventions Industrielles de Formation par la Recherche) from the Fontalvie Corporation, Toulouse, France, and the French “Ministère délégué à la recherche et aux nouvelles technologies”.

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the author(s).

AUTHOR CONTRIBUTIONS

REFERENCES

