responses and performance were mainly conducted in HH (7, 16, 28, 30). Nevertheless, it remains to be confirmed whether the benefits of training would be greater following training in HH compared with NH as suggested by the current literature (13). This assumption is supported by the results of a meta-analysis (4) in which a “terrestrial” LHTL protocol (i.e., HH) induced additional benefits in performance (estimated by change in power output) of 4.0% and 4.2% for elite and non-elite athletes vs. 0.6% and 1.4% with “artificial” LHTL (i.e., NH).

On the basis of the existing data relating to ventilatory responses, fluid balance, AMS severity, NO metabolism, and performance improvement in HH vs. NH, there is no doubt that hypobaric hypoxia induces different physiological responses from normobaric hypoxia. However, the main mechanisms remain unclear.

REFERENCES

Grégoire P, Millet 1

Raphael Faiss 1

1ISSUL Institute of Sport Sciences-Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Batiment Vidy, CH-1015, Lausanne, Switzerland

E-mail: gregoire.millet@unil.ch

Vincent Pialoux 2

2Centre de Recherche et d’Innovation sur le Sport, Université Claude Bernard, Lyon 1, France

COUNTERPOINT: HYPOBARIC HYPOXIA DOES NOT INDUCE DIFFERENT RESPONSES FROM NORMOBARIC HYPOXIA

Studies on hypoxia are performed by lowering ambient oxygen partial pressure (PO2) either by reducing the barometric pressure (hypobaric hypoxia) or by lowering the O2 fraction [normobaric hypoxia at the prevailing barometric pressure (Pb)]. Upon reflection we can see that many land-
mark studies including the Silver Hut expedition or the American medical research expedition to Everest (AMREE) were conducted at terrestrial high altitude (HA). However, simulated altitude has progressively replaced field experiments to a point where nowadays the majority of research is conducted in the laboratory environment. For a variety of reasons, ease of use being arguably the most important, most of these studies are conducted in normobaric hypoxia rather than hypobaric hypoxia. The counterargument by Millet et al. (9) supports the idea that the physiological responses induced by hypobaric or normobaric hypoxia are different, whereas this Counterpoint will present evidence arguing that these physiological responses are indeed equivalent.

Semantic considerations. The first remark we can make is semantic. Hypoxia is defined as a reduction in the amount of oxygen (O₂) available to any cell, tissue, or organism (21) and in that respect is independent of changes in PaO₂. Hypoxia can be either continuous or intermittent; continuous hypoxia being generally encountered during high altitude exposure, i.e., hypobaric hypoxia. On the other hand, intermittent or transient hypoxia as experienced under various clinical conditions, such as obstructive sleep apnea (OSA) or stroke, is always characterized by hypoxic/ischemic episode(s) irrespective of the ambient pressure. These two conditions also highlight the two extremes of the spectrum of hypoxic levels, OSA representing a systemic hypoxia whereas stroke is more local.

Interchangeability between normobaric and hypobaric hypoxia. The carotid bodies, located at the bifurcation between the internal and external carotid arteries, are oxygen sensors. As such, they respond to a wide range of arterial partial pressure of O₂ (PaO₂) available to any cell, tissue, or organism (21) and in that respect is independent of changes in PaO₂ (16, 17). Another unique feature is that they respond almost instantaneously to a drop in PaO₂. Because of this brisk response inducing an increase in inspired PO₂ is equivalent). Our group confirmed this observation over a 3-h normobaric hypoxic exposure (3,000 m) during which serum Epo concentration increased significantly (11). It is, however, noteworthy that the increase in Epo is also time dependent as highlighted by Pialoux et al. (15) who observed a progressive rise in plasma Epo from 2 to 12 h normobaric hypoxia exposure (end-tidal PO₂ held constant at 60 mmHg for all subjects) (15).

It’s all about oxygen sensing. It appears the human body has O₂ sensors located in different places not only restricted to the carotid bodies, leading to both acute and chronic adaptations. Indeed, all nucleated cells in the body can sense and potentially respond to different levels of PO₂ and induce physiological responses at different time scales. For instance, the kidneys are sensitive to a drop in PaO₂, but at much lower level of oxygen pressure than the carotid bodies because the PO₂ in the kidney can naturally be as low as 10 mmHg in the renal medulla (14). As previously discussed, the timeframe of the response is also different, inasmuch as erythropoiesis is much slower than the ventilatory response (days vs. seconds). The beauty of the system is such that the human body actually possesses O₂ sensors responding to a very wide range of changes in PO₂ with a different timeframe, allowing the body to cope with emergency situations as well as developing long-term strategies permitting life-long exposure in O₂-depleted environments. Indeed, under conditions of reduced oxygen pressure, HIF-1 regulates the expression of more than 70 genes mediating the adaptive responses beyond simply hematopoiesis (20). The organ-dependent (e.g., brain, kidney, liver, and heart) variation in HIF-1 expression at various levels of hypoxia has been elegantly reviewed by Stroka et al. (22). As our group recently demonstrated, this key adaptive protein is expressed in the leukocytes as well as in skeletal muscle during exposure to both acute (10, 11, 13, 15) and chronic normobaric hypoxia (11, 12).

To our knowledge, no studies in the literature have provided convincing arguments supporting the idea that the physiological or pathophysiological responses induced by chronic hypobaric or normobaric hypoxia are indeed different. As noted by Kupper et al. (7), the physiological differences between normobaric and hypobaric hypoxia are too small to be clinically relevant. Finally, no robust hypothesis could reasonably be
proposed to explain the putative physiological differences between these two modalities of hypoxia.

REFERENCES

Remi Mounier1
1Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Descartes, France
E-mail: Remi.mounier@inserm.fr
Julien V, Brugniaux2
2University of Glamorgan, HESAS/Division of Sport, Health & Exercise Science, Glyntaff Campus, Pontypridd, United Kingdom

REBUTTAL FROM MILLET, FAISS, AND PIALOUX

Mounier and Brugniaux began their Counterpoint (5) by defending the idea that hypobaric (HH) and normobaric (NH) hypoxia induced equivalent physiological responses and concluded that if differences did exist, they were too small to be clinically relevant. Regardless of the semantic considerations proposed by our opponents, we are convinced that differences exist between HH and NH (4).

We agree that oxygen sensing is an important key to altitude adaptations as it was highlighted by Brugniaux and Mounier (2), and we are in agreement with the pivotal importance of HIF-1α in these adaptations. Epo data drawn from the meta-analysis of Bonetti and Hopkins [(1) Fig. 1a] may suggest a higher response of Epo production in natural altitude than in normobaric artificial altitude. However, the number of studies analyzed (n = 11) was too low to conclude any difference between NH and HH. In addition, the very large intervariability in HIF-1α responses to hypoxia (6) suggests that only a protocol designed for a paired statistical analysis using perfectly matched high “hypoxic doses” may provide an answer regarding the different HIF-1α responses between HH and NH. A similar scientific approach may also be relevant to assess the differences between HH and NH individual susceptibility to acute mountain sickness (AMS). In fact, although the individual history in real altitude conditions remains the best predictor of AMS (8), different equations have been proposed for both HH and NH tests (7). This kind of protocol is also necessary to compare the efficiency of HH and NH for the preacclimatization treatment for AMS because there are not any internationally recognized “gold standard” protocols or recommendations. Because, for practical reasons, NH interventions will continue to be recommended in many circumstances, it is time to investigate beyond the “oxygen sensing” or “equivalent air altitude” (2) paradigms. This may prevent the reproduction of past errors done in the field of altitude physiology (10) because the physiological adaptations to hypoxia are very complex and not limited to a single function (3, 9). So, we encourage further investigations to better understand the clinical implications of the observed differences between HH and NH.

To conclude, we agree that the clinical evidence regarding the differences between HH and NH is still lacking in the field of medicine and sport performance. This may due to very large interindividual variability in the responses to hypoxia. Out of the few studies directly comparing HH vs. NH, none were