Supplementation with nitrate and nitrite salts in exercise: a word of caution

Jon O. Lundberg, Filip J. Larsen, and Eddie Weitzberg

Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden

Submitted 27 April 2011; accepted in final form 24 May 2011

TO THE EDITOR: Recent studies show that dietary supplementation with inorganic nitrate (NO$_3^-$) reduces whole body oxygen cost during physical exercise, an effect that might be used by endurance athletes in an attempt to increase stamina (1–3, 6, 7, 9–11). In the cited exercise studies, nitrate was taken in the form of a salt (e.g., sodium nitrate) or from a food source such as beetroot juice, which naturally contains high amounts of nitrate. Although the true performance-enhancing effects of nitrate are yet to be proven under actual competitive conditions, it is clear from internet forums, articles, and discussions within the sports community that the use of nitrate supplementation currently is spreading rapidly among athletes. Bioactivation of nitrate involves its initial metabolism to form the more reactive nitrite anion (NO$_2^-$), which may be further reduced to nitric oxide (NO) and other bioactive nitrogen species. Importantly, the dose of nitrate that reduces oxygen cost efficiently is in the range 300–500 mg and there is no evidence that higher doses would increase the effects further.

We wish to raise a word of caution regarding the uncontrolled use of nitrate and nitrite salts for performance-enhancing purposes. In particular, this warning relates to the intentional or unintentional use of nitrite. While nitrate is nontoxic even in higher doses, nitrite can cause serious harm already at considerably lower levels. In fact the reported LD$_{50}$ for oral nitrite (~100–200 mg/kg) is comparable to that of cyanide. Acute nitrite toxicity is a result of its rapid reaction with hemoglobin in blood, which may cause methemoglobinemia, a potentially life-threatening condition. In addition, nitrite in higher doses may cause hypotension, especially if combined with other vasodilatory drugs. A case of unintentional ingestion of nitrite by an athlete was recently reported on a runners’ internet forum. The subject had taken a nitrite salt before exercise in the belief that it was nitrate, and he developed symptoms suggestive of methemoglobinemia. Nitrate salt (salmeter) is used for food conservation purposes and is commonly sold in regular grocery stores, while nitrite salts are available from various internet sites. While direct ingestion of a nitrite salt is potentially hazardous, the use of nitrate from natural vegetable sources is clearly of much less concern in terms of safety. In fact the reported LD$_{50}$ for oral nitrate (~7750–7587 mg/kg) is considerably lower levels. In fact the reported LD$_{50}$ for oral nitrite (~100–200 mg/kg) is comparable to that of cyanide. Acute nitrite toxicity is a result of its rapid reaction with hemoglobin in blood, which may cause methemoglobinemia, a potentially life-threatening condition. In addition, nitrite in higher doses may cause hypotension, especially if combined with other vasodilatory drugs. A case of unintentional ingestion of nitrite by an athlete was recently reported on a runners’ internet forum. The subject had taken a nitrite salt before exercise in the belief that it was nitrate, and he developed symptoms suggestive of methemoglobinemia. Nitrate salt (salmeter) is used for food conservation purposes and is commonly sold in regular grocery stores, while nitrite salts are available from various internet sites. While direct ingestion of a nitrite salt is potentially hazardous, the use of nitrate from natural vegetable sources is clearly of much less concern in terms of safety.


