Exercise and arterial adaptation in humans: uncoupling localized and systemic effects

Nicola J. Rowley,1 Ellen A. Dawson,1 Gurpreet K. Birk,1 N. Timothy Cable,1 Keith George,1 Greg Whyte,1 Dick H. J. Thijsen,1,2 and Daniel J. Green1,3

1Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool, United Kingdom; 2Department of Physiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; and 3School of Sport Science, Exercise and Health, The University of Western Australia, Crawley, Western Australia, Australia

Submitted 23 November 2010; accepted in final form 18 February 2011

Rowley NJ, Dawson EA, Birk GK, Cable NT, George K, Whyte G, Thijsen DH, Green DJ. Exercise and arterial adaptation in humans: uncoupling localized and systemic effects. J Appl Physiol 110: 1190–1195, 2011. First published February 24, 2011; doi:10.1152/japplphysiol.01371.2010.—Previous studies have established effects of exercise training on arterial wall thickness, remodeling, and function in humans, but the extent to which these changes are locally or systemically mediated is unclear. We examined the brachial arteries of the dominant (D) and nondominant (ND) upper limbs of elite racquet sportsmen and compared them to those of matched healthy inactive controls. Carotid and superficial femoral artery responses were also assessed in both groups. High-resolution duplex ultrasound was used to examine resting diameter, wall thickness, peak diameter, and blood flow. We found larger resting arterial diameter in the preferred arm of the athletes (4.9 ± 0.5 mm) relative to their nonpreferred arm (4.3 ± 0.4 mm, P < 0.05) and both arms of the control subjects (D: 4.1 ± 0.4 mm; ND: 4.0 ± 0.4, P < 0.05). Similar limb-specific differences were also evident in brachial artery dilator capacity (5.5 ± 0.5 vs. 4.8 ± 0.4, 4.8 ± 0.6, and 4.8 ± 0.6 mm, respectively; P < 0.05) following glyceryl trinitrate administration and peak blood flow (1,118 ± 326 vs. 732 ± 320, 737 ± 219, and 698 ± 174 ml/min, respectively; P < 0.05) following ischemic handgrip exercise. In contrast, athletes demonstrated consistently lower wall thickness in carotid (509 ± 55 μm), brachial (D: 239 ± 100 μm; ND: 234 ± 133 μm), and femoral (D: 479 ± 38 μm; ND: 479 ± 42 μm) arteries compared with control subjects (carotid: 618 ± 74 μm; brachial D: 516 ± 100 μm; ND: 539 ± 129 μm; femoral D: 634 ± 155 μm; ND: 589 ± 112 μm; all P < 0.05 vs. athletes), with no differences between the limbs of either group. These data suggest that localized effects of exercise are evident in the remodeling of arterial size, whereas arterial wall thickness appears to be affected by systemic factors.

EXERCISE TRAINING IS ASSOCIATED with changes in the cross-sectional size of conduit and resistance arteries in humans (14, 44), especially when the training stimulus involves large muscle group dynamic exercise (3, 20, 24, 25, 45). However, training of small muscle groups is also associated with localized adaptation (12, 28, 42, 46), indicating that central or reflex mechanisms may not be obligatory. Indeed, recent studies suggest that localized episodic increases in shear stress, associated with repeated exercise bouts, may be an important stimulus to induce arterial adaptation (17, 46). However, exercise also involves changes in circulating factors, inflammation, and oxidative stress, as well as central hemodynamics, in particular, changes in blood and pulse pressure (10, 11, 41). Central or systemic reflex adaptations, which modulate vascular tone, may also occur following exercise training (7, 15, 29, 31).

Previous studies have examined the impact of localized vascular adaptations in response to exercise by comparing dominant vs. nondominant arms (13, 36) or the impact of unilateral exercise regimes (1, 12, 28, 37). However, to our knowledge, no previous study has examined the relative impacts of localized vs. systemic factors on arterial wall thickness and remodeling of diameter in response to chronic exercise training in humans. This is due, in part, to the difficulty in differentiating between the localized and systemic impacts of repeated exercise. In the present experiment, we measured wall thickness and artery diameters in the dominant and nondominant arms, and lower limbs, of elite level racquet sportsmen and healthy age-matched control subjects. Our rationale was that, if training has systemic, but not localized, effects on conduit arteries, then we would observe no difference between the preferred and nonpreferred upper limbs of elite racquet sportsmen, but differences between the athletes and relatively inactive matched controls. Conversely, if localized effects on the vasculature were apparent, then differences between the upper limbs should be evident in the racquet sportmen, but not between limbs in the controls. We hypothesize that the localized effect of training in the dominant limb of elite squash players would be associated with greater vascular adaptation in the dominant arm.

METHODS

Subjects

Thirteen (inter)national level male squash players from the United Kingdom, who had trained at elite levels for an average of 13 ± 5 yr (range 8–23 yr), and 16 healthy recreationally active age-matched controls were included in this study. The elite athletes played >2 yr at the (inter)national level and trained for >22 h/wk, with 80% being sport specific, including game play, unilateral racket handling, and shadowing skills. Control subjects participated in exercise training <3 h/wk at a recreational level. All participants were free from known cardiovascular disease, diabetes, insulin resistance, hypercholesterolemia, and hypertension. Subjects who smoked or those on medications of any type were excluded from the study. The study procedures were approved by the Ethics Committee of Liverpool John Moores University. Written, informed consent was gained from all participants before the experimental procedures.

Experimental Design

Participants reported to our laboratory on one occasion after fasting for 6 h, abstaining from alcohol and beverages containing caffeine.
Experimental Measurements

Conduit artery wall thickness. Participants rested in the supine position for at least 20 min. Heart rate and mean arterial pressure were determined twice using an automated sphygmomanometer (Dinamap; GE Pro 300V2, Tampa, FL). Three standardized probe angles (posterior, lateral, and anterolateral) were used to determine resting wall thickness and the diameter of the right carotid artery using a 10-MHz multifrequency linear array probe attached to a high-resolution ultrasound machine (T3000, Terason, Burlington, MA). The sonographer obtained a longitudinal B-mode image of the carotid artery 2 cm proximal to the carotid bifurcation. Recording was performed over a 10-s period. Settings were adjusted to focus on the far wall of the arterial lumen interface and the media adventitia. Wall thickness data were then collected from the brachial and superficial femoral arteries on the dominant and nondominant side using the same procedures as described above. For practical reasons, two planes of assessment were used for the peripheral arteries.

Hyperemic response to iEx. After recording of baseline brachial artery diameter and velocity for 1 min, cuffs were positioned proximally around the upper arms, above the imaged artery, and inflated to >200 mmHg for 5 min. During the middle 3 min, rhythmic isometric handgrip exercise was performed using a 3-kg weight at 30 contractions/min. Diameter and velocity recordings resumed 30 s before cuff deflation and continued for 3 min thereafter. The peak hyperemic forearm BF response to this stimulus in humans provides a valid and accepted index of resistance artery size or remodeling (32), which has proven to be observer independent and has been validated against phantoms (33, 34). Arterial responses to ischemia and GTN were calculated based on standardized algorithms applied to data that had undergone automated edge detection and wall tracking (2, 33, 34), in accordance with recent guidelines (43). Peak BF (ml/min) in response to the iEx stimulus, calculated from simultaneously acquired (at 20 Hz) diameter (cross-sectional area) and velocity data, was identified as the highest mean BF across a 10-s period during the first 30 s after cuff deflation. Peak diameter was identified by the maximal response to GTN (32).

Statistics

Statistical analyses were performed using SPSS 17.0 (SPSS, Chicago, IL) software. All data are reported as means (±SD), unless stated otherwise, while statistical significance was assumed at \(P < 0.05 \). We used a two-way ANOVA to examine differences between groups (‘group’: squash vs. controls), between sides (‘side’: dominant vs. nondominant), and whether there was an interaction between both variables (‘group × side’). When a significant interaction was observed, post hoc Student’s paired \(t \)-tests were used to examine differences. Assuming 80% power, an \(\alpha \) of 0.05, and a group size of at least 12 subjects, we were powered to detect a 2.0% difference in the peak dilator response between groups (50). Regarding the wall thickness, we were able to detect a 65-μm difference between subjects and a 95-μm difference between groups (33). Our power was logically higher to detect differences between the limbs in the athletes, given the diminished variability associated with such within-subject comparisons.

RESULTS

The elite athletes exhibited lower systolic blood pressure and heart rate and were taller, but were otherwise well matched for anthropometric and body composition features (Table 1).

Table 1. Subject anthropometric characteristics of elite squash players and age-matched control subjects

<table>
<thead>
<tr>
<th></th>
<th>Squash</th>
<th>Controls</th>
<th>(t)-Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, yr</td>
<td>22 ± 3</td>
<td>22 ± 2</td>
<td>NS</td>
</tr>
<tr>
<td>Systolic blood pressure, mmHg</td>
<td>122 ± 11</td>
<td>131 ± 12</td>
<td>(P < 0.05)</td>
</tr>
<tr>
<td>Diastolic blood pressure, mmHg</td>
<td>69 ± 5</td>
<td>68 ± 5</td>
<td>NS</td>
</tr>
<tr>
<td>Height, cm</td>
<td>182 ± 5</td>
<td>176 ± 6</td>
<td>(P < 0.01)</td>
</tr>
<tr>
<td>Weight, kg</td>
<td>76 ± 16</td>
<td>76 ± 8</td>
<td>NS</td>
</tr>
<tr>
<td>Body mass index, kg/m²</td>
<td>23.5 ± 1.8</td>
<td>24.9 ± 4.9</td>
<td>NS</td>
</tr>
<tr>
<td>Total body fat, %</td>
<td>12.9 ± 2.6</td>
<td>16.4 ± 8.6</td>
<td>NS</td>
</tr>
<tr>
<td>Total lean mass, kg</td>
<td>65 ± 6</td>
<td>61 ± 6</td>
<td>NS</td>
</tr>
<tr>
<td>Heart rate, beats/min</td>
<td>50 ± 11</td>
<td>63 ± 10</td>
<td>(P < 0.01)</td>
</tr>
</tbody>
</table>

Values are means ± SD; \(n = 13 \) squash players and \(n = 16 \) control subjects. The \(t \)-test refers to an unpaired \(t \)-test between squash players and controls. NS, nonsignificant.
Baseline arterial diameter and wall thickness. In squash players, brachial artery diameter was significantly larger in the dominant compared with the nondominant arm (Fig. 1, Table 3). No differences were found in wall thickness between upper limbs (Fig. 2, Table 3). In the lower limbs, a slightly, but significantly, larger diameter was evident in the superficial femoral artery of the nondominant leg. Wall thickness was not different between the lower limbs in these athletes (Table 3). No differences in brachial or superficial femoral artery diameter, wall thickness, or wall-to-lumen ratio were found between limbs in the controls (Table 3).

Peak hyperemic responses to iEx. Squash players demonstrated a significantly larger brachial artery peak BF in the brachial artery on the dominant side (Table 3). Peak BF was not different between the upper limbs of the control subjects.

Conduit artery dilator capacity responses. Brachial artery diameter was significantly larger in the brachial artery of the dominant vs. the nondominant forearm in squash players following administration of GTN. No differences between limbs were evident in controls (Table 3, Fig. 2C).

Comparisons Between Squash Players and Control Subjects

Baseline arterial diameter and wall thickness. Squash players possessed significantly greater arterial diameters in the brachial and superficial femoral arteries (Table 3). Wall thickness of all arteries was significantly lower in all arteries compared with controls. Consequently, wall-to-lumen ratio of the carotid, brachial, and superficial femoral arteries was significantly lower in squash players than controls (Table 3).

Peak hyperemic responses to iEx. Peak brachial BF was significantly higher in the dominant arm of squash players than their nondominant arm or in either limb of the controls (Table 3).

Conduit artery dilator capacity response. Brachial artery peak dilation in the dominant forearm in squash players was significantly higher compared with that in the controls (Table 3, Fig. 2C), but no difference was seen between nondominant limb arteries.

DISCUSSION

The major novel findings of this study pertain to the impact of local vs. systemic effects of exercise on conduit artery wall thickness in humans. We observed consistently lower wall thickness measures across carotid, brachial, and femoral arteries in the athletes vs. control subjects. However, brachial artery wall thickness did not differ between the preferred and nonpreferred upper limbs of the squash players. These data suggest, in contrast to the remodeling of lumen diameter data discussed below, that training affects artery wall thickness via a systemic rather than a localized mechanism.

Recent studies suggest that training does not typically impact on carotid artery thickness (30, 40), whereas it may influence femoral (5), brachial, and popliteal artery thickness (16, 26, 49). These studies have not been performed in athletes, and the observation that all arteries, including the carotid, were affected in our study may reflect the prolonged intensive nature of the training stimulus in our subjects. The impact of training on wall thickness has potentially important ramifications. From a physiological perspective, it is tempting to speculate that changes in wall thickness and lumen diameter may reflect adaptations consistent with the law of LaPlace, around normalization of wall stress, but this requires further empirical evidence.
Table 3. Brachial, superficial femoral, and carotid artery characteristics in the dominant and nondominant limbs of elite squash players and healthy matched control subjects

<table>
<thead>
<tr>
<th>Artery</th>
<th>Squash Dominant</th>
<th>Squash Nondominant</th>
<th>Controls Dominant</th>
<th>Controls Nondominant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brachial artery</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diameter, mm</td>
<td>4.9 ± 0.5</td>
<td>4.3 ± 0.4*</td>
<td>4.1 ± 0.4†</td>
<td>4.0 ± 0.4†</td>
</tr>
<tr>
<td>Wall thickness, μm</td>
<td>239 ± 100</td>
<td>234 ± 133</td>
<td>516 ± 100†</td>
<td>539 ± 129†</td>
</tr>
<tr>
<td>Wall-to-lumen ratio</td>
<td>0.05 ± 0.02</td>
<td>0.06 ± 0.03</td>
<td>0.12 ± 0.03†</td>
<td>0.13 ± 0.03†</td>
</tr>
<tr>
<td>Peak blood flow, ml/min</td>
<td>1,118 ± 326</td>
<td>732 ± 320*</td>
<td>737 ± 219†</td>
<td>698 ± 174</td>
</tr>
<tr>
<td>Superficial femoral artery</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diameter, mm</td>
<td>5.5 ± 0.5</td>
<td>4.8 ± 0.4*</td>
<td>4.8 ± 0.6†</td>
<td>4.8 ± 0.6</td>
</tr>
<tr>
<td>Wall thickness, μm</td>
<td>7.1 ± 0.7</td>
<td>7.3 ± 0.7*</td>
<td>6.5 ± 0.7†</td>
<td>6.4 ± 0.6†</td>
</tr>
<tr>
<td>Wall-to-lumen ratio</td>
<td>0.07 ± 0.01</td>
<td>0.07 ± 0.01</td>
<td>0.10 ± 0.02†</td>
<td>0.09 ± 0.02†</td>
</tr>
<tr>
<td>Carotid artery</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diameter, mm</td>
<td>6.7 ± 0.5</td>
<td></td>
<td>6.4 ± 0.6</td>
<td></td>
</tr>
<tr>
<td>Wall thickness, μm</td>
<td>509 ± 55</td>
<td></td>
<td>618 ± 74†</td>
<td></td>
</tr>
<tr>
<td>Wall-to-lumen ratio</td>
<td>0.08 ± 0.01</td>
<td></td>
<td>0.10 ± 0.02†</td>
<td></td>
</tr>
</tbody>
</table>

Values are means ± SD; *n = 13 squash players and n = 16 control subjects. *Significantly different from dominant at P < 0.05. †Significantly different from squash at P < 0.05. Peak blood flows were determined from the ischemic handgrip exercise test, according to previous descriptions (32). Peak diameters were determined from the glyceryl trinitrate test, as per Ref. 18.

We observed larger resting brachial arterial diameter in the preferred limb, compared with nonpreferred limb, of squash players. These differences were not evident in the matched control subjects. This suggests a localized impact on structural arterial enlargement. However, resting arterial diameter can be impacted by sympathetic tone, circulating hormones, and local paracrine effects and may be limited as an index of vascular structure. Our laboratory has previously demonstrated that responses to GTN induce near maximal dilation (32), which is less affected by such influences. Indeed, Haskell et al. (18) established that responses to GTN reveal differences in arterial caliber and dilator capacity between athletes and controls that are not always evident under resting conditions. Our observation, that the absolute brachial artery diameter following GTN administration in the dominant limb of squash players was significantly enlarged compared with the contralateral limb, and also both limbs of the controls, is novel, reinforces the baseline conduit diameter data and gives us confidence to conclude that training-induced arterial enlargement was evident as a result of a localized effect. This localized impact on arterial remodeling is also apparent in the downstream resistance vessels, as the peak reactive hyperemic BF response to iEx, an index of resistance vessel structural remodeling (32, 36) that is not related to sympathetic tone (36, 37, 39) or capillarization (4, 19, 27, 38), was also larger in the preferred forearm of squash players vs. their nonpreferred forearm or either arm of the controls.

The observation that exercise training is associated with conduit and resistance artery enlargement is not new, and data pertaining to this has recently been reviewed (15, 44). Regarding local vs. systemic effects in resistance arteries, we and others have previously reported evidence for such arterial remodeling in the preferred limbs of tennis players (13, 36). However, this is the first study, to our knowledge, that has observed differences between the impact of training on wall thickness vs. arterial lumen remodeling. Clinically, Folkow et al. (6) pointed out in the 1960’s that changes in wall-to-lumen ratio of peripheral arteries have implications for vascular hyperresponsiveness and “essential” hypertension. In addition, there is an established prognostic relationship between carotid wall thickness and the presence of subclinical atherosclerotic disease and future cardiovascular events (23). Our data suggest that exercise may have physiological and systemic effects on...
artery wall thickness and wall-to-lumen ratio that have potential clinical implications.

There are several possible mechanisms responsible for local and systemic effects on the vasculature in humans. The impact of exercise-mediated shear stress on vascular function (17, 46) and structure (21, 47, 48) is well established (8). Systemic effects may be mediated by circulating factors, inflammatory or oxidative stress changes, or other as yet unknown factors. It is also conceivable that exercise-related arterial or transmural pressure changes may be one factor that contributes to systemic arterial adaptation (22). Future studies, which specifically manipulate these factors, including arterial pressure (10, 11) and localized shear stress (46), should address specific mechanisms associated with local and systemic adaptations to exercise training in humans.

It is important to state, as a caveat, that we cannot discount the possibility of changes in the nonpreferred upper limb of athletes in terms of both local and systemic responses to whole body exercise. Indeed several studies have established the role of leg exercise in upper limb shear responses (9, 11, 35, 41). However, our findings suggest that any such changes must be threshold dependent in terms of inducing arterial diameter remodeling. Finally, we also cannot discount the possibility that other vasodilator stimuli, such as ischemic handgrip performed against higher loading, might have revealed quantitatively different results between limbs and subjects in this study.

In summary, we have provided evidence for systemic effects of exercise training or physical conditioning on arterial wall thickness and wall-to-lumen ratio that have potential clinical implications. Future studies should focus on the relative impact of different hemodynamic variables on arterial adaptation in humans.

GRANTS

N. J. Rowley is funded by Cardiac Risk in the Young UK. D. J. Green is supported by a grant from the Australian Research Council and the National Heart Foundation of Australia. D. H. J. Thijssen is financially supported by the Netherlands Heart Foundation (E. Dekker stipend).

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the author(s).

REFERENCES

29. Monahan KD, Dineno FA, Tanaka H, Clevenger CM, DeSouza CA, Seals DR. Regular aerobic exercise modulates age-associated declines in...

