Changes in DEs relative to the initial value were minimal for upper for lower extremity activities (e-mail: alenamudr@me.com).

**THE STABILIZING FUNCTION of the diaphragm has been studied by several authors who have demonstrated that diaphragmatic activity can assist with mechanical stabilization of the trunk along with concurrent maintenance of ventilation (2, 7, 9, 13–15, 29–31). The diaphragm contributes to postural control during trunk stabilization (9, 10) and voluntary limb movement (11). The diaphragm and abdominal muscles together create a hydraulic effect in the abdominal cavity, which assists spinal stabilization (6, 22, 27) by stiffening the lumbar spine through increased intra-abdominal pressure (10). Therefore, poor coordination of the diaphragm and abdominal muscles may result in compromised stability and dysfunction of the lumbar spine (25). The stability of spine, shoulder girdle, and pelvic girdle is established before execution of a postural task by a central mechanism of anticipatory postural adjustments (11), which occur independently from the respiratory activity of the diaphragm. Proper stabilization is critical for all dynamic activities ranging from simple functional tasks to skilled athletic maneuvers (32). Moreover, some studies suggest that coactivation between the diaphragm, abdominal muscles, and pelvic floor musculature is necessary to create the sensorimotor control that is of great clinical importance and is often lacking in conditions such as verteobrogenic disorders (12, 22).

Since 1995 advanced MRI technology (8) has been utilized to gain a better understanding of dynamic diaphragm function, specifically the relationship between the ventilatory and postural tasks of the diaphragm (3, 5, 18, 21–23, 27, 33, 35, 36). EMG (7, 9–11, 13, 15, 29, 30) and ultrasound imaging (17) have also provided significant data concerning the functional components necessary for optimal stabilization of the spine.

To our knowledge, previous studies have not clearly defined the stabilizing postural function of the diaphragm using dynamic MRI in combination with simultaneous spirometric recordings. Visualizing the diaphragm during tidal breathing alone and together with isometric contraction of upper and lower extremities (independent of respiration) can provide information concerning the diaphragmatic contributions to posture and respiration during different activities. Therefore, the purpose of this study was to perform a detailed analysis of normal diaphragmatic excursions in healthy subjects during postural and respiratory maneuvers (32). Moreover, some studies suggest that coactivation between the diaphragm, abdominal muscles, and pelvic floor musculature is necessary to create the sensorimotor control that is of great clinical importance and is often lacking in conditions such as verteobrogenic disorders (12, 22).

MATERIALS AND METHODS

Subjects

Thirty healthy subjects participated in this study: 5 men (17%) and 25 women (83%), with a mean age of 29.3 (range: 22.2–56.2) yr. The subjects did not have a history of pulmonary disease or any other chronic disease that would affect their respiratory function. Pulmonary function tests (PFT) performed were normal for all subjects: forced expiratory volume in 1 s (FEV1) = 105.3 ± 9.8% predicted, forced vital capacity (FVC) = 110.0 ± 12.1% predicted, FEV1/FVC = 99.0 ± 8.4% predicted. Average body mass index (BMI) of the subjects was 22.5 ± 2.6 kg/m².
Methods

This study was approved by the institutional ethical committee. All subjects were questioned to ensure that they met the inclusion criteria of the study. All testing procedures were thoroughly explained to the participants with a detailed description of the dynamic MRI and spirometry assessments. All subjects reported that they understood the test procedures and gave informed consent.

All subjects were evaluated by dynamic MRI with simultaneous spirometric recordings. All subjects fasted at least 4 h before each assessment procedure. Diaphragm activity, measured by movement of the diaphragm, was evaluated by dynamic MRI with subjects in the supine position with their heads supported 5 cm above the MRI plinth. Volumetric changes during the breathing cycle were recorded with a specially designed spirometer and specialized computer software. The subjects wore noseclips to prevent any air exchange through the nostrils. A mouthpiece connected to a pneumotachograph was placed in the subject’s mouth and the subjects were allowed to practice normal breathing through the mouthpiece. After the subjects were trained in normal breathing with the mouthpiece for 2 min, measurements were taken during tidal breathing (TB) at rest and again with isometric limb contractions of the upper and lower extremities. To ensure consistency during the testing procedures, the same physiotherapist performed all assessments. Data collection time was 20 s in each condition per subject to record standard MRI measurements together with the spirometric readings.

Diaphragm activity. Diaphragm activity was assessed under the following conditions.

1) TIDAL BREATHING (TB). The subject was in the supine position with the extremities relaxed along the torso. The subject was instructed to breathe normally. After the initial synchronization between spirometric and MRI recordings (see below), simultaneous synchronized spirometry and MRI recordings were taken.

2) ISOMETRIC FLEXION OF UPPER EXTREMITIES (UE). The starting position of the subject was supine with arms and legs relaxed with their arms resting along the torso. The subject was instructed to continue to breathe normally throughout the assessment. The physiotherapist placed their hands on the dorsal surface of the subject’s forearms while the subject’s arms remained at rest. The subject was then instructed to keep their elbows straight and push with both arms upward against therapist’s resistance applied distally on the subject’s forearms while the subject’s arms remained at rest. The subject was instructed to push upward with both lower extremities against the therapist’s resistance applied on the anterior aspect of the subject’s thighs performing an isometric contraction. The force production generated by the subjects corresponded to a grade 4 manual muscle test (19).

Measurements of diaphragm movement and spirometry readings were recorded throughout the 20-s data collection period.

MRI assessments. MRI scans were conducted in an open 0.23-T Siemens MRI scanner and processed with software version NUMARIS/4 syngo MR 2004A. The diaphragm was imaged in the sagittal plane with the subjects supine using a body coil, size L. The imaging plane was placed sagittally in the axial topogram directed paravertebrally to the right, midway between the vertebral body center and the edge of the thoracic wall. Slice thickness was 33 mm. The sequence was configured as follows: INSA (number of scan acquisitions), image matrix was 240 × 256 pixels, repetition time (TR) = 4.48 ms, echo time (TE) = 2.24 ms, flip angle (FA) = 90°, turbo spin echo (TSE), field of view (FOV) = 328 mm. Sequence duration was 20 s., with 77 images acquired at regular intervals, one image every 260 ms. Each subject had four markers (10 ml syringes of water) affixed to the skin surface and placed as follows: 1) midclavicular line at the level of the jugular opening; 2) inferior ventral costal margin, midclavicular line; 3) umbilicus; and 4) thoracolumbar junction in the dorsal axillary line.

MRI analysis of diaphragm movement. The MR image files were converted to Analyze format with MRImage software. In each 20-s sequence, for tidal breathing and postural activity conditions, the baseline position of the diaphragm was determined. The most caudal baseline position of the diaphragm was subtracted from the position of the other images in the sequence to determine the position changes of the diaphragm throughout the 20-s collection period. Figure 1A demonstrates the “crescent” shaped image of diaphragm excursion (DE) contrasting the most caudal and cranial diaphragm positions (DP) during tidal breathing.

The DE images were converted to binary images to calculate its area in pixels. The bottom edge of the DE represents the most caudal baseline DP during inspiration. The top edge of the DE represents the diaphragm in its most cranial position during expiration. Successive images with the next highest pixel count were analyzed in order as the excursion of the diaphragm changed during the breathing cycle.

The next analysis was completed on the subtracted maximal “crescent” area of each image where the horizontal, anterior-to-posterior (AP) alignment was calculated between the front and back markers placed on each subject’s body (Fig. 1B; the total AP distance was linked with the dotted line from point A to point E). The total
adj usted \(V_t \) measurements. The correlation between \(V_t \) and DEs was then calculated.

Synchronization of spirometric recordings and MRI sequence. The spirometric recordings were synchronized at the beginning of the 20-s MRI sequence within the initial 200–300 ms by an electronic marker imprinted simultaneously on both recordings. The individually marked spirometric recordings were converted to DICOM format and synchronized with the dynamic MRI sequence of diaphragm movement images. The synchronized progression of the trace volume-time spirometric curve and the corresponding diaphragm movement were monitored using DICOM Scanview software.

Pulmonary function tests. Spirometric recordings of pulmonary function tests (PFTs) were performed on the same day for all subjects with a MasterScope Jaeger spirometer (version 4.5, Jaeger, VIASYS, Wuerzburg, Germany) with a special module for the assessment of respiratory muscles. All subjects were properly instructed and coached by an experienced technician during all PFTs. Proper procedures for quality assurance based on the criteria of the American Thoracic Society (1) were used for these measurements. The following PFT parameters were measured: \(FEV_1 \), FVC, \(FEV_1/FVC \). PFT results are presented as percentages of the reference values.

Statistical analysis. The following statistical analysis was performed using Commercial software SPSS, ver. 15 (SPSS Headquarters, Chicago, IL): a general linear model with repeated measures was used with absolute inspiratory or expiratory positions of diaphragm as dependent variables.

Two within-subjects factors were considered: factor 1, condition, three levels (TB, UE, LE); factor 2, point, three levels (points B, C, D).

\(F \)-test with Greenhouse-Geisser correction for lack of sphericity for tests of within-subjects effects and subsequently conventional tests of specific within-subjects contrasts were done.

Furthermore, Kolmogorov-Smirnov test for normality, paired \(t \)-test, and assessment of Pearson correlation coefficient for DEs derived from MRI and tidal volumes were used. Two-tailed \(P \) value of \(<0.017\) was considered significant for tests of three coefficients based on the Bonferroni correction in which the \(P \) value of 0.05 was divided by the number of tests.

SD) vs. 4,487

(LE) is also higher compared with TB condition, i.e., 5,373
during tidal breathing with simultaneous postural activity of lower extremities (VT). Correction for the body surface area (BSA) was made in the

\[5,270 \pm 1,935 \text{ (mean \pm SD) mm}^2 \] vs. \(4,487 \pm 1,485 \text{ mm}^2 \) \((P < 0.01) \). DEs
during tidal breathing with simultaneous postural activity of lower extremities (LE) is also higher compared with TB condition, i.e., \(5,373 \pm 2,593 \text{ (mean \pm SD) mm}^2 \) vs. \(4,487 \pm 1,485 \text{ mm}^2 \) \((P < 0.02) \). \(*P < 0.02 \) vs. TB. ** \(P < 0.01 \) vs. TB.

horizontal distance was divided into six equal sections, demarcating five equidistant points with point C marking the midpoint of the line from point A to point E (Fig. 1B). The upper and lower edges of DE were determined at each of the three points B, C, and D. The distance at each point from the horizontal baseline was calculated to determine the difference in inspiratory position compared with the expiratory position of the diaphragm in mm \((\text{points } B_1, B_2 \text{ and } C_1, C_2, \text{ etc.}) \); respectively; see Fig. 1B). For statistical analysis on the acquired data, see Statistical analysis.

Synchronized spirometric recording. Spirometric measurements were obtained using the MasterScope Jaeger spirometer (version 4.67, Jaeger, VIASYS, Wuerzburg, Germany). Tidal volumes were recorded by a specially designed pneumotachograph with a plastic isoresistive membrane (Jaeger pneumotach, with guaranteed linearity of flow from 0.2 to 12 l/s). The isoresistive membrane allows for precise two-way measurements of airflow throughout the breathing cycle. The transmembrane pressure changes that occur during breathing were introduced into the spirometer by two 230-cm-long teflon tubes (ID 1.3 mm) with very low compliance. This allowed safe and reliable spirometric recording while in a strong magnetic field. A specialized reading and recording BreathRecorder software (J. Volejnik, Kurka-Jaeger Servis) was developed for the purposes of this study. The flow signal measuring trace volume was converted and digitally integrated using an analog-to-digital (A/D) converter and saved on hard disk. Before spirometric measurement every subject was familiarized to the mouthpiece in a supine position for a 2-min period; no recordings were performed during that time. The recording system was calibrated to each subject using a 1-liter calibration pump before data collection.

Processing of synchronized spirometric recordings. The spirometric data were processed using Software Grapher (J. Volejnik, Kurka-Jaeger Servis). From the 20 s of recorded data in each condition, four to seven respiratory cycles were used to calculate the tidal volume (\(V_t \)). Correction for the body surface area (BSA) was made in the...
RESULTS

1) Diaphragmatic Excursions (DEs)

DE measurements during tidal breathing (TB) with simultaneous postural activity of upper extremities (UE condition) were larger compared with the DE excursions during TB alone without postural activity. The mean ± SD in the UE condition was 5,270 ± 1,935 mm² vs. 4,487 ± 1,485 mm² for the TB condition (P < 0.01). DEs during the LE condition were also greater compared with the TB condition, 5,373 ± 2,593 mm² vs. 4,487 ± 1,485 mm² (P < 0.02) (Figs. 2 and 3).

2) Diaphragm Positions (DP)

Inspiratory diaphragm position. We have demonstrated a significant difference in the inspiratory position of the diaphragm between TB alone vs. both the UE and LE conditions (see Fig. 4 and Table 1). We have also found significant differences between the UE and LE conditions comparing TB during UE contractions and TB during LE contractions among points B vs. C, points C vs. D, as well as points B vs. D (see Table 2).

Expiratory diaphragm position. We did not find a significant difference in the expiratory diaphragm position between TB alone and the UE condition among points B, C, or D (Table 3). However, we did find a significant difference in the expiratory position of the diaphragm between TB alone and the LE condition among points B, C, and D. Marginal differences between the LE condition and the UE condition were also found among points B vs. C and B vs. D (see Fig. 5, Table 3) while no difference was found for C vs. D (see Fig. 5, Tables 3 and 4).

Table 1. Comparison of inspiratory diaphragm position (points B, C, and D) during TB, UE, and LE conditions and related differences among positions

<table>
<thead>
<tr>
<th>Point</th>
<th>TB</th>
<th>UE</th>
<th>LE</th>
<th>UE – TB</th>
<th>LE – TB</th>
<th>LE – UE</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>94.15</td>
<td>90.14</td>
<td>85.71</td>
<td>4.01</td>
<td>8.44</td>
<td>4.43</td>
</tr>
<tr>
<td>C</td>
<td>94.81</td>
<td>88.30</td>
<td>81.70</td>
<td>6.51</td>
<td>13.11</td>
<td>6.60</td>
</tr>
<tr>
<td>D</td>
<td>77.93</td>
<td>67.61</td>
<td>59.73</td>
<td>10.33</td>
<td>18.20</td>
<td>7.87</td>
</tr>
</tbody>
</table>

Values are in mm. TB, tidal breathing; UE, isometric flexion of upper extremities against external resistance with TB; LE, isometric flexion of lower extremities against external resistance with TB.

Table 2. Detailed comparisons of contributions of particular points B, C, and D to the inspiratory diaphragm position

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Comparisons Between Points</th>
<th>P <</th>
</tr>
</thead>
<tbody>
<tr>
<td>UE vs. TB</td>
<td>C vs. B</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>D vs. B</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>D vs. C</td>
<td>0.002</td>
</tr>
<tr>
<td>LE vs. TB</td>
<td>C vs. B</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td>D vs. B</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>D vs. C</td>
<td>0.003</td>
</tr>
<tr>
<td>LE vs. UE</td>
<td>C vs. B</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>D vs. B</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>D vs. C</td>
<td>NS</td>
</tr>
</tbody>
</table>

NS, not significant. For details, see Methods.

3) Relationships between DEs and Tidal Volumes

We did not find differences between DEs and tidal volumes in TB alone as well as the UE conditions. However, we found significantly lower values of tidal volume compared with DEs in the LE conditions (see Figs. 6 and 7).

Correlations between DEs and tidal volumes. The correlations among DEs (mm²) (derived from MRI) and spirometric values (ml) that were found are shown in Table 5.

DISCUSSION

The role of the abdominal muscles and the diaphragm in trunk stabilization has been under investigation for more than 50 years. However, the specific role of the diaphragm still remains poorly understood. As early as 1951, Wade and Gilson obtained dynamic imaging of diaphragmatic excursions under fluoroscopy simultaneously with spirometry readings. They initially concluded that the resting level of the diaphragm and the pattern of its movement must have been determined by the pressure differences between the abdominal and thoracic cavities (37).

Since 1997, when Hodges and colleagues (9) pointed to the importance of the postural function of the diaphragm, many authors have focused on the nonventilatory contributions of the diaphragm. Our study involved a comprehensive analysis of diaphragmatic function to provide findings with possible application to a variety of clinical conditions, such as subjects with severe vertebrogenic disorders (12, 22).

In the present study, we found that the diaphragmatic excursions (DE) in postural upper and lower limb activities enlarged significantly, and that the changes appeared to occur simultaneously in the upper and lower extremities, although the changes seemed more pronounced in the lower extremities.
These enlargements appear to be caused primarily by the decrease of the inspiratory diaphragm position, although changes of expiratory position in LE conditions also seem to contribute to the DE enlargement. An additional observation is that the diaphragm does not function as one cohesive unit, in which the entire diaphragm responds to ventilatory and postural demands equally. The area of the diaphragm where the most significant, experimentally induced changes in position occurred (i.e., those elicited during UE and LE maneuvers) is the apex (point C), representing the middle part of the diaphragm and crural or posterior portion (point D) of the diaphragm. It appears that individual sections of the diaphragm contribute differently to postural function based on the non-uniform changes seen at the designated points of the diaphragm. Finally, we have demonstrated that changes in DEs and tidal volumes (corrected for body surface area, Vt/BSA) are well correlated for all three experimental conditions used in this study. Surprisingly, only the LE condition revealed a significant difference between percentage increase of DEs and Vt (see Fig. 6).

Despite the contribution of especially Hodges’s group (7, 9–15, 29, 30) to the advancement of understanding the postural (complex) role of the diaphragm, which has been invaluable, the significant enlargement of the DEs in postural limb activities proved directly (by dynamic MRI) has not been previously reported. Other authors such as McKeough and coworkers (26) have also demonstrated the direct relationship between extremities proved directly (by dynamic MRI) has not been previously reported. We found that for postural function, individual sections of the diaphragm are involved differently (nonuniformly), i.e., the most prominent changes of diaphragm position induced during UE and LE maneuvers are at the apex (point C) and the posterior (crural) part (point D) of the diaphragm (Figs. 4 and 5). The observed contributions of particular points (points B, C, and D) to the resultant diaphragm motion (Tables 2 and 4) provide additional, most statistically stringent support for this proposition. The theory of nonuniform recruitment of costal and crural portions of the diaphragm (24) has been previously investigated and reconfirmed (8, 23, 33, 34). The idea that the diaphragm is a functionally dual system where costal and crural portions function mechanically in serial mode, but ventilatory (pneumatically) in parallel mode is confirmed in this study, too.

On the contrary, it is problematic to show if a diaphragm position per se might be argued as a measure for stabilizing function of diaphragm without diaphragm EMG and/or transdiaphragmatic pressure being measured. We already previously measured active diaphragm contractions (by dynamic MRI) during tidal breathing vs. Valsalva maneuver simultaneously with EMG and spirometric assessments (22); we proved that resultant diaphragm motions are caused by its active contraction.

Another point of discussion is the hydraulic effect created by the diaphragm and abdominal muscles that may assist in spinal stabilization. This concept has been repeatedly studied (6, 20, 22, 27) focusing on the coactivation and sensorimotor control between the diaphragm, abdominal muscles, and pelvic floor muscles, which is of great clinical importance. Recently, the

Table 3. Comparison of expiratory diaphragm position (points B, C, and D) during TB, UE, and LE conditions and related differences among positions

<table>
<thead>
<tr>
<th>Point</th>
<th>TB</th>
<th>UE</th>
<th>LE</th>
<th>UB – TB</th>
<th>LE – TB</th>
<th>LE – UE</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>119.14</td>
<td>119.80</td>
<td>116.54</td>
<td>0.66</td>
<td>2.59</td>
<td>3.25</td>
</tr>
<tr>
<td>C</td>
<td>127.76</td>
<td>127.57</td>
<td>122.06</td>
<td>0.19</td>
<td>5.70</td>
<td>5.51</td>
</tr>
<tr>
<td>D</td>
<td>118.19</td>
<td>116.16</td>
<td>108.99</td>
<td>2.03</td>
<td>9.19</td>
<td>7.17</td>
</tr>
</tbody>
</table>

Values are in mm.

(LE). These enlargements appear to be caused primarily by the decrease of the inspiratory diaphragm position, although changes of expiratory position in LE conditions also seem to contribute to the DE enlargement. An additional observation is that the diaphragm does not function as one cohesive unit, in which the entire diaphragm responds to ventilatory and postural demands equally. The area of the diaphragm where the most significant, experimentally induced changes in position occurred (i.e., those elicited during UE and LE maneuvers) is the apex (point C), representing the middle part of the diaphragm and crural or posterior portion (point D) of the diaphragm. It appears that individual sections of the diaphragm contribute differently to postural function based on the non-uniform changes seen at the designated points of the diaphragm. Finally, we have demonstrated that changes in DEs and tidal volumes (corrected for body surface area, Vt/BSA) are well correlated for all three experimental conditions used in this study. Surprisingly, only the LE condition revealed a significant difference between percentage increase of DEs and Vt (see Fig. 6).

Despite the contribution of especially Hodges’s group (7, 9–15, 29, 30) to the advancement of understanding the postural (complex) role of the diaphragm, which has been invaluable, the significant enlargement of the DEs in postural limb activities proved directly (by dynamic MRI) has not been previously reported. Other authors such as McKeough and coworkers (26) have also demonstrated the direct relationship between extremity activity and diaphragm function. McKeough reported that shoulder flexion in healthy adult subjects affects static lung activity and diaphragm function. McKeough reported that resultant diaphragm motion (Tables 2 and 4) provide additional, most statistically stringent support for this proposition. The theory of nonuniform recruitment of costal and crural portions of the diaphragm (24) has been previously investigated and reconfirmed (8, 23, 33, 34). The idea that the diaphragm is a functionally dual system where costal and crural portions function mechanically in serial mode, but ventilatory (pneumatically) in parallel mode is confirmed in this study, too.

On the contrary, it is problematic to show if a diaphragm position per se might be argued as a measure for stabilizing function of diaphragm without diaphragm EMG and/or transdiaphragmatic pressure being measured. We already previously measured active diaphragm contractions (by dynamic MRI) during tidal breathing vs. Valsalva maneuver simultaneously with EMG and spirometric assessments (22); we proved that resultant diaphragm motions are caused by its active contraction.

Another point of discussion is the hydraulic effect created by the diaphragm and abdominal muscles that may assist in spinal stabilization. This concept has been repeatedly studied (6, 20, 22, 27) focusing on the coactivation and sensorimotor control between the diaphragm, abdominal muscles, and pelvic floor muscles, which is of great clinical importance. Recently, the

Table 4. Detailed comparisons of contributions of particular points B, C, and D to the expiratory diaphragm position

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Comparisons Between Points</th>
<th>P <</th>
</tr>
</thead>
<tbody>
<tr>
<td>UE vs. TB</td>
<td>C vs. B</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>D vs. B</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>D vs. C</td>
<td>NS</td>
</tr>
<tr>
<td>LE vs. TB</td>
<td>C vs. B</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>D vs. B</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>D vs. C</td>
<td>0.01</td>
</tr>
<tr>
<td>LE vs. UE</td>
<td>C vs. B</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>D vs. B</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>D vs. C</td>
<td>NS</td>
</tr>
</tbody>
</table>

For details, see Methods.
central coordination of the diaphragm and abdominal muscles was experimentally verified (28) demonstrating that the activation of the diaphragm and some abdominal muscles is centrally mediated during stabilization of the trunk during respiration and postural activity. Elevated intra-abdominal pressure via contraction of the diaphragm substantially contributes to the stiffness and stability of the spine (10, 14, 27). On the contrary, limb function may be compromised as both respiratory and postural demands are placed on the diaphragm and other muscles involved during limb movement (12).

We found a significant difference between the percent increase of DEs and of VT where the changes in DEs vs. VT were reciprocal, a finding that we consider central in this study (see Fig. 7). Other studies that examined respiratory function have provided pertinent data concerning lung function without considering diaphragm function related to posture. While Iwasawa and coworkers measured only respiratory rate (18), Kondo (23) measured ventilation just during deep breathing with a pneumotachometer and an adapted differential pressure transducer. Also Chu’s group (3) measured lung volumes with MRI using a semiautomated computerized method for delineating the lungs and summing cross-sectional areas. We believe spirometric recordings in this study and also in our recent paper (22) obtained satisfactory data of volume-time parameters. Our methodological approach introduces new information for objectifying postural activity of the diaphragm seen in the significant differences between the postural demands of UE and LE conditions. We feel it is highly probable that differences in the order and location of diaphragm recruitment, in each of these conditions, is due to the postural requirements of UE and LE function.

Respiration plays a significant role in postural control; however, the postural demands of the activity performed can influence the function of the diaphragm. Consequently, sitting requires less instantaneous activation of postural mechanisms compared with standing (2) possibly due to exclusion of specific muscle groups needed for upright posture. Therefore, postural loading of the LEs most likely requires greater input from the postural mechanisms than the UE (11, 14). Therefore, postural activation during LE conditions, compared with tidal breathing, elicited not only diaphragmatic contractions, but also positional changes of lowering in both the inspiratory and expiratory position of the diaphragm regardless of tidal volume. Although the expiratory position of the diaphragm in the

| Condition | DE/BSA vs. VT/BSA | r | P <
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TB</td>
<td>0.61</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>UE</td>
<td>0.58</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>LE</td>
<td>0.57</td>
<td>0.001</td>
<td></td>
</tr>
</tbody>
</table>

DE, diaphragmatic excursion; VT, tidal volume, BSA, body surface area. For details, see Methods.
LE condition does not reach the expiratory position in the TB condition, the diaphragm during the LE maneuver does not relax fully and remains in higher tonic state of activity. We believe this may confirm that the diaphragm is critically involved in stabilizing the spine during postural activity. This is in agreement with a previous report (12), in which it was proven that the diaphragm and transversus abdominis (but not other abdominal muscles) continuously contribute to respiration and postural control. The combined tonic and phasic activity of these muscles represents important feedback for the central nervous system to coordinate respiration and control of the spine during limb movements (11, 12).

There are several limitations to this study. First, ideally, the entire rib cage including the whole range of DEs should be imaged. Due to the limited size of FOV (34) an isolated analysis of diaphragm was performed focusing on excursion. We agree DEs alone are not sufficient to understand all mechanical actions of the rib cage and related musculature including the diaphragm in terms of the multibody mechanical system theory (16). We have also limited the DE measurements to three points, which is similar to other authors and was sufficient for our study (34). We did not replicate the finding of Gierada’s (8) proposed “saddle shape” of the diaphragm during inspiration; nor did we detect “an upper rib cage paradox” demonstrated by coordinated contraction of the upper rib cage and diaphragm muscles (4).

Second, while the instructions for carrying out “an isometric flexion of extremities against therapist’s resistance” were identical for each subject, each participant has a different subjective ability to balance external pressure and/or resistance. Regardless of the space limitations with the subjects’ supine posture on the MRI floor, the individualized and properly balanced external pressure performed by the same therapist was sufficient to ensure that each subject received the same amount and direction of force. We followed standardized requirements of current MRI methodology to reduce variation in our future studies on diaphragm motion and function (3).

Third, the information about laterality of the diaphragm motion is equivocal. Similar to Suga et al. (33) we could not detect the previously reported finding of asymmetric excursions between hemidiaphragms (8, 34, 36).

Fourth, for final assessment of diaphragm motion we cannot exclude the effect of an intra-abdominal mass, especially in cases of central obesity. To ensure that the population of subjects was as uniform as possible, the mean BMI of our study subjects fell within the normal range.

Fifth, we cannot ignore the possibility of rib cage distortion during the experimental conditions. Macklem’s group, using a three-compartment chest wall model in five normal men during tidal breathing (20), first noted a passive expiratory action of abdominal-apposed rib cage compartment on the diaphragm. Despite testing their subjects in a seated position, the passive stretch of the abdominal muscles most likely exceeded the insertional transdiaphragmatic pressure. This suggests that passive stretching of the abdominal muscles is important in the prevention of rib cage distortion during tidal breathing (20). We did not consider the changes in rib cage geometry that may have resulted from the passive stretch of the abdominal muscles.

Future studies should, first, examine the relationships between the diaphragm, abdominal, and pelvic floor muscles, regarding their functional and neuromuscular coactivation, especially with respect to their stabilizing function of the spine (11, 22). Second, these studies should investigate the relationships between diaphragm contraction, intra-abdominal pressure, and limb contraction both in supine, upright, as well as side-lying positions. Third, the studies should investigate whether the rate of flattening and diaphragmatic contour during postural activity is different in patients who have objective clinical findings indicating nonphysiological overload of the spine, e.g., due to dysfunctional muscle coordination. Fourth, studies should investigate relationships between diaphragm contraction shapes (i.e., quantity and/or quality) during postural activities in subjects with severe vertebrogenic disorders.

Conclusion. A dynamic MRI study with synchronous ventilation measurement during postural upper and lower limb activities provided more detailed information on diaphragmatic motion. Inspiratory diaphragm position (DP) in both isometric postural limb activities is significantly lower compared with that of tidal breathing. Expiratory DP reached a significantly lower level only if the lower extremities were recruited. The apex and crural regions of the diaphragm predominantly contribute to the resultant diaphragm position. Comparisons between percent change of diaphragmatic excursions and tidal volumes in both isometric limb activities might contribute to the concept of the postural function of the diaphragm. These findings might have great significance for assessment of diaphragm behavior in clinical situations such as vertebrogenic disorders.

GRANTS

This study was supported by the Foundation “Movement Without Help,” Prague, Czech Republic.

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the author(s).

REFERENCES

