Exercise training reverses age-related decrements in endothelium-dependent dilation in skeletal muscle feed arteries

Daniel W. Trott, Filiz Gunduz, M. Harold Laughlin, and Christopher R. Woodman

Department of Health and Kinesiology and Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas; and Department of Biomedical Sciences, University of Missouri, Columbia, Missouri

Submitted 15 September 2008; accepted in final form 16 March 2009

Exercise training reverses age-related decrements in endothelium-dependent dilation in skeletal muscle feed arteries. J Appl Physiol 106: 1925–1934, 2009. First published March 19, 2009; doi:10.1152/japplphysiol.91232.2008.—We tested two hypotheses, first that exercise training reverses age-related decrements in endothelium-dependent dilation in soleus muscle feed arteries and second that this improved endothelium-dependent dilation is the result of increased nitric oxide (NO) bioavailability due to increased content and phosphorylation of endothelial NO synthase (eNOS) and/or increased antioxidant enzyme content. Young (2 mo) and old (22 mo) male Fischer 344 rats were exercise trained (Ex) or remained sedentary (Sed) for 10–12 wk, yielding four groups of rats: 1) young Sed (4–5 mo), 2) young Ex (4–5 mo), 3) old Sed (24–25 mo), and 4) old Ex (24–25 mo). Soleus muscle feed arteries (SFA) were isolated and cannulated with two glass micropettes for examination of endothelium-dependent dilation (ACH) and endothelium-independent [sodium nitroprusside (SNP)] vasodilator function. To determine the mechanism(s) by which exercise affected dilator responses, ACh-induced dilation was assessed in the presence of Nω-nitro-L-arginine (L-NNA; to inhibit NO synthase), indomethacin (Indo; to inhibit cyclooxygenase), and L-NNA + Indo. Results indicated that ACh-induced dilation was blunted in old Sed SFA relative to young Sed SFA. Exercise training improved ACh-induced dilation in old SFA such that vasodilator responses in old Ex SFA were similar to young Sed and young Ex SFA. Addition of L-NNA, or L-NNA + Indo, abolished the exercise effect. Immunoblot analysis revealed that extracellular superoxide dismutase (SOD) protein content was increased by training in old SFA, whereas eNOS and SOD-1 protein content were not altered. Addition of exogenous SOD, or SOD + catalase, improved ACh-induced dilation in old Sed SFA such that vasodilator responses were similar to young Sed SFA. Addition of L-NNA abolished the effect of exogenous SOD in old Sed arteries. Collectively, these results indicate that exercise training reverses age-induced endothelial dysfunction in SFA by increasing NO bioavailability and that increases in vascular antioxidant capacity may play an integral role in the improvement in endothelial function.

endothelium-dependent dilation is not fully understood; however, previously published studies indicate that a decline in the bioavailability of nitric oxide (NO) plays an integral role (1, 5, 6, 29, 44, 54).

Endurance exercise training improves endothelium-dependent dilation in some conduit arteries in young healthy subjects (7, 22, 28, 30, 32, 42, 43) and in skeletal muscle arterioles/resistance arteries (24, 27, 39, 40). Importantly, examination of the effects of training in the arteriolar tree of skeletal muscle indicates that the improvement in endothelium-dependent dilation induced by exercise training is not uniformly distributed throughout the arteriolar tree (24, 27). The beneficial effect of exercise training has also been reported to be associated with increased expression of endothelial nitric oxide synthase (eNOS) (23, 38, 52), enhanced production of NO (31), and improved NO-mediated, endothelium-dependent dilation (30). In addition, exercise training has been reported to increase expression of cytosolic and extracellular superoxide dismutases (SOD-1 and ecSOD) in the aorta of mice and pigs, which may improve endothelial function by enhancing the capacity to scavenge superoxide and prolonging the biological half-life of NO (15, 36).

Previous studies indicate that endurance exercise training is also an effective intervention for attenuating or reversing age-induced endothelial dysfunction in first-order (1A) arterioles perfusing skeletal muscle (39, 40). Specifically, Spier et al. reported that endurance exercise training improves endothelium-dependent vasodilator responses in 1A arterioles from soleus and gastrocnemius muscles of aged rats, and that the improved endothelium-dependent dilation was mediated by enhanced NO bioavailability (39, 40). In addition, exercise training appears to enhance antioxidant status and improve endothelium-dependent dilation in conduit arteries of aged human subjects (8, 12, 14).

In skeletal muscle it has been established that a primary control point for regulating total muscle blood flow during exercise is the feed artery (50). Indeed, previous research indicates that feed arteries, which lie immediately external to skeletal muscle, provide the principal site of resistance to flow through individual skeletal muscles and play an integral role in mediating increases in skeletal muscle blood flow during physical activity (21, 50, 51). Thus an exercise training-induced improvement in vasodilator responses in skeletal muscle feed arteries could potentially work in concert with enhanced endothelial function previously reported in skeletal muscle arterioles (39, 40) by increasing the capacity to augment total muscle blood flow (feed arteries) and the ability to redistribute the augmented blood flow (arterioles) to active skeletal muscle fibers. Given that exercise in young animals has been shown to exert changes in endothelium-dependent dilation in the resis-
Exercis, endothelium-dependent dilation, and aging

The exercise training protocol used in the present study has been published previously in detail (39). In brief, rats were familiarized with running on a motorized treadmill and randomly assigned to an Ex or Sed group for 10–12 wk. Rats assigned to the Ex group ran 60 min/day, 5 days/wk, at 15 m/min (15° inclination). Rats assigned to the Sed group were restricted to their cages and did not exercise. The efficacy of the exercise-training protocol was assessed from measurements of citrate synthase activity in the vastus lateralis muscle (41).

Isolation of Feed Arteries

Procedures used to isolate SFA have been published previously (53–56). In brief, rats were anesthetized with an intraperitoneal injection of pentobarbital sodium (50–60 mg/kg body wt ip). Soleus muscles from the left and right hindlimb were removed and placed in MOPS-buffered physiological saline solution (PSS) containing (in mM) 145.0 NaCl, 4.7 KCl, 2.0 CaCl₂, 1.17 MgSO₄, 1.2 Na₂HPO₄, 5.0 glucose, 2.0 pyruvate, 0.02 EDTA, 25.0 MOPS, at pH 7.4. SFA from the contralateral hindlimb were dissected free, transferred to a microcentrifuge tube, snap-frozen, and stored at −80°C for subsequent immunoblot analysis.

Preparation of arteries. SFA were prepared for functional analysis as described previously (19, 42). Specifically, arteries were cannulated with two resistance-matched glass micropipettes and secured with 11-0 surgical silk. The micropipettes were subsequently attached to separate pressure reservoirs filled with MOPS-PSS supplemented with albumin (1 g/100 ml). The height of each reservoir was initially adjusted to set intraluminal pressure in each SFA to 60 cmH₂O (1 mmHg = 1.36 cm H₂O) for 20 min. After 20 min, intraluminal pressure was raised to 90 cmH₂O, and the feed arteries were allowed to equilibrate for an additional 40 min at 37°C. At the end of the 60-min equilibration period, feed arteries that did not develop at least 25% spontaneous tone were constricted with phenylephrine. All experimental protocols were subsequently conducted at an intraluminal pressure of 90 cmH₂O to approximate in vivo intraluminal pressure (50).

Endothelium-dependent dilation. Endothelium-dependent dilation was assessed in feed arteries by adding increasing doses of ACh to the bath solution in cumulative doses over the range of 10⁻⁹–10⁻⁴ M in whole log increments as described previously (19, 53, 54). A total of 4 SFA were studied in parallel from each rat. In SFA 1, ACh-induced vasodilator responses were assessed in the absence of enzyme inhibitors. In SFA 2, vasodilator responses were assessed in the presence of 1-NNa (300 μM) to inhibit NOS. In SFA 3, vasodilator responses were assessed in the presence of Indo (5 μM) to inhibit COX. In SFA 4, vasodilator responses were assessed in the presence of 1-NNa + Indo to inhibit NOS and COX.

In a separate series of experiments, endothelium-dependent dilation was assessed in SFA from young Sed and old Sed rats in the absence and presence of exogenous antioxidants. In these studies, a total of 3 SFA were studied in parallel from each rat. In SFA 1, ACh-induced vasodilator responses were assessed in the absence of exogenous antioxidants. In SFA 2, vasodilator responses were assessed in the presence of superoxide dismutase (SOD; 120 U/ml) to scavenge superoxide. In SFA 3, vasodilator responses were assessed in the presence SOD and catalase (CAT; 100 U/ml) to scavenge superoxide and hydrogen peroxide. When results revealed that endogenous antioxidants improved endothelium-dependent dilation, a subsequent series of experiments was performed to determine whether NO mediated the improvement in endothelial function. In these studies, SFA were studied in parallel from each rat. In SFA 1, ACh-induced vasodilator responses were assessed in the absence of exogenous antioxidants. In SFA 2, vasodilator responses were assessed in the presence of SOD.
In SFA, vasodilator responses were assessed in the presence of SOD and l-NNA.

Endothelium-independent dilation. Endothelium-independent dilation was assessed by adding increasing doses of sodium nitroprusside (SNP) to the bath solution in cumulative doses over the range of 10^{-9}–10^{-4} M in whole log increments (19, 53, 54). SNP-induced dilation was also assessed in SFA from young and old Sed rats in the presence of SOD, SOD + CAT, and SOD + l-NNA.

Passive diameter. At the end of each experiment, SFA were incubated for 30 min in Ca$^{2+}$-free PSS to determine passive diameter at an intraluminal pressure of 90 cmH$_2$O.

Solutions and Drugs

All reagents used in dose-response experiments were obtained from Sigma Chemical (St. Louis, MO). Reagents were prepared on the day of the experiment.

Quantification of eNOS, Ser1177 p-eNOS, SOD-1, and ecSOD protein Content

Relative differences in eNOS, Ser1177 p-eNOS, SOD-1, and ecSOD protein contents were assessed in feed arteries using immunoblot analysis as described previously in detail (19). eNOS protein content was evaluated with a monoclonal antibody (1:1,250; catalog no. 610297, BD Transduction Laboratories). Ser1177 p-eNOS protein content was assessed with a monoclonal antibody (1:250; catalog no. 612393, BD Transduction Laboratories). SOD-1 protein content was assessed with a polyclonal antibody (1:1,300; catalog no. SOD-100, Stressgen). ecSOD protein content was assessed with a polyclonal antibody (1:1,000; catalog no. SOD-105, Stressgen). Immunoblots were evaluated by enhanced chemiluminescence (ECL, Amershams) and densitometry by using a LAS-3000 Luminescent Image Analyzer and Multi-Gauge Image Analysis Software (FUJIFILM Medical Systems). All protein data were expressed relative to GAPDH to control for small differences in protein loading. GAPDH protein content was assessed with a monoclonal antibody (1:10,000; catalog no. AB374, Millipore). To determine whether the ratio of Ser1177 p-eNOS to total eNOS protein content was altered with aging or exercise training, immunoblots were probed with the Ser1177 p-eNOS antibody, stripped with Restore Western Blot Stripping Buffer (Thermo catalog no. 21059), and reprobed with the eNOS antibody.

Statistical Analysis

All values are means ± SE. Between-group differences in body mass, citrate synthase activity, percent tone, relative protein content, and passive diameter were assessed using one-way ANOVA. Concentration-response curves were analyzed by two-way ANOVA with repeated measures on one factor (dose) to determine whether vasodilator responses to ACh and SNP differed by group. In addition, between-group differences in IC$_{50}$ values and maximal responses were assessed with one-way ANOVA. Concentration-response data were expressed as a percentage of maximal possible dilation. Percent possible dilation was calculated as $[\frac{(D_{dose}-D_{b})(D_{b}-D_{0})}{100}]$, where D_{dose} is measured diameter for a given dose, D_{b} is baseline diameter before an intervention was started, and D_{0} is maximal passive diameter. A total of 230 SFA were used in experiments to assess vasodilator function. Fifteen young (8 Sed; 7 Ex) and 21 old (11 Sed; 10 Ex) SFA required phenylephrine to achieve 25% tone. Deletion of these arteries from the statistical analyses did not alter interpretation of the results; therefore, all 230 SFA were included in the final analyses. When a significant F value was obtained, post hoc analyses were performed with Duncan’s multiple-range test and Fisher’s least significant difference (LSD) test. Statistical significance was set at the $P \leq 0.05$ probability level.

RESULTS

Characteristics of rats and SFA

Skeletal muscle citrate synthase activity was increased by training in young and old rats, confirming the efficacy of the exercise training program (Table 1). Body weight of old Sed rats was significantly greater than young Sed rats (Table 1). Exercise training lowered body weight in the old rats such that the body weight of the old Ex rats was not significantly different from young Sed or young Ex rats. Maximal passive diameter was similar in all groups of arteries (Tables 2 and 3).

Table 1. Body weight and citrate synthase activity in the vastus lateralis red muscle

<table>
<thead>
<tr>
<th></th>
<th>Young Sed</th>
<th>Young Ex</th>
<th>Old Sed</th>
<th>Old Ex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body weight, g</td>
<td>391±9</td>
<td>353±8</td>
<td>425±12</td>
<td>402±12</td>
</tr>
<tr>
<td>Citrate synthase activity; μmol·min$^{-1}$·g wet wt$^{-1}$</td>
<td>29.9±0.7</td>
<td>39.7±3.7</td>
<td>25.6±1.8</td>
<td>38.7±3.0</td>
</tr>
</tbody>
</table>

Values are means ± SE; $n = 8–10$ rats/group. Sed, sedentary; Ex, exercise trained. Significantly different from *young Sed, #young Ex, †old Sed, ‡old Ex, $P \leq 0.05$.

ACh-Induced Dilation

ACh-induced dilation was significantly blunted in the old Sed arteries relative to the young Sed SFA (Fig. 1). Ex improved ACh-induced dilation in old (not young, $P = 0.21$) SFA, such that ACh-induced dilation was significantly greater in old Ex SFA than in old Sed SFA (Fig. 1). In addition, ACh-induced dilation of old Ex SFA was not different from that of young Sed and young Ex SFA (Fig. 1).

ACh-induced dilation was inhibited by l-NNA (Fig. 2) and l-NNA + Indo (Fig. 3) in young Sed, young Ex, and old Ex arteries. In contrast, ACh-induced dilation was not significantly inhibited by l-NNA (Fig. 2) or l-NNA + Indo (Fig. 3) in old Sed arteries. In the presence of l-NNA, or l-NNA + Indo, ACh-induced dilation of old Ex SFA was no longer greater than that of old Sed SFA (Figs. 2 and 3). ACh-induced dilation was not significantly inhibited by Indo alone in any group of arteries (data not shown). Alterations in the response to the maximal dose of ACh (10^{-4} M) followed a similar pattern to the alterations observed in the dose-response curves. Sensitivity (IC$_{50}$) to ACh was not altered by age, training status, or treatment (Table 4).

To determine if exogenous antioxidants restore ACh-induced dilation in a manner similar to exercise, experiments were carried out in the absence and presence of SOD or CAT. In the absence of antioxidants, the response to ACh was significantly attenuated in the old Sed SFA compared with the young Sed SFA ($P = 0.003$) (Fig. 4). SOD, and SOD + CAT, significantly improved ACh-induced dilation in old Sed SFA (Fig. 4). SOD improved ACh-induced dilation in old Sed SFA such that the dilator response was greater than that seen in young Sed SFA, while addition of SOD + CAT improved dilation in old Sed SFA to the extent that dilation was comparable to young Sed SFA (Fig. 4). In young Sed SFA, addition of SOD, or SOD + CAT, did not alter the ACh dose-response curve (Fig. 4). In old Sed SFA, the SOD-induced improvement in ACh-induced dilation was abolished in the presence of SOD + l-NNA (Fig. 5). In young Sed,
SOD + L-NNA tended (P = 0.12) to inhibit ACh-induced dilation (Fig. 5) and significantly attenuated sensitivity (IC50) to ACh (Table 5).

SNP-Induced Dilation

SNP elicited a concentration-dependent dilation of all arteries. Statistical analysis revealed no significant between-group differences (data not shown).

eNOS, Ser1177 p-eNOS, SOD-1, and ecSOD Protein Content

Immunoblot analysis revealed that eNOS (Fig. 6A), Ser1177 p-eNOS (Fig. 6B), and SOD-1 (Fig. 7A) protein contents were not significantly altered by age or exercise training. The Ser1177 p-eNOS-to-total eNOS protein content ratio was also not altered by age or training status (Fig. 6C). In contrast, ecSOD protein content was significantly increased by exercise training in young and old SFA such that ecSOD content was greater in young Ex and old Ex arteries than in young Sed and old Sed arteries (Fig. 7B).

DISCUSSION

The purpose of this study was to test the hypothesis that exercise training reverses age-related decrements in endothelium-dependent dilation in SFA by increasing NO bioavailability due to increased content and phosphorylation of eNOS and/or increased antioxidant enzyme content. The primary new findings of this study are that: 1) exercise training improved ACh-induced dilation in old SFA such that vasodilator responses in old Ex SFA were similar to young Sed and young

![Fig. 1. Values are means ± SE; n = 8–10 rats/group. ACh-induced dilation in soleus muscle feed arteries (SFA). Sed, sedentary; Ex, exercise trained; B, baseline diameter before the 1st dose of ACh. Dose-response curve statistically different from: Young Sed, Young Ex, and Old Ex, P ≤ 0.05.](http://jap.physiology.org/)

Table 2. Characteristics of soleus muscle feed arteries from young and old rats used in the exercise training study

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Con</th>
<th>L-NNA</th>
<th>Indo</th>
<th>L-NNA + Indo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximal diameter, µm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Young Sed</td>
<td>190±6</td>
<td>192±6</td>
<td>190±6</td>
<td>190±6</td>
</tr>
<tr>
<td>Young Ex</td>
<td>190±6</td>
<td>192±6</td>
<td>190±6</td>
<td>190±6</td>
</tr>
<tr>
<td>Old Sed</td>
<td>170±8</td>
<td>173±8</td>
<td>174±8</td>
<td>174±8</td>
</tr>
<tr>
<td>Old Ex</td>
<td>200±10</td>
<td>194±8</td>
<td>171±11</td>
<td>171±10</td>
</tr>
<tr>
<td>Initial tone, %</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Young Sed</td>
<td>48±2</td>
<td>73±2</td>
<td>53±2</td>
<td>57±2</td>
</tr>
<tr>
<td>Young Ex</td>
<td>40±2</td>
<td>60±2</td>
<td>54±2</td>
<td>54±2</td>
</tr>
<tr>
<td>Old Sed</td>
<td>41±2</td>
<td>65±2</td>
<td>32±2</td>
<td>45±2</td>
</tr>
<tr>
<td>Old Ex</td>
<td>44±2</td>
<td>55±2</td>
<td>33±2</td>
<td>44±2</td>
</tr>
</tbody>
</table>

Values are means ± SE; n = 6–21 rats/group. Con, control; L-NNA, Nω-nitro-L-arginine; Indo, indomethacin. Significantly different from: Young Sed, Young Ex, and Old Ex, P ≤ 0.05.

Table 3. Characteristics of soleus muscle feed arteries from young and old rats used in the antioxidant studies

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Con</th>
<th>SOD</th>
<th>SOD + CAT</th>
<th>SOD + L-NNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximal diameter, µm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Young</td>
<td>178±4</td>
<td>178±4</td>
<td>172±4</td>
<td>172±4</td>
</tr>
<tr>
<td>Old</td>
<td>182±3</td>
<td>181±3</td>
<td>175±3</td>
<td>175±3</td>
</tr>
<tr>
<td>Initial tone, %</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Young</td>
<td>32±2</td>
<td>32±2</td>
<td>32±2</td>
<td>32±2</td>
</tr>
<tr>
<td>Old</td>
<td>34±2</td>
<td>34±2</td>
<td>34±2</td>
<td>34±2</td>
</tr>
</tbody>
</table>

Values are means ± SE; n = 6–21 rats/group. SOD, superoxide dismutase; CAT, catalase.
Also, previous studies indicate that exercise training attenuates the detrimental effects of aging on endothelium-dependent dilation of skeletal muscle 1A arterioles (39, 40). Present results indicate that Ex improved ACh-induced dilation in old SFA such that vasodilator responses in old Ex SFA were similar to young Sed and young Ex SFA (Fig. 1). The exercise-induced improvement in endothelial function in SFA may be functionally significant given that feed arteries serve as the primary control point for regulating total muscle blood flow to soleus muscle at rest and during exercise (50). In addition to enhancing NO-mediated dilation in aged skeletal muscle arterioles, exercise training has also been shown to attenuate vasoconstrictor responses in skeletal muscle arterioles (10, 11, 39, 40). Thus it is likely that the exercise-induced improvement in endothelium-dependent vasodilator responses in SFA observed in the present study works in concert with enhanced vasodilator, and attenuated vasoconstrictor, responses in skeletal muscle arterioles to enhance the capacity to increase skeletal muscle blood flow and to distribute blood flow to the actively contracting muscle fibers during exercise.

Mechanisms Responsible for increased Vasodilator Responses

Results of the present study indicate that the beneficial effect of exercise training on ACh-induced vasodilator function is primarily due to increases in NO bioavailability, since the exercise effect was eliminated in the presence of l-NNA (Fig. 2B). Importantly, the improvement in NO-mediated dilation could not be attributed to an exercise-induced improvement in the ability of vascular smooth muscle cells to respond to NO, since vasodilator responses to SNP (an NO donor) were similar in all groups of arteries. To determine whether the beneficial effect of exercise on endothelium-dependent dilation also involved COX products, ACh-induced dilation was assessed in the presence of Indo to block COX. ACh-induced dilation was not significantly inhibited by Indo alone in young or old rats regardless of training status. Thus the beneficial effect of exercise training on vasodilator responses in aged SFA does not appear to be mediated by altered COX signaling.

To determine whether enhancement of a NOS- and COX-independent vasodilator mechanism contributed to the beneficial effect of exercise training, ACh-induced dilation was assessed in the presence of l-NNA + Indo (double blockade). In the presence of l-NNA + Indo, residual dilation to ACh can
be attributed to vasodilators other than NO and prostacyclin (PGI₂), primarily endothelium-derived hyperpolarizing factors (EDHF). Double blockade had no statistically significant impact on old Sed arteries (Fig. 3B), suggesting that endothelium-dependent dilation in old Sed SFA is mediated entirely by non-NOS, non-COX mechanisms. Double blockade inhibited, but did not eliminate, ACh-induced dilation in old Ex SFA (Fig. 3B). Equally important was the finding that ACh-induced dilation in old Ex SFA in the presence of L-NNA/Indo was not different from the old Sed arteries in the presence of double blockade (Fig. 3B). These data indicate that a vasodilator pathway independent of NOS and COX contributed to ACh-induced dilation in young and old arteries; however, the beneficial effect of exercise training in aged arteries cannot be attributed to enhancement of this pathway. In conclusion, our pharmacological experiments indicate that exercise training reverses the detrimental effects of aging on endothelial function of SFA primarily by enhancing NO bioavailability. This

Table 4. IC₅₀ —log M values and response to 10⁻⁴ M ACh of soleus muscle feed arteries from young and old rats used in the exercise training study

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Con</th>
<th>L-NNA</th>
<th>Indo</th>
<th>L-NNA + Indo</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC₅₀, −log M ACh</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Young Sed</td>
<td>−7.75±0.27</td>
<td>−6.97±0.26</td>
<td>−7.37±0.26</td>
<td>−7.06±0.38</td>
</tr>
<tr>
<td>Young Ex</td>
<td>−7.53±0.30</td>
<td>−6.91±0.18</td>
<td>−7.25±0.29</td>
<td>−6.47±0.45</td>
</tr>
<tr>
<td>Old Sed</td>
<td>−7.82±0.35</td>
<td>−7.13±0.16</td>
<td>−6.55±0.24</td>
<td>−6.5±0.73</td>
</tr>
<tr>
<td>Old Ex</td>
<td>−7.83±0.55</td>
<td>−7.15±0.26</td>
<td>−7.20±0.60</td>
<td>−6.55±0.60</td>
</tr>
<tr>
<td>Response to 10⁻⁴ M ACh, % possible dilation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Young Sed</td>
<td>87.0±6.2</td>
<td>52.4±8.2</td>
<td>64.6±9.3</td>
<td>60.6±8.8</td>
</tr>
<tr>
<td>Young Ex</td>
<td>76.9±10.7</td>
<td>49.1±12.6</td>
<td>73.6±9.4</td>
<td>28.1±8.6</td>
</tr>
<tr>
<td>Old Sed</td>
<td>54.2±8.7</td>
<td>37.9±6.0</td>
<td>67.4±9.0</td>
<td>28.5±11.1</td>
</tr>
<tr>
<td>Old Ex</td>
<td>80.9±6.8</td>
<td>41.8±9.5</td>
<td>61.8±11.3</td>
<td>39.1±8.3</td>
</tr>
</tbody>
</table>

Values are means ± SE; n = 8–10 rats/group. Significantly different from *Con, †L-NNA, ‡Indo, ‡L-NNA+ Indo, §Sed, ¶Young, P ≤ 0.05.

Fig. 4. Values are means ± SE; n = 6–14 rats/group. ACh-induced dilation in young (A) and old (B) SFA in the presence of exogenous antioxidants superoxide dismutase (SOD, 120 U/ml) or SOD + catalase (CAT, 100 U/ml). B, baseline diameter before the 1st dose of ACh. Dose-response curve significantly different from †control, P ≤ 0.05.

Fig. 5. Values are means ± SE; n = 8–21 rats/group. ACh-induced dilation in young (A) and old (B) SFA in the presence of SOD or SOD + L-NNA. B, baseline diameter before the 1st dose of ACh. Dose-response curve significantly different from †control, P ≤ 0.05.
Table 5. \(\text{IC}_{50} \) \(-\log M\) values and response to \(10^{-4} M\) ACh of soleus muscle feed arteries from young and old rats used in the antioxidant studies

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Con</th>
<th>SOD</th>
<th>SOD + CAT</th>
<th>SOD + l-NNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{IC}_{50}, -\log M) ACh</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Young</td>
<td>(-6.61\pm0.20)</td>
<td>(-7.28\pm0.26)</td>
<td>(-6.72\pm0.20)</td>
<td>(-8.18\pm0.62^{bc})</td>
</tr>
<tr>
<td>Old</td>
<td>(-7.01\pm0.18)</td>
<td>(-7.39\pm0.14)</td>
<td>(-7.44\pm0.35)</td>
<td>(-7.33\pm0.46)</td>
</tr>
<tr>
<td>Response to (10^{-4} M) ACh, % possible dilation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Young</td>
<td>(72.5\pm4.7)</td>
<td>(78.7\pm5.4^{d})</td>
<td>(64.9\pm9.3)</td>
<td>(52.7\pm13.2^{b})</td>
</tr>
<tr>
<td>Old</td>
<td>(44.1\pm5.3^{c,e})</td>
<td>(72.9\pm6.6^{d})</td>
<td>(72.8\pm7.1^{d})</td>
<td>(27.2\pm4.5^{bc})</td>
</tr>
</tbody>
</table>

Values are means \(\pm SE; n = 6-21\) rats/group. Significantly different from \(^{a}\text{Con}, ^{b}\text{SOD}, ^{c}\text{SOD + CAT}, ^{d}\text{SOD + l-NNA} \). *Young, \(P \leq 0.05\).

Conclusion

The results of this study indicate that exercise induces improvement in endothelium-dependent dilation in soleus muscle feed arteries of aged rats. The beneficial effect of exercise training in aged feed arteries was mediated by enhanced NO bioavailability that appears to be the result of increased ecSOD protein content in the aged SFA. The improved NO bioavailability was not associated with increased content or phosphorylation of eNOS or increased SOD-1 protein content. Exogenous SOD treatment of...
SFA from old Sed rats mimicked the effects of exercise training. Collectively, these results suggest that exercise training reverses the detrimental effects of aging on endothelial function in skeletal muscle feed arteries by enhancing the capacity to scavenge superoxide, increasing the bioavailability of NO. The exercise training-induced improvement in endothelial function in SFA may work in concert with enhanced endothelial function in skeletal muscle arterioles to improve skeletal muscle blood flow and increase exercise tolerance in the elderly.
ACKNOWLEDGMENTS

We gratefully acknowledge the expert technical assistance of Pam Thorne.

GRANTS

This work was supported by American Heart Association, Texas Affiliate Grant 0765043Y (C. R. Woodman), National Institute on Aging Grant AG-00988 (C. R. Woodman), National Heart, Lung, and Blood Institute Grant HL-36088 (M. H. Laughlin), and an American College of Sports Medicine Foundation Research Grant (D. W. Trotz).

REFERENCES

J Appl Physiol • VOL. 106 • JUNE 2009 • www.jap.org