Positive end-expiratory pressure enhances development of a functional residual capacity in preterm rabbits ventilated from birth

Melissa L. Siew,1 Arjan B. te Pas,2 Megan J. Wallace,1 Marcus J. Kitchen,3 Robert A. Lewis,3,4 Andreas Fournas,5 Colin J. Morley,2 Peter G. Davis,2 Naoto Yagi,6 Kentaro Uesugi,6 and Stuart B. Hooper1

1Department of Physiology, 2School of Physics, 3Monash Centre for Synchrotron Science, and 4Division of Biological Engineering, Monash University, Melbourne; and 5Neonatal Research, Royal Women’s Hospital, Parkville, Victoria, Australia; and 6SPring-8/JASRI, Sayo, Hyogo, Japan

Submitted 2 December 2008; accepted in final form 21 March 2009

Infants born very preterm have immature lungs that are surfactant deficient, partially liquid filled, and prone to collapse at end expiration. As a result, very preterm infants commonly require assisted ventilation after birth, which can be required for many weeks (29). Little is known about procedures that facilitate airway liquid clearance and uniform lung aeration at birth, particularly in very preterm infants who commonly suffer from airway liquid retention. Although ventilating very preterm infants with a positive end-expiratory pressure (PEEP) has many advantages (6, 21, 26, 30), particularly in enhancing oxygenation and preventing airway collapse at end expiration (20, 23), its effects on lung aeration at birth are unknown. If airway liquid clearance is mainly regulated by hydrostatic pressures in the immature lung (11), the application of PEEP at birth may enhance airway liquid clearance and uniform lung aeration.

Phase contrast X-ray imaging (PCI) can be used to observe and measure the temporal and spatial pattern of lung aeration from birth in newborn rabbit pups (11, 19). PCI exploits the refractive index differences between air and water to produce contrast of air/liquid boundaries in the lung (15–19, 28, 35). As a result, the liquid-filled fetal lung only becomes visible following the entry of air after birth, providing high-resolution images of all air-filled structures, including alveoli (11). This imaging technique is ideal for measuring the temporal and spatial pattern of lung aeration and has been used to observe the air/liquid interface as it moves distally into the terminal airways of spontaneously breathing rabbit pups (11). These studies demonstrated that the distal movement of the air/liquid interface only occurred during inspiration, suggesting that transepithelial hydrostatic pressures are intimately involved in this process. In this study, we hypothesized that PEEP, applied from the first inflation after birth, enhances airway liquid clearance and uniform lung aeration in very preterm rabbit pups. To investigate this, we imaged lung aeration in ventilated, very preterm rabbit pups from birth, in the presence and absence of PEEP, and simultaneously measured changes in lung gas volumes using plethysmography.

METHODS

Experimental procedure. All experiments were approved by SPring-8 and Monash University’s School of Biomedical Science’s Animal Ethics Committees. Studies were conducted in experimental hatch 3 of beam line 2B2, in the Biomedical Imaging Centre at the SPring-8 synchrotron in Japan.

At 28 days gestational age (term = 32 days), pregnant New Zealand White rabbits (n = 8) were anesthetized using propofol (Rapinovet; intravenous; 12 mg/kg bolus) and intubated, and anesthe-

Address for reprint requests and other correspondence: S. B. Hooper, Dept. of Physiology, Monash Univ., Melbourne, Vic 3800, Australia (e-mail: stuart.hooper@med.monash.edu.au).

http://www.jap.org

8750-7587/09 $8.00 Copyright © 2009 the American Physiological Society
and ventilation commenced with the onset of imaging. Pups were ventilated with a peak inflation pressure (PIP) of 35 cmH2O and 16 inflations per minute with a 1-s inflation time. They were randomly allocated to either no PEEP (0PEEP) or a PEEP of 5 cmH2O (5PEEP). It was not possible to alter the PEEP or PIP settings during imaging, as the ventilator could not be controlled remotely. All pups were ventilated and imaged for 7–10 min after birth and then killed with sodium pentobarbital (Nembutal; 100 mg/kg ip).

Plethysmography. Lung air volume changes were measured from birth using a custom-made water-filled plethysmograph (14), composed of an upright (height 12 cm), cylindrical (diameter 32 mm), water-filled chamber, sealed at the top by a rubber diaphragm, and open to atmospheric pressure via a vertical water column. The pup’s head was exteriorized from the chamber via a hole in the diaphragm, which formed a water-tight seal around the pup’s neck. Changes in thoracic volume due to air inhalation caused water to move between the chamber and water column. The resulting pressure changes were measured using a pressure transducer (DTX Plus TNF-R; Becton Dickinson) and recorded digitally (Powerlab, ADInstruments, Sydney, Australia). The plethysmograph was calibrated by injecting 1 ml of water before each experiment.

PCI. PCI was used to image air entry into the lungs from birth to investigate the rate and spatial pattern of lung aeration. Simultaneous plethysmography measured changes in gas volumes, although this could also be obtained from the images (14). Details describing the imaging procedures have been reported previously (11, 17, 19). Briefly, the X-ray energy was 24 keV, the pups were 2.0 m upstream of the detector (EMCCD, C9100–02), and a 50-ms exposure time and a 1-s inflation time were used to minimize water-filled plethysmograph blur. Image acquisition and ventilation were synchronized with inflation onset triggering a sequence of six images (300-ms intervals). A preobject shutter prevented radiation exposure between images, and the timing of image acquisition was recorded digitally, simultaneously with the plethysmograph recording.

Data and statistical analysis. All lung gas volumes were adjusted for body weight. Functional residual capacity (FRC) was determined as the lung gas volume at end expiration, and tidal volume (Vt) as the volume at end inflation minus the postinflation FRC (expired gas volume). FRC and Vt values were an average of three inflations and measured at inflation 5 ± 1 (i.e., average of inflations 4–6), inflation 20 ± 1, and at every 20 ± 1 inflations for 120 inflations. The anatomic dead space (ADS) volume was determined from the images as the volume of air in the lung at the first appearance of a fine speckle within the image. Speckling is caused by the focusing effects of multiple overlapping air/liquid boundaries in projection, which act as a series of aberrant compound refractive lenses (11, 16, 17, 19). Speckle appears in the image when air reaches the small terminal airways and exactly corresponds in timing with a marked inflection in the lung pressure-volume curve (Fig. 1). As the timing of image acquisition occurred in unison with plethysmograph volume measurements, the lung gas volume when speckle first appeared in the image could be determined. The total lung gas volume minus the ADS volume provided an estimate of gas volume within the terminal air sacs. The ADS volume was subtracted from the lung gas volume, and the area under the curve (above the ADS volume) was calculated over three inflations (from inflation onset to inflation onset) at inflations 5 and 20 and every 20th inflation for 120 inflations. The time the lung gas volume exceeded the ADS volume was calculated over three inflations and expressed as a percentage of the total duration of the three inflations.

RESULTS

Animal data. Sixteen preterm pups (from 8 rabbits) were ventilated from birth: eight with 0PEEP and eight with 5PEEP. The gestational age (28.1 ± 0.1 vs. 28.3 ± 0.2 days) and mean pup weight (35.3 ± 1.1 and 33.8 ± 2.6 g) were similar in both groups. Four pups were excluded (2 per group) from ADS volume analyses due to synchronization problems between image acquisition and plethysmograph recording. The calculated ADS volume was similar in 0PEEP (2.5 ± 0.8 ml/kg) and 5PEEP (3.0 ± 0.3 ml/kg) pups.

PCI of lung aeration. Movies of lung aeration were constructed by compiling the PC X-ray images sequentially (at ~1.5 × normal speed) and demonstrating the beneficial effect of PEEP on lung aeration from birth. (The online version of this article contains supplemental data: movies 1 and 2.) In the absence of PEEP (movie 1), although air eventually entered and aerated the distal gas exchange regions of the lung, the lungs did not retain gas at end expiration for at least the first 120 inflations. Numerous inflations were required before air reached the terminal airways, but the air only remained briefly in the terminal airways during inflation (Fig. 2). During expiration, most airways either collapsed or refilled with liquid in 0PEEP pups, so that much of the respiratory tree was un aerated at end expiration (Fig. 2); air could be seen trapped in small conducting airways in some pups. In contrast, the lungs of pups ventilated with 5PEEP (movie 2) aerated rapidly, beginning in the large, proximal airways and extending to the distal regions. Lung aeration increased with each inflation, and air was retained in both the distal and larger conducting airways at end expiration, with no evidence of lung collapse or liquid refilling the airways (movie 2; Fig. 2). Lung aeration in 5PEEP pups was not uniform, beginning in the apical lobes, particularly the right apical lobe, and followed by aeration of the medial and then basal lobes.

FRC. All pups ventilated without PEEP failed to accumulate a FRC that exceeded the ADS volume (Fig. 3). FRC in 5PEEP pups increased transiently to 0.9 ± 0.7 ml/kg after the first five inflations, but was significantly reduced by inflations 20 and 40 (P < 0.05) and did not significantly differ from zero throughout the remainder of the experiment. As a result, the percentage of time that lung gas volumes were greater than the ADS volume in 0PEEP pups was <20% for the first 40 inflations, remaining below 50% for the first 120 inflations (Figs. 3 and 4B). Thus, without PEEP, lung gas volumes only increased above the ADS volume briefly during, and shortly after inflation (Fig. 3).

All 5PEEP pups rapidly accumulated a FRC and, at all time points, had a significantly higher FRC than pups ventilated with 0PEEP (P < 0.001) (Fig. 4A). The FRC increased rapidly.
to 8.4 ± 2.4 ml/kg within the first five inflations, to 18.4 ± 1.8 ml/kg by inflation 40 and then remained at this level (Fig. 4A). Thus, in 5PEEP pups, the percentage of time that lung gas volumes were greater than the ADS volumes increased to 100% within the first five inflations, and then the gas volume remained above the ADS volume throughout the respiratory cycle (Fig. 4B).

VT and lung compliance. The expired VT in 0PEEP and 5PEEP pups significantly increased from the onset of ventilation until the 120th inflation (P < 0.05; Figs. 3 and 5A). The increase in expired VT in 5PEEP pups was less than in 0PEEP pups with increasing inflation number. As a result, the mean VT of 0PEEP pups was significantly greater than that of 5PEEP pups after inflation 60 (P < 0.05) (Fig. 5A). At this time, the difference in VT between 0PEEP and 5PEEP pups was equal to the FRC in 5PEEP pups, as pups in both groups achieved the same lung gas volume at end inflation (45.7 ± 5.6 vs. 48.2 ± 3.2 ml/kg). However, at end expiration, the lung gas volume was 19.9 ± 3.2 ml/kg in 5PEEP pups and 0.9 ± 0.7 ml/kg in 0PEEP pups. Respiratory system compliance increased during lung aeration, but no difference could be detected between the groups (Fig. 5B).

Time-related analysis of gas in the distal airways. The time-dependent restraint on gas exchange was assessed by measuring the percentage of time spent at a gas volume greater than the ADS volume (Fig. 4B; see above) and the time-related integral of the lung gas volume over a three inflation cycle (Fig. 6). The lung gas volume time integral increased rapidly in 5PEEP pups, reaching 36.0 ± 2.7 ml·s·kg⁻¹ at inflation 20, which was significantly greater than in 0PEEP pups (6.4 ± 2.0 ml·s·kg⁻¹). By inflation 40, the lung gas volume integral had increased further to 44.6 ± 2.6 ml·s·kg⁻¹ in 5PEEP pups and then remained at this level. In contrast, in 0PEEP pups, the lung gas volume integral increased from 9.5 ± 2.1 ml·s·kg⁻¹ at inflation 40 to 23.9 ± 4.0 ml·s·kg⁻¹ at inflation 120, which was significantly lower than in 5PEEP pups (Fig. 6).

DISCUSSION

Our study demonstrates that ventilation of preterm rabbit pups from birth with 5PEEP greatly improves liquid clearance and aeration of the distal airways and prevents airway collapse at end-expiration (see movie 2). As a result, pups ventilated with 5PEEP rapidly accumulated an FRC with each inflation.
(increasing to $19.9 \pm 3.2 \text{ ml/kg}$), and the distal gas exchange regions remained gas-filled at end expiration. Without PEEP (see movie 1), air only penetrated the distal gas exchange regions briefly during inflation, and the airways either partially collapsed or refilled with liquid at end expiration. As these pups were intubated and sedated, these results are most applicable to intubated, apneic newborn, very preterm infants. However, as the application of a continuous positive airway pressure will also maintain a pressure gradient across the airway wall, and thereby facilitate liquid clearance, our results may provide an additional explanation for the beneficial effects of continuous positive airway pressure in very preterm infants. Thus the mechanisms driving airway liquid clearance and lung aeration in these infants are unclear. Our laboratory has recently suggested that transepithelial hydrostatic pressures generated during inspiration provide a hydrostatic pressure gradient for liquid to leave the airways (11). The finding that PEEP facilitates airway liquid clearance and lung aeration in mechanically ventilated pups is consistent with this suggestion and provides further evidence that transepithelial hydrostatic pressures play an important role in this process, particularly in the immature lung.

The phase-contrast X-ray movie sequences demonstrate the positive effect of PEEP on lung aeration in very preterm rabbit pups mechanically ventilated from birth. Although the spatial pattern of lung aeration was not uniform, the extent of lung aeration increased with each inflation, and, once aerated, regions did not collapse or refill with liquid during expiration. These observations were supported by plethysmography measurements, demonstrating that FRC rapidly increased to $19.9 \pm 3.2 \text{ ml/kg}$, values similar to that observed in spontaneously breathing term pups (unpublished observations). As a result, after the first five inflations, the lung gas volume remained permanently above the ADS volume, allowing gas exchange to occur throughout the respiratory cycle. Without PEEP, al-

Fig. 2. Phase-contrast X-ray images of preterm rabbit pups ventilated with $0 \text{ cmH}_2\text{O (0PEEP; A and C) and 5 cmH}_2\text{O (5PEEP; B and D) of positive end-expiratory pressure (PEEP).}$ Images were acquired at either functional residual capacity (FRC; A and B) or near end inspiration (C and D) at approximately the 20th breath after the onset of ventilation.
though gas eventually penetrated into the lung periphery, the phase-contrast X-ray images show that air was not retained in the distal airways and some of their conducting airways, at end expiration (movie 1 and Fig. 2). These observations are supported by plethysmography measurements, demonstrating that, without PEEP, a FRC greater than the ADS volume (3.0 ± 0.3 ml/kg) could not be formed. As a result, the mean gas volume was greater than the ADS volume for <50% of the time in 0PEEP pups. It is unclear why, in the absence of PEEP, FRC (as measured by plethysmography) tended to decrease below zero, but this was not due to leaks in the plethysmograph. We consider it more likely that lung aeration increased the pup’s buoyancy, causing a small upward displacement of the pup; this would have been greater in PEEP pups, but any small reductions in FRC were likely obscured by the larger PEEP-induced increase in FRC.

In the healthy mature lung, gas exchange is not limited by gas diffusion rates and is determined by the thickness and surface area of the air/blood gas barrier (31), as well as partial pressure gradients for O$_2$ and CO$_2$ (8). However, in a partially liquid-filled immature lung of a preterm infant, gas diffusion rates are likely to be limited, particularly for O$_2$, which is much less diffusible than CO$_2$ (31). This is because the lung gas barrier is structurally immature, and distal airway collapse at end expiration limits the volume of gas and the time available for alveolar gas exchange. A quantitative analysis of this relationship was assessed by measuring the lung gas volume time integral above the ADS volume. This integral rapidly increased in 5PEEP pups and was much greater than in 0PEEP pups (Fig. 6), because the lung gas volume remained significantly above the ADS volume throughout expiration. Thus the gas exchange potential of the lung, particularly for oxygen, was greater in 5PEEP pups compared with 0PEEP pups for the first 120 inflations after birth. It is possible that the effect of PEEP on increasing blood oxygenation during the newborn period (21, 26, 30) is due to an increase in the gas volume time integral.

After the first 120 inflations, the VT was greater in 0PEEP pups compared with 5PEEP pups, despite all pups being

Fig. 3. Lung gas volumes, measured using plethysmography, in preterm rabbit pups ventilated from birth with either 0PEEP (top) or 5PEEP (bottom). The dotted line represents the calculated anatomic dead space volume. Note that pups ventilated with 5PEEP rapidly established a FRC, whereas pups ventilated in the absence of PEEP (0PEEP) did not develop a FRC.

Fig. 4. A: the change in FRC with time measured from birth in preterm rabbit pups ventilated from birth with either 0PEEP (●) or 5PEEP (○). B: the percentage of time that the lung gas volume remained above the anatomic dead space volume in 0PEEP and 5PEEP pups. For each pup, values were averaged over a 3-breath cycle at breath 5 ± 1 and 20 ± 1 and every 20th breath thereafter.
ventilated with the same PIP. As the volume at peak inflation was similar in both groups, the difference in VT was due to the higher FRC in 5PEEP pups as lung gas volumes decreased to near zero at end expiration in 0PEEP pups. In addition to the atelectrauma, caused by cyclic lung collapse (13, 25), in the absence of PEEP, a larger VT could cause greater shear stress and lung injury in 0PEEP pups compared with 5PEEP pups (2). Other studies have shown that PEEP increases lung compliance (23, 27) by shifting lung volume into a more compliant region of the pressure-volume curve. Although the effect of PEEP on lung compliance is not immediate in the partially liquid-filled lung (26), it is possible that the maximum volumes achieved at end inflation in our study were close to the top of the pup’s pressure-volume curve. Thus, as 5PEEP pups had a higher FRC, the VT may have been limited in these pups. It was necessary to ventilate pups with a PIP of 35 cmH₂O, as preliminary experiments demonstrated that lower PIPs were unable to initiate lung aeration, and it was not possible to alter the ventilator settings during imaging.

PCI provides a unique macroscopic view of the lung’s transition into a gas-filled organ, demonstrating the importance of PEEP (movie 1 and movie 2). The spatial pattern of lung aeration in preterm pups was different to that of spontaneously breathing term pups. In ventilated preterm pups, the apical lobes aerated first, whereas the medial/basal lobes aerated first in spontaneously breathing term pups (11, 14). As diaphragmatic contraction drives lung expansion and reductions in airway pressure during spontaneous breathing, it is not surprising that lung aeration begins in the medial/basal regions, particularly as parts of the chest wall deform during spontaneous breathing (11). However, during mechanical ventilation, the application of positive pressure to the airways should provide relatively similar pressure gradients to apical and basal lobes, leading to uniform rates of aeration. As preterm pups were ventilated in an upright position, it is possible that gravity influenced the spatial pattern of lung aeration; however, spontaneously breathing pups were also studied in an upright position (11). It is pertinent to note that, although very preterm human infants are usually ventilated in a horizontal position, and not upright as in this experiment, the effect of PEEP on FRC is independent of body position (unpublished observations).

This study has shown that mechanical ventilation from birth with PEEP improves lung aeration and gas exchange potential of the lung immediately after birth. The phase-contrast X-ray images clearly demonstrate that PEEP prevents distal airway collapse at end expiration, allowing FRC to accumulate and lung aeration to increase with each inflation. These data also provide further evidence to indicate that transepithelial hydrostatic pressure gradients contribute to airway liquid clearance and lung aeration after birth.

GRANTS

This research was supported by the Australian Research Council and the Australian National Health and Medical Research Council. We acknowledge financial support from the Access to Major Research Facilities Programme, which is a component of the International Science Linkages Programme established under the Australian Government’s innovation statement, “Backing Australia’s Ability.” The authors also gratefully acknowledge the support provided by the SPring-8 synchrotron facility (Japan), which was granted by the SPring-8 Program Review Committee (proposal nos. 2006B0002, 2007A0002). A. B. te Pas is a recipient of a Ter Meulen Fund grant for working visits, Royal Netherlands Academy of Arts and Sciences, The Netherlands, M. J. Kitchen is a recipient of an Australian Research Council Post-Doctoral Fellowship.

REFERENCES

