The effect of remifentanil on respiratory variability, evaluated with dynamic modeling

G. D. Mitsis,1,2,3,4 R. J. M. Governo,3,5 R. Rogers,2,3 and K. T. S. Pattinson2,3

1Institute of Communications and Computer Systems, National Technical University of Athens, Athens, Greece; 2Nuffield Department of Anaesthetics, University of Oxford, Oxford, United Kingdom; 3Oxford Centre for Functional Magnetic Resonance Imaging of the Brain, University of Oxford, Oxford, United Kingdom; 4Department of Electrical and Computer Engineering, University of Cyprus, Nicosia, Cyprus, and 5Brighton and Sussex Medical School, University of Sussex, Brighton, East Sussex, United Kingdom

Submitted 15 June 2008; accepted in final form 2 February 2009

Mitsis GD, Governo RJ, Rogers R, Pattinson KT. The effect of remifentanil on respiratory variability, evaluated with dynamic modeling. J Appl Physiol 106: 1038–1049, 2009. First published February 5, 2009; doi:10.1152/japplphysiol.90769.2008.—Opioid drugs disrupt signaling in the brain stem respiratory network affecting respiratory rhythm. We evaluated the influence of a steady-state infusion of a model opioid, remifentanil, on respiratory variability during spontaneous respiration in a group of 11 healthy human volunteers. We used dynamic linear and nonlinear models to examine the effects of remifentanil on both directions of the ventilatory loop, i.e., on the influence of natural variations in end-tidal carbon dioxide (PetCO2) on ventilatory variability, which was assessed by tidal volume (VT) and breath-to-breath ventilation (i.e., the ratio of tidal volume over total breath time VT/TTOT), and vice versa. Breath-by-breath recordings of expired CO2 and respiration were made during a target-controlled infusion of remifentanil for 15 min at estimated effect site (i.e., brain tissue) concentrations of 0, 0.7, 1.1, and 1.5 ng/ml, respectively. Remifentanil caused a profound increase in the duration of expiration. The obtained models revealed a decrease in the strength of the dynamic effect of PetCO2 variability on VT (the “controller” part of the ventilatory loop) and a more pronounced increase in the effect of VT variability on PetCO2 (the “plant” part of the loop). Nonlinear models explained these dynamic interrelationships better than linear models. Our approach allows detailed investigation of drug effects in the resting state at the systems level using noninvasive and minimally perturbing experimental protocols, which can closely represent real-life clinical situations.

nonlinear models; Volterra kernels; opioid; ventilation; chemoreflex

Respiratory depression is the most common serious side effect of opioid drugs (32). Opioids are prescribed to millions of patients around the world every day, often in unmonitored environments, and therefore avoiding respiratory depression remains an important clinical aim. Opioids depress chemosensitive and rhythm-generating centers in the brain stem (13, 26), leading to slowing and irregularity of the respiratory rhythm (4, 22).

In rodents opioids cause interruption of the output from the rhythm-generating centers in the ventral lateral medulla of the brain stem [i.e., the pre-Bötzinger complex and the retrotrapezoid nucleus (26)], irregular respiration being caused by intermittent “skipped” outputs from the pre-Bötzinger complex. Three studies in humans (4, 14, 22) have demonstrated changes in respiratory timing with opioids, but none of these studies has explored potential mechanisms and how changes in timing may relate to changes in chemoreflex responsivity.

Much of the understanding of human respiratory control is based on characterization of the ventilatory feedback loop, which is shown in Fig. 1 in a simplified form, supplemented by inferences from work in animals. The standard approach is to examine ventilatory responses to hypoxic or hypercapnic (31, 34) stimulation; specifically, depression of these responses by opioids has been well reported (2, 10, 11). Moreover, breath-to-breath fluctuations in end-tidal CO2 (PetCO2) are responsible for a considerable fraction of the normal variability in tidal volume (VT) during spontaneous breathing (29), and the dynamic effects of these spontaneous fluctuations have been used to derive information on ventilatory feedback (18, 36). This breath-to-breath variability has been modulated with background hyper- and hypocapnia (5, 15) but has not yet been applied to investigation of drug action.

Remifentanil is a short-acting opioid analgesic that is used in anesthesia. Its ultrashort context-insensitive half-life (3–4 min) allows rapid adjustment of plasma levels when infused using a computer-controlled pump preprogrammed with a pharmacokinetic model of the drug (target-controlled infusion) (27, 28). The short half-life means that it can be given by infusion and plasma levels can be changed rapidly. In terms of volunteer safety, it is possible to achieve a relatively strong opioid effect with remifentanil, but if there are any signs of adverse drug reaction, the infusion can be terminated with the confidence that the drug will wear off within minutes.

Here, we have examined the effect of remifentanil infusion on respiratory variability by quantifying the dynamic interrelationships between PetCO2, VT, and breath-to-breath ventilation [i.e., VT/TTOT, where TTOT is total breath time] in both causal directions of the ventilatory loop. We examined the relationship between PetCO2 and VT because we were interested in examining how motor output (VT) may be affected independently of respiratory rate. As ventilation (VT/TTOT) is a more conventional measure of respiration, we have also assessed this variable so that our results can be compared with other studies of respiratory control. To achieve this, we have used a nonlinear, data-driven modeling approach (Laguerre expansion technique) that has been used extensively in physiological systems modeling (24, 25). First, we considered the dynamic influence of spontaneous PetCO2 fluctuations on ven-
there is high minute ventilation, for example during exercise). The fresh gas flow rate was 30 l/min to eliminate rebreathing of expired gases. Respiratory depression may cause hypoxemia, which causes activation of peripheral chemoreceptors in the carotid bodies and stimulates respiration. In this study, end-tidal oxygen (PETO2) tension was maintained at 30 kPa by manual adjustment of the inspired gas mixture by a dedicated experimenter, on a breath-by-breath basis, to maintain peripheral chemoreceptor input constant. The subjects were asked to keep their eyes open throughout and watch a movie to distract them from the experiment.

A target-controlled infusion of remifentanil (at a solution concentration of 10 μg/ml) was delivered via an indwelling intravenous cannula inserted into a vein in the left forearm. Stepwise ascending effect site concentrations (i.e., based on predicted brain concentrations) of zero (baseline), 0.7, 1.1, and 1.5 ng/ml were maintained with a computer-controlled infusion pump (Graseby 3500 TCI incorporating “Diprifusor”, SIMS Graseby) (17) that was preprogrammed according to a pharmacokinetic model of remifentanil (27, 28). We chose to investigate remifentanil because effect site concentrations are easily manipulated due to its short context-insensitive half-life, and therefore we could maintain stable effect site concentrations during the experiment. We also chose relatively low doses of remifentanil so that we could investigate the subtle changes in respiratory control seen at clinically relevant opioid analgesia, as opposed to the much higher doses used in anesthesia. Our previous experimental experience with this drug found that subjects became apneic or fell asleep at effect site concentrations greater than 2 ng/ml in similar studies without painful stimuli.

Oxygen saturations, heart rate, PETCO2, and PETO2 were monitored continuously using a Datex Cardiacap II (Datex Instrumentarium, Helsinki, Finland), and respiratory volume and timing were measured with a turbine respiratory flowmeter (VMM-400, Interface Associates, Laguna Niguel, CA) and recorded with a data-acquisition device sampling at 50 Hz (PowerLab 8, ADInstruments, Colorado Springs, CO) connected to a laptop computer using dedicated software (Chart 5, ADInstruments).

As this experiment was designed to measure respiratory variability during spontaneous breathing, there was no specific experimental task for the subjects to perform. Following a minimum of 10 min to adapt to the mask, the baseline recordings (i.e., no remifentanil infusion) were taken for 15 min, and then for each level of remifentanil. Five minutes was allowed to reach target effect site concentration (as displayed on the infusion device); continuous recordings were made for the following 15 min at that stable effect site concentration.

Dynamic Modeling

After linear detrending to remove the effect of very slow trends, the dynamic effects of natural variations in PETCO2 on VT and VT/TTOT, and vice versa, were quantified by using a variant of the Volterra-Wiener approach (24). In this context, we employed the general Volterra model, which is given below for a Qth-order nonlinear system:

\[
y(n) = \sum_{q=0}^{Q} \sum_{m=0}^{M} \sum_{m_0=0}^{m} k_q(m_1, \ldots, m_q)x(n-m_1)\ldots x(n-m_q) \\
= k_0 + \sum_{m=0}^{M} k_1(m)x(n-m) + \sum_{m_2=0}^{M} \sum_{m_1=0}^{m_2} k_2(m_1, m_2)x(n-m_1)x(n-m_2) + \ldots \quad (I)
\]

where \(x(n)\) and \(y(n)\) are the system input and output, respectively (as mentioned above, both PETCO2 and VT or VT/TTOT assume the roles of input and output). \(M\) is the system memory, and \(k_q(m_1, \ldots, m_q)\) are the Volterra kernels of the system, which describe the linear (\(Q = 1\)) and nonlinear (\(Q > 1\)) dynamic effects of the input on the output. *Equation 1* reduces to the convolution sum for linear systems (\(Q = 1\),

METHODS

Subjects

This study was approved by the Oxfordshire Clinical Ethics research committee, and volunteers gave written informed consent. Eleven healthy volunteers (3 women; mean age ± SD, 27 ± 5 yr) were examined, recruited by advertisement within Oxford University. Volunteers were excluded if they were taking medication or drugs acting on the central nervous or respiratory systems for therapeutic or recreational use. A medical history and, where appropriate, a physical examination were performed to ensure that the subjects were healthy (American Society of Anesthesiologists physical status 1) and that there was no contraindication to remifentanil. Volunteers fasted before all visits (6 h for solids, 2 h for clear fluids) and were supervised for 1 h following termination of the infusion.

Experimental Protocol

The subjects wore a tight-fitting facemask (Hans Rudolph), which was attached to a modified T-piece breathing system (23). The resistance to breathing was kept minimal by using wide-bore (diameter 8 cm) respiratory tubing, which also allows rapid alterations of inspired gas concentrations, when combined with high fresh gas flow rates (this breathing system is particularly useful during studies where
with $k_1(m)$ corresponding to the impulse response of the system. This approach has been employed extensively for modeling physiological systems, since it is well suited to their complexity (24).

The impulse response or Volterra kernels can be estimated efficiently from the input-output data, by utilizing function expansions in terms of the orthonormal Laguerre basis (25):

$$k_i(m_1, \ldots, m_L) = \sum_{j=0}^{L} \sum_{l=0}^{L} c_{j_1} \ldots c_{j_L} h_i(m_1) \ldots h_i(m_L)$$

(2)

where $c_{j_1} \ldots c_{j_L}$ are the expansion coefficients, $h_i(m)$ is the ith-order Laguerre function, and $L + 1$ is the total number of functions that yields an adequate system representation. By combining Eqs. 1 and 2 in matrix form:

$$y = Vc + \varepsilon$$

(3)

where the nth row of V is given by $[1, v_1(n), \ldots, v_L(n), v_1(n)^2, v_1(n)v_2(n), \ldots, v_1(n)v_3(n), v_2(n)^2, v_2(n)v_3(n), \ldots, v_L(n)^2]$ for a second-order system ($Q = 2$), ε is the vector of expansion coefficients, ε is the observation errors vector, which in our case includes the disturbance terms, and

$$v_j(n) = \sum_m b_j(m)x(n - m)$$

(4)

denotes the convolution of the input with the jth order Laguerre function. The expansion coefficients are then obtained by the least-squares solution of Eq. 3 (25):

$$c_{est} = [V^TV]^{-1}V^Ty$$

(5)

Model performance was assessed by the normalized mean-square error (NMSE) of the output prediction, which is defined as the mean-square model residuals divided by the corresponding mean-square output. The NMSE is also used to determine the number of terms of the orthonormal Laguerre basis (25): $\text{NMSE} = \frac{1}{n} \times \frac{\sum_{i=0}^{n} (y_i - \hat{y}_i)^2}{\sum_{i=0}^{n} (y_i - \overline{y})^2}$, where \overline{y} is the observation errors vector, which in our case includes the disturbance terms, and \overline{y} is the vector of expansion coefficients, ε is the observation errors vector, which in our case includes the disturbance terms, and y_i is the ith element of the output vector.

Changes in the steady-state values and the spectral power of the respiratory variables, which was calculated by integrating their power spectral density function (PSD; obtained using the Welch modified periodogram method), as well as in the spectral power of the first- and second-order kernels were assessed by using repeated-measures ANOVA, with P values of <0.05 considered significant (SPSS 16.0 for Windows, SPSS, Chicago, IL).

RESULTS

In no subject was there loss of consciousness, and all volunteers remained awake, with eyes open, and maintained verbal contact at all times. On no occasion did oxygen saturations fall below 96%. In one subject the infusion was terminated at an effect site concentration of 1.5 ng/ml due to persistent nausea.

Respiratory Variables

Steady-state values. The measured physiological variables are presented in Table 1. We observed a dose-dependent decrease in respiratory rate that was due to increases in dura-

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>0.7 ng/ml</th>
<th>1.1 ng/ml</th>
<th>1.5 ng/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_{ETCO_2}, kPa</td>
<td>5.4 (0.3)</td>
<td>5.8 (0.4)†</td>
<td>5.9 (0.4)†</td>
<td>6.2 (0.6)†</td>
</tr>
<tr>
<td>CV P_{ETCO_2}, %</td>
<td>2.4 (1.0)</td>
<td>3.7 (1.2)†</td>
<td>4.2 (2.7)†</td>
<td>4.3 (2.0)†</td>
</tr>
<tr>
<td>SP P_{ETCO_2}</td>
<td>1.2 (1.1)</td>
<td>2.6 (1.5)†</td>
<td>3.3 (2.9)</td>
<td>4.0 (2.6)†</td>
</tr>
<tr>
<td>P_{ETCO_2}, kPa</td>
<td>30 (1)</td>
<td>30 (1)</td>
<td>30 (2)</td>
<td>29 (2)</td>
</tr>
<tr>
<td>VT, ml</td>
<td>412 (134)</td>
<td>348 (128)*</td>
<td>360 (114)</td>
<td>384 (144)</td>
</tr>
<tr>
<td>CV VT, %</td>
<td>40 (14)</td>
<td>49 (15)</td>
<td>59 (20)*</td>
<td>52 (10)*</td>
</tr>
<tr>
<td>SP VT</td>
<td>1.7·10^10 (1.3·10^10)</td>
<td>1.8·10^10 (1.7·10^10)</td>
<td>3.2·10^10 (3.3·10^10)</td>
<td>2.5·10^10 (2.3·10^10)</td>
</tr>
<tr>
<td>TI, s</td>
<td>1.5 (0.3)</td>
<td>1.6 (0.4)</td>
<td>1.6 (0.5)</td>
<td>1.6 (0.5)</td>
</tr>
<tr>
<td>CV TI, %</td>
<td>25 (9)</td>
<td>25 (5)</td>
<td>28 (9)</td>
<td>29 (7)*</td>
</tr>
<tr>
<td>TE, s</td>
<td>2.7 (0.4)</td>
<td>3.8 (0.8)†</td>
<td>4.7 (1.6)†</td>
<td>5.2 (2.1)†</td>
</tr>
<tr>
<td>CV TE, %</td>
<td>21 (5)</td>
<td>26 (0)*</td>
<td>30 (8)*</td>
<td>39 (13)†</td>
</tr>
<tr>
<td>VT/Ti/TOT, ml/s</td>
<td>100.2 (23.3)</td>
<td>64.0 (23.6)†</td>
<td>60.8 (20.6)†</td>
<td>61.5 (22.3)†</td>
</tr>
<tr>
<td>CV VT/Ti/TOT, %</td>
<td>26.0 (8.2)</td>
<td>39.6 (6.8)†</td>
<td>48.5 (14.2)†</td>
<td>56.4 (22.0)†</td>
</tr>
<tr>
<td>SP VT/Ti/TOT</td>
<td>436.0 (233.9)</td>
<td>494.2 (323.7)</td>
<td>658.9 (430.2)</td>
<td>989.4 (1274.5)</td>
</tr>
<tr>
<td>HR, beats/min</td>
<td>56.8 (7.8)</td>
<td>55.8 (7.1)</td>
<td>54.8 (9.3)</td>
<td>55.9 (8.3)</td>
</tr>
</tbody>
</table>

Values are mean (SD). P_{ETCO_2}, end-tidal CO$_2$; P_{ETO_2}, end-tidal O$_2$; VT, tidal volume per breath; TI, expiratory time; TE, inspiratory time; TOT, total breath time; HR, heart rate; CV, coefficient of variability; SP, spectral power between 0 and 0.3 cycles/breath. *$P < 0.05$, †$P < 0.01$ with respect to baseline.

J Appl Physiol • VOL 106 • APRIL 2009 • www.jap.org
tion of expiratory time (TE). We did not observe any change in inspiratory time (Ti). The variability coefficients of Ti and TE increased, with a much stronger effect being observed for TE. VT initially decreased (at 0.7 ng/ml) but increased at higher levels toward baseline values. As a result, breath-to-breath ventilation VT/TTOT decreased and became progressively more variable. PETCO2 increased and became more variable. Finally, heart rate remained approximately constant.

Spectral power. The spectral power of PETCO2 and VT was calculated by integrating their power spectral density (PSD) functions (Fig. 2). The upper limit of the integration was set to 0.3 cycles/breath, since the spectral power of both variables, as well as of the system dynamics examined below, was concentrated below this frequency. An increase over the entire frequency range (i.e., between 0 and 0.3 cycles/breath), which was gradual except below 0.02 cycles/breath (whereby the largest changes occurred for 0.7 ng/ml), was observed for the PETCO2, spectral power compared with baseline. VT spectral power also increased during remifentanil infusion, but these changes were less pronounced and occurred above 0.02 cycles/breath.

Dynamic Modeling

Model performance. By following the procedure outlined in METHODS, it was found that five Laguerre functions (L + 1 = 5) are adequate to represent the system dynamics in both pathways. The prediction NMSEs obtained by linear and nonlinear models (Q = 1,2) for both pathways of the ventilatory loop, which correspond to the dynamic effects of PETCO2 variations on VT or VT/TTOT, and vice versa, are given in Table 2. Nonlinear models improved model performance in both pathways, i.e., they resulted in significantly reduced prediction NMSEs, which satisfied the statistical criterion described in METHODS. For the forward part of the loop (PETCO2 → VT) we also observed a dose-dependent reduction in the NMSE values during remifentanil infusion in the case of nonlinear models, which suggests that a larger fraction of the respiratory variability is caused by PETCO2 changes. For the reverse branch of the ventilatory loop (VT → PETCO2), remifentanil did not affect the NMSE values as above (Table 2).

Representative data sets used for model estimation (obtained during baseline) are shown in Fig. 3, along with the corresponding nonlinear model predictions in the time (Fig. 3, left) and frequency (PSD; Fig. 3, right) domain. To illustrate the contribution of the nonlinear model terms in the frequency domain, we also show the time trace and PSD of the corresponding linear model prediction (Fig. 3, left) and residuals (Fig. 3, right), respectively. Note that the sighs that are evident in the VT time series (Fig. 3, left, dotted line) are not explained by the PETCO2 → VT model, as they were removed before estimation. PETCO2 variations mainly account for the VT postsigh response, as sighs are clearly correlated with sharp PETCO2 drops (as expected), which in turn influence VT. On the other hand, these sharp drops are evidently accounted by the VT → PETCO2 model. In the frequency domain, the incorporation of nonlinear model terms improved performance over a wide range of frequencies below 0.03 Hz, particularly for the VT → PETCO2 pathway (Fig. 3A, right). The aforementioned model residual characteristics were maintained when VT/TTOT was used to assess ventilatory variability. Overall, a larger fraction of PETCO2 variations was explained by the VT → PETCO2 models compared with the reverse pathway, which is reflected on the lower NMSE values achieved by the VT → PETCO2 models (Table 2; note again that sighs were not taken into account when calculating the PETCO2 → VT NMSEs). The lower PETCO2 → VT NMSE values during remifentanil infusion were mainly due to the more pronounced (compared with VT, VT/TTOT) increased PETCO2 variability that was induced (Fig. 2).

System dynamics: PETCO2 → VT pathway. The first-order kernel (k1 in Eq. 1) corresponds to the impulse response of the system when linear models are used (Q = 1 in Eq. 1) and to the linear component of the system dynamics in the case of nonlinear models (Q > 1 in Eq. 1). The averaged impulse responses (i.e., obtained from linear models) for the forward part of the ventilatory loop are displayed in Fig. 4, when both VT (blue) and VT/TTOT (black) were used to assess ventilatory

A

B

Fig. 2. Power spectral density function of the end-tidal carbon dioxide (PETCO2) (A) and VT (B) time series between 0 and 0.3 cycles/breath, averaged over all subjects (means ± SE). Note the gradual increase in the PETCO2, power induced by remifentanil over the entire frequency (f) range and the less pronounced increase in VT spectral power above 0.02 cycles/breath.
Table 2. Prediction NMSEs for linear and nonlinear dynamic models for the forward and reverse pathways of the ventilatory loop

<table>
<thead>
<tr>
<th></th>
<th>NMSE, %</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Forward</td>
<td>Reverse</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Linear</td>
<td>Nonlinear</td>
<td>Linear</td>
</tr>
<tr>
<td>$\text{PETCO}_2 \rightarrow V_T$</td>
<td>87.6 (2.0)</td>
<td>71.0 (2.9)</td>
<td>71.1 (5.0)</td>
</tr>
<tr>
<td>$V_T \rightarrow \text{PETCO}_2$</td>
<td>87.3 (3.0)</td>
<td>62.6 (3.6)</td>
<td>67.5 (5.5)</td>
</tr>
<tr>
<td>$\text{PETCO}_2 \rightarrow V_T/T_TOT$</td>
<td>89.4 (1.6)</td>
<td>62.1 (3.9)</td>
<td>79.7 (1.6)</td>
</tr>
<tr>
<td>$V_T/T_TOT \rightarrow \text{PETCO}_2$</td>
<td>87.1 (2.5)</td>
<td>57.9 (3.7)</td>
<td>78.6 (4.4)</td>
</tr>
<tr>
<td>Remifentanil</td>
<td>86.7 (1.7)</td>
<td>65.7 (2.8)</td>
<td>67.5 (4.4)</td>
</tr>
<tr>
<td>Baseline</td>
<td>80.4 (5.1)</td>
<td>55.9 (4.3)</td>
<td>62.1 (8.1)</td>
</tr>
<tr>
<td>0.7 ng/ml</td>
<td>87.5 (1.5)</td>
<td>58.3 (3.9)</td>
<td>76.5 (3.2)</td>
</tr>
<tr>
<td>1.1 ng/ml</td>
<td>87.5 (1.2)</td>
<td>55.3 (4.6)</td>
<td>74.8 (4.7)</td>
</tr>
<tr>
<td>1.5 ng/ml</td>
<td>87.5 (1.2)</td>
<td>55.3 (4.6)</td>
<td>74.8 (4.7)</td>
</tr>
</tbody>
</table>

Nonlinear models reduce the normalized mean-square error (NMSE) significantly in all cases. See Fig. 1 for forward and reverse pathways of ventilatory loop.

variability. The form of the averaged impulse response during baseline suggests that an increase in PETCO_2 will cause an increase in V_T (or V_T/T_TOT), with the maximum instantaneous effects occurring (on the average) at four and eight breaths after the PETCO_2 increase (after taking into account the 2-breath pure time delay). The impulse response values generally decreased during remifentanil infusion, with the decrease being more evident for the second peak. An undershoot at 13 breaths was observed during baseline only, while a secondary positive peak between 15 and 20 breaths was also observed. Note that both measures of ventilatory variability yielded similar system dynamics, especially during baseline (Fig. 4, top left).

The impulse responses are shown in Fig. 5 in the frequency domain, averaged over all subjects. The characteristics of the impulse response in the frequency domain during baseline were consistent across subjects, with a main resonant peak occurring between 0.04 and 0.08 cycles/breath in 9 of the 11 subjects (and more specifically between 0.07 and 0.08 cycles/breath in 6 of 11 subjects). This suggests that PETCO_2 oscillations at the corresponding cycles (i.e., between 12.5 and 25 breaths) will have a more pronounced effect on V_T (and V_T/T_TOT). As a result, a resonant peak at 0.07 cycles/breath was observed in the averaged frequency response. The impulse response spectral characteristics were less consistent during remifentanil infusion, with the main resonant frequency peak being shifted to lower frequencies in most cases. This is reflected in the averaged plots of Fig. 5, where the peak at 0.07 cycles/breath is not evident during remifentanil infusion. The frequency response of the second-order kernels (k_2 in Eq. 1), averaged over all subjects, is shown in Fig. 6 for V_T in the 2-dimensional frequency domain. The gain values...
on the diagonal (i.e., \([f_1, f_1]\)) of this plot quantify the quadratic effect of input oscillations at \(f_1\), whereas off-diagonal values (i.e., \([f_1, f_2]\)) quantify the contribution of nonlinear interactions between input oscillations at \(f_1\) and \(f_2\). In general, the second-order kernels exhibited peaks at locations similar to their first-order counterparts and were affected in a similar manner during remifentanil infusion. Therefore, the gain values of the chemoreflex second-order kernels reduced during remifentanil infusion and their power was shifted to lower frequencies (e.g., Fig. 6, bottom right). We note also that the second-order kernels were found to be more variable across subjects relative to their first-order counterparts. The spectral power of the frequency responses of Figs. 5–6 is shown in Fig. 7 for both model outputs (VT and VT/TTOT) in the case of linear and nonlinear models (Fig. 7, A and B, respectively). A decrease was generally observed in the spectral power of \(k_1\) (linear models), as well as both \(k_1\) and \(k_2\) (nonlinear models). This decrease was statistically significant only during the lowest level of remifentanil infusion (0.7 ng/ml) for VT; however, more pronounced differences were observed when VT/TTOT was used as the model output.

Fig. 4. Averaged impulse response \(k_i\) in Eq. 1 for \(Q = 1\) for the chemoreflex pathway, whereby both VT (blue) and VT/TTOT (black) were used to assess ventilatory variability. Both measures of ventilation yielded similar results, especially during baseline, where 2 main positive peaks are observed around 4 and 8 breaths (after accounting for the 2-breath pure time delay). Remifentanil decreased the impulse response values, particularly of the second peak. A secondary positive peak was also observed between 15 and 20 breaths (top left panel). Remifentanil infusions were 0.7, 1.1, and 1.5 ng/ml.

Fig. 5. The impulse responses of the chemoreflex pathway of Fig. 3 in the frequency domain when both VT (blue) and VT/TTOT (black) were used as measures of ventilatory variability. A resonant peak at 0.07 cycles/breath (i.e., corresponding to PETCO2 stimuli with periods of about 14 breaths) was observed during baseline, while most of the impulse response spectral power was shifted to lower frequencies during remifentanil infusion. Both measures of ventilation yielded similar results. Remifentanil infusions were 0.7, 1.1, and 1.5 ng/ml.
System dynamics: $V \rightarrow \text{PETCO}_2$ pathway. The averaged impulse response for the reverse branch of the ventilatory loop ($V \rightarrow \text{PETCO}_2$) is shown in Fig. 8 in the time domain when both V_T (blue) and V_T/T_{TOT} (black) were considered as the model inputs. The form of the impulse responses suggests that an increase in tidal volume (or breath-to-breath ventilation) will lead to a decrease in PETCO_2, with the maximum effects occurring almost instantaneously, i.e., within the first two breaths from the onset of the ventilatory change. It also suggests that the dynamic effects of these changes occur mainly within the first 5 breaths and cease before 20 breaths, since the impulse response values drop to zero before this point. Remifentanil infusion did not alter these characteristics; however, the impulse response values increased considerably at all infusion levels, suggesting a stronger dynamic effect of V_T (or V_T/T_{TOT}) variability on PETCO_2. This is reflected on the spectral power of the second-order model components k_2 increased as well ($P < 0.05$ at 0.7 ng/ml).

DISCUSSION

We have demonstrated that infusion of remifentanil leads to irregularity of the respiratory pattern during spontaneous respiration, with an associated increase in the mean and coefficient of variability of PETCO_2. Moreover, it decreased the strength of the dynamic effect of natural PETCO_2 variability on tidal volume and breath-to-breath ventilation, but increased the reverse relationship, i.e., the effect of ventilatory variability on PETCO_2. Nonlinear, rather than linear, models best described these dynamic relationships. Collectively, these findings suggest the potential use of data-driven system modeling techniques to identify drug-induced changes on respiratory control on a systems level, employing experimental data from minimally invasive protocols.

Respiratory Variables

Remifentanil caused dose-dependent increases in the mean value of PETCO_2, which also became more variable. The dose-dependent decrease in respiratory rate was associated with a profound prolongation of mean expiratory time (T_E), but effects on inspiratory time were seen only at the highest dose.

Spectral power, which is calculated by integrating the PSD function of a signal, quantifies the variability of time-series data within different frequency ranges. The spectral analysis of the PETCO_2 and V_T time series confirmed that most of their power resides in the low-frequency range (below 0.3 cycles/breath), in agreement with previous studies (36). Therefore, we focused our analysis in this frequency range. The PSD of PETCO_2 exhibited increased values over the entire range during remifentanil infusion (Fig. 2), whereas its V_T counterpart increased above 0.02 cycles/breath, albeit less markedly. The corresponding spectral power values are in agreement with the rest of the physiological measurements in Table 1, i.e., both PETCO_2 and V_T became more variable during remifentanil infusion.

Dynamic Models

Whereas spectral analysis provides information about the relative magnitude of different oscillatory patterns that reside
in respiratory time series and how these are affected by remifentanil, it does not provide any information about whether these patterns are correlated or about the strength of these correlations at different frequency bands and at different remifentanil levels. However, the influence of the spontaneous variability of PeT\textsubscript{CO2} on fluctuations of breath-to-breath V\textsubscript{T} variability has been demonstrated by application of a PeT\textsubscript{CO2}, buffering technique, which reduced fluctuations in PeT\textsubscript{CO2} and V\textsubscript{T} below 0.10 cycles/breath (29). Moreover, coherent oscillations between PeT\textsubscript{CO2} and mean inspiratory flow V\textsubscript{I}/T\textsubscript{I} in the frequency domain, in agreement with a closed-loop model of the chemoreflex feedback, have been also reported (36). To quantify these correlations, we have employed a nonlinear data-driven modeling approach that has been used extensively to model physiological systems (24). The results of our study extend the aforementioned observations to both pathways of the ventilatory loop (Fig. 1), examining for dynamic nonlinearities as well.

Spontaneous ventilatory variability arises from two components: V\textsubscript{CO2}, which is the result of the causal effects of P\textsubscript{CO2} variations (chemical drive) and is captured by the employed dynamic models (Fig. 3B and Figs. 4–6), and V\textsubscript{d}, which reflects the effects of all other exogenous physiological factors (including sighs) and is viewed as a disturbance term, i.e., it corresponds to the model residuals. Likewise, PeT\textsubscript{CO2} variability includes a ventilatory-related component PeT\textsubscript{CO2},\textsubscript{V} (captured by the corresponding dynamic models; Fig. 3A and Fig. 8) and a disturbance term PeT\textsubscript{CO2},\textsubscript{d}, which corresponds to the residuals of the V \rightarrow PeT\textsubscript{CO2} models.

Model Performance

The output prediction NMSE (Table 2) was used as a measure of model performance. The relatively high NMSE values obtained for both pathways reflect the fact that the resting variability of PeT\textsubscript{CO2} and V\textsubscript{T} (or V\textsubscript{T}/T\textsubscript{TOT}) is determined by multiple physiological factors, operating in a complex and closed-loop manner (8, 21). In the case of respiratory variability, significant influences that are part of the “disturbance” signal V\textsubscript{d} (Fig. 1), which corresponds to the nonchemical respiratory drive, are exerted by inputs from cortical centers due to behavioral and volitional modulation, the tonic input of the reticular activating system during wakefulness, as well as changes in cardiovascular parameters (e.g., cardiac output and blood pressure or cerebral blood flow oscillations), due to the intricate coupling between the cardiovascular and respiratory systems. These influences may be stochastic (broadband) or periodic (21). As a result, similar ventilatory patterns may arise from different chemical and nonchemical components. Our results (nonlinear models; Table 1) suggest an increase in the chemical drive of ventilation during remifentanil infusion. Since the magnitude of the PeT\textsubscript{CO2} \rightarrow V model dynamics decreased (Figs. 4–7), this increase was due to the increased PeT\textsubscript{CO2} variability. Also, the fact that ventilatory variability, which comprises the net effect of the chemical and nonchemical components, increased less markedly (Fig. 2 and Table 1) implies a relative decrease in the nonchemical drive. Likewise, the PeT\textsubscript{CO2} disturbance signal is influenced by the aforementioned and other factors, such as metabolism, wakefulness, level of arousal, sleep state, and arterial PO\textsubscript{2} (PaO\textsubscript{2}) level (8). We have successfully maintained these parameters as constant as possible, instructing subjects to remain awake and keeping PeT\textsubscript{CO2} constant.

Nonlinear models reduced the NMSEs significantly, indicating the presence of dynamic nonlinearities between PeT\textsubscript{CO2} and V\textsubscript{T} variations. The Laguerre expansion technique used in this study does not result in a dramatic increase in the number of free parameters in the case of nonlinear models, which is a problem often encountered in practice, especially for short data sets. In our case, the estimation of 22 free parameters [expansion coefficients, Laguerre parameter \(\alpha\), which determines the decay characteristics of the Laguerre basis (25), and constant term] was required, compared with 7 for linear models. Therefore, the large decrease in the nonlinear NMSE is unlikely to be due to the increase in model complexity alone, which is also taken into account in the determination of model structure. The validity of the nonlinear model terms is also corroborated by the fact that they exhibited similar trends to their linear counterparts (Figs. 7 and 9). The increased variability of the second-order kernels could be due to that they express interactions between different signal frequency components (i.e., they are characterized by more “degrees of freedom” in this context).
The presence of nonlinear (chaotic) dynamics in spontaneous respiratory volume variability has been reported by Wysocki et al. (38). On the other hand, the steady-state chemoreflex response, i.e., the relation between the mean values of PETCO₂ and ventilation, has been shown to be relatively linear (9); however, note that in the present study we are examining the dynamic relation between spontaneous fluctuations around the mean values, whereby the latter may be viewed as the system “operating point.” Regarding the reverse branch, it has been suggested that the influence of VT on CO₂ exhibits nonlinear characteristics in the case of large VT variations (6, 36); also, the gas exchange equations are characterized by nonlinear behavior. Our results suggest that the presence of nonlinearities is also significant in the interrelationships between VT (and VT/TTOT) and PETCO₂ during resting conditions.

The Laguerre expansion technique was used in a similar context by Asyali et al. (1), where the loop gain was obtained in normal subjects and patients with obstructive sleep apnea (OSA) during sleep by inducing transient arousals, with the OSA subjects exhibiting a tendency for higher average loop gains between 0.01 and 0.05 Hz, as well as more rapid and underdamped dynamics. However, in that study, the ventilatory impulse response was estimated as a whole, i.e., by using an autoregressive model to quantify the dependence of respiratory drive on its previous values. Here, we have obtained dynamic models of the two ventilatory branches separately.

System Dynamics: PETCO₂ → V Pathway

We removed deep breaths (sighs) from the VT and VT/TTOT time series before model estimation in the PETCO₂ → V pathway because sighs are not caused by PETCO₂ changes, and their inclusion could have affected the model estimates. The same approach was employed by Van den Aardweg et al. (36). We also hypothesized a two-breath time delay in the effects of PETCO₂, due to the lung-to-carotid body and lung-to-brain transport delays (20), in agreement with previous studies (20, 34, 36). Note that applying data-driven pure time-delay estimation methods (30) did not yield reasonable results in many cases, possibly due to the influence of the ventilatory disturbance term (nonchemical drive) and its propagation through the respiratory loop. Moreover, using delay values between one and four breaths did not affect the performance (i.e., NMSE value) of the employed models or the form of the kernel estimates to a large extent. Hence, we selected the use of a time delay of two breaths in all cases, although it is possible that the delay is reduced (e.g., to 1 breath) during the higher remifentanil levels, as the average Te increased significantly and, although we do not have a direct measure, cardiac output is likely to have decreased mildly.

The form of the impulse response between PETCO₂ and VT (or VT/TTOT; Fig. 4), which is predominantly positive in all cases, agrees qualitatively with the previously well-described effects of PETCO₂ on ventilation, i.e., an increase in PETCO₂ results in an increase in VT (or VT/TTOT) some breaths later. Note that the linear component obtained from linear and nonlinear models exhibited similar characteristics. The spectral peaks of the PETCO₂ → V dynamic models during baseline (Fig. 5, top left) generally agree with the results of Van den Aardweg et al. (36), who reported coherent oscillations between PETCO₂ and VT/TTOT below 0.15 cycles/breath with a peak observed around 0.08 cycles/breath for the averaged gain by utilizing coherence analysis, which is a measure of the strength of the linear relation between the two signals.

The multiphasic characteristic observed during baseline (Fig. 4, top left) possibly reflects the closed-loop nature of respiratory control, as an initial perturbation in PETCO₂ will cause a change in tidal volume that has an opposite effect on PETCO₂, and that these oscillations eventually get damped over
The spectral power of the $\text{PETCO}_2 \rightarrow V$ system dynamics decreased during remifentanil administration (Fig. 7), suggesting that arterial CO$_2$ has a less pronounced effect on the respiratory control centers (i.e., decreased chemosensitivity). We initially selected VT as a measure of ventilatory variability to differentiate motor output from effects on timing (predominantly T_e). Using VT/T_{TOT} as the system output yielded similar system dynamics to VT, especially during baseline, while the results were affected more during the highest remifentanil level, due to the irregularity induced on T_e (and consequently T_{TOT}). The differences in the integrated gain of the first- and second-order kernels were more pronounced for VT/T_{TOT}, possibly suggesting that it is a more sensitive measure for assessing chemoresponsiveness during resting conditions. Note that we also examined other frequently used measures of ventilatory variability (9), i.e., mean inspiratory flow VT/T_i and expiratory ventilation VT/T_e, and the results were similar to VT and VT/T_{TOT}, respectively. This is expected since T_i was generally less variable and not affected substantially by remifentanil, whereas remifentanil-induced changes in T_{TOT} were mainly caused by changes in T_e.

Our findings of increased respiratory variability and increased T_e generally agree with the three other human studies of opioid effects on breath timing during spontaneous respiration and confirm that remifentanil has similar respiratory effects to other opioids. Leino et al. (22) demonstrated increased variability of respiratory timing (but not VT) with morphine and oxycodone infusion. The findings of Bouillon et al. (4) were similar (although they noted increased variability of both VT and T_e). Ferguson and Drummond (14) demonstrated, in a group of anesthetized humans, that fentanyl affects respiratory timing to a greater effect than VT. The subtle differences in the findings of studies are likely to represent differences in statistical approaches used. In none of these studies were detailed time-series analyses reported, as in the present study.

Mellen et al. (26) investigated the mechanism of respiratory depression in the pre-Bötzinger complex in neonatal rats. They found that irregular breathing was caused by intermittent interruption of communication between the pre-Bötzinger complex and the retrapezoid nucleus, leading to a “quantal” pattern of respiratory depression. It is difficult, however, to relate these findings to conscious adult humans, where so many other factors determine respiratory output. If remifentanil were to interrupt motor output independently of the tonic effect of CO$_2$ as in the study of Mellen et al. (26), then this may partially explain respiratory depression, beyond reduced chemosensitivity. We did not observe quantal slowing and are therefore unable to dissociate these two effects in the present study.

Intrabreath oscillations in P_{aCO}_2 may have a strong effect on respiration (7), independent of mean P_{aCO}_2 value, and this effect is stronger in chronic hypoxia of high altitude, where the ventilatory sensitivity to CO$_2$ is increased. We could therefore speculate that the increased P_{ETCO}_2 variability seen in the present study may help maintain ventilation during opioid-induced respiratory depression; therefore it would be interesting to examine the effects of a CO$_2$ buffering technique to reduce this variability.

On the other hand, sleep, which is accompanied by an increase in steady-state arterial CO$_2$, has been shown to decrease the ventilatory responses to hypercapnia and hypoxia (16, 19). In the present study, we have observed this latter

Fig. 9. Spectral power of the 1st- and 2nd-order Volterra kernels k_1 and k_2 for linear (A) and nonlinear (B) models, $V \rightarrow \text{PETCO}_2$ pathway. The spectral power of the 1st- and 2nd-order kernels increased significantly during remifentanil infusion (all levels). Remifentanil infusions were 0.7, 1.1, and 1.5 ng/ml. *$P < 0.05$, **$P < 0.01$ compared with baseline.

~30 breaths. The first two peaks of this response (at about 4 and 8 breaths, taking into account the 2-breath time delay hypothesized for the effects of PETCO_2) may reflect the function of the fast peripheral carotid chemoreceptors. Interestingly, the relative location of these main peaks, as well as the secondary peak observed around 20 breaths, seems to correspond with the results of Pedersen et al. (34) regarding the time constants of the peripheral and central chemoreceptors; however, direct comparisons should be made with caution, as in that study a two-compartment differential equation model and a multifrequency binary PETCO_2 sequence during hypoxic and hyperoxic conditions were used, resulting in a wide range of time constants.

We maintained a constant level of mild hyperoxia (~30 kPa); therefore, we expect that function of the peripheral chemoreflex was slightly depressed (34) and this effect should be constant throughout the study. On the other hand, hyperventilation and apneas may induce arterial hypoxemia, which has independent effects on the peripheral chemoreflex. Therefore, we used a manual dynamic end-tidal forcing technique (33, 37) to maintain P_{aO}_2 constant and avoid variability in peripheral chemoreceptor activation. Finally, opioids have a strong effect on the peripheral chemoreflex (2) and the contribution of a slightly elevated P_{aO}_2 is unlikely to influence the results significantly relative to this.

J Appl Physiol • VOL 106 • APRIL 2009 • www.jap.org
effect: despite remifentanil increasing mean $\text{Pe}_{\text{ETCO}_2}$ and its variability around the mean, there is reduced ventilatory sensitivity.

System Dynamics: $V \rightarrow \text{Pe}_{\text{ETCO}_2}$, Pathway

The $V \rightarrow \text{Pe}_{\text{ETCO}_2}$ impulse responses (Fig. 8) quantify the dynamics of the reverse pathway of the ventilatory loop. Their waveforms, which are negative over all time lags, correspond to the well-known effects of respiratory changes, i.e., an abrupt increase in V_T (or $V_T/TTOT$) results in a rapid decrease in $\text{Pe}_{\text{ETCO}_2}$. Its time extent suggests that this change settles back within the subsequent 20 breaths. Remifentanil infusion did not have a profound effect on the timing of the $V \rightarrow \text{Pe}_{\text{ETCO}_2}$ impulse responses; however, it increased its values to a similar extent at all remifentanil levels for both measures of ventilatory variability considered, suggesting an increased $\text{Pe}_{\text{ETCO}_2}$ sensitivity to ventilatory changes. Hypercapnia may contribute to this increased sensitivity, due to greater CO$_2$ excretion per breath as a simple mass effect, as similar observations have been reported during sleep, which also induces hypercapnia (19). Other possible factors could include decreased cardiac output and/or metabolic rate. However, we consider this as being unlikely, as the levels of remifentanil examined in the present study are relatively low.

Ventilatory Stability

The stability of the ventilatory control loop is determined by the loop gain, i.e., the product of the controller and plant gains (21) in the case of linear models (it is not straightforward to compute it in the case of nonlinear models). When V_T was used as a measure of ventilatory variability, the integrated loop gain between 0 and 0.3 cycles/breath was 0.026 ± 0.003 at baseline and 0.030 ± 0.005 at 1.5 ng/ml, ($P = \text{not significant}$), as the decrease in the controller ($\text{Pe}_{\text{ETCO}_2} \rightarrow V_T$) gains induced by remifentanil was counterbalanced by a more pronounced increase in the plant ($V_T \rightarrow \text{Pe}_{\text{ETCO}_2}$) gains. The values of integrated loop gain values did not change significantly also when $V_T/TTOT$ was used (0.041 ± 0.007 during baseline, 0.036 ± 0.004 at 1.5 ng/ml of remifentanil infusion, $P = \text{not significant}$). In this case, the decrease in the controller gain and the increase in the plant gain were both less pronounced. These results should be interpreted with some caution, as the obtained system dynamics are “closed-loop” estimates and may be therefore affected by correlations between the input/output and disturbance terms (see also Limitations). Further changes in loop gain may arise from altered delays in the ventilatory loop; however, we consider this unlikely, as these would require large changes in cardiac output, for which we had no direct evidence.

Limitations

The changes observed in resting ventilation are dependent on the interaction of drug and CO$_2$ kinetics (3). In the present study we investigated the response to a steady-state infusion of remifentanil. This drug is convenient to study because it has a short context-insensitive half-life, and plasma (and effect site) concentrations can easily be manipulated. However, it is not commonly used as an analgesic except in anesthetic practice, as small errors in infusion rate can lead to severe respiratory depression. As it is so potent, the same dose of remifentanil can cause varying respiratory effects that are dependent on its rate of delivery and are fully explained in a modeling study by Bouillon et al. (3). In the present study we used relatively low doses of remifentanil and waited for stabilization of effect site concentrations before making measurements. Although we believe that the dose range that we employed is likely to be applicable to clinical analgesia, further studies investigating more commonly used drugs (e.g., morphine) are required. It would be especially interesting to use this methodology to investigate effects of opioids with effects on other receptor-mediated systems [e.g., tramadol (22)] or partial agonists [e.g., buprenorphine (12)] that have been shown to have different effects on respiration than pure μ-opioid agonists such as remifentanil.

Unlike studies that examine respiration at predetermined CO$_2$ and oxygen levels that open the ventilatory feedback loop, our experimental approach does not allow the same precision of measuring the hypoxic and hypercapnic ventilatory responses. Since it is based on using smaller natural fluctuations around the mean, the sensitivity it yields may be further increased; for instance, the decrease observed in the chemoreflex pathway kernels (Figs. 4–7) was not gradual for higher remifentanil levels. In this context, improvement could be achieved by investigating the optimal recording duration and/or the effect of alternative input patterns that would increase the chemical drive. These could include mild perturbations such as small CO$_2$ boluses (pseudorandom binary pulses) or occasional vital capacity breaths to cause brief hypocapnia. However, since the main advantage of our methodology is that it is more directly applicable to the clinical situation, as it allows examination of the system under natural, closed-loop operating conditions and does not require external experimental interventions, alternative stimuli would have to be carefully designed so that they do not perturb the system away from its natural state. We defer this to future studies.

Another consequence of the fact that the respiratory control system is probed under normal breathing, i.e., under natural, closed-loop conditions, is that the obtained model estimates are closed-loop responses. Therefore, they are possibly affected by the fact that the input, output, and disturbance signals are correlated and by the propagation of the latter around the loop, which are characteristics that are inherent in all closed-loop systems. To account for this, we removed a major fraction of the ventilatory disturbance signal (V_d)—deep breaths, which are clearly not caused by $\text{Pe}_{\text{ETCO}_2}$ changes—before model estimation in the $\text{Pe}_{\text{ETCO}_2} \rightarrow V$ pathway. The aforementioned effects are expected to be more pronounced in this pathway, as the dynamic effects of $\text{Pe}_{\text{ETCO}_2}$ on V_T (or $V_T/TTOT$) are weaker than vice versa (see, e.g., Fig. 3). The design of alternative stimuli patterns could also help in further discriminating the “plant” from the “controller” responses, at the cost however of perturbing the control loop from its state of natural operation.

In conclusion, we have characterized the effects of low-dose remifentanil infusion on spontaneous respiration in detail by utilizing linear and nonlinear dynamic models, which suggests the potential use of data-driven system modeling techniques to identify drug-induced changes on respiratory control. This approach is particularly useful for investigating drug action in the clinical situation because it can derive useful information from a clinically relevant experimental paradigm.
ACKNOWLEDGMENTS

We thank Prof. Peter A. Robbins of Oxford University for helpful suggestions in improving the manuscript.

GRANTS

This study was supported by project grants from the Association of Anaesthetists of Great Britain and Ireland, and from the International Anesthesia Research Society. G. D. Mitsis is supported by the European Social Fund (75%) and National Resources (25%), Operational Program Competitiveness, General Secretariat for Research and Development (Program ENTER 04). K. T. S. Pattinson is supported by the Medical Research Council (UK).

REFERENCES