The difference in ventilation heterogeneity between asthmatic and healthy subjects quantified using hyperpolarized 3He MRI

Yang-Sheng Tzeng,1,2 Kenneth Lutchen,2 and Mitchell Albert1,3

1Department of Radiology, Brigham & Women’s Hospital, Boston; 2Department of Biomedical Engineering, Boston University, Boston; and 3Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts

Submitted 23 October 2007; accepted in final form 17 November 2008

Tzeng YS, Lutchen K, Albert M. The difference in ventilation heterogeneity between asthmatic and healthy subjects quantified using hyperpolarized 3He MRI. J Appl Physiol 106: 813–822, 2009. First published November 20, 2008; doi:10.1152/japplphysiol.01133.2007.—In this pilot study, algorithms for quantitatively evaluating the distribution and heterogeneity of human ventilation imaged with hyperpolarized (HP) 3He MRI were developed for the goal of examining structure-function relationships within the asthmatic lung. Ten asthmatic and six healthy human subjects were imaged with HP 3He MRI before bronchial challenge (pre-MCh), after bronchial challenge (post-MCh), and after a series of deep inspirations (post-DI) following challenge. The acquired images were rigidly coregistered. Local voxel fractional ventilation was computed by setting the sum of the pixel intensity within the lung region in each image to 1 liter of inhaled 3He mixture. Local ventilation heterogeneity was quantified by computing regional signal coefficient of variation. Voxel fractional ventilation histograms and overall heterogeneity scores were then calculated. Asthmatic subjects had a higher ventilation heterogeneity to begin with ($P = 0.025$). A methacholine challenge elevated ventilation heterogeneity for all subjects (difference: $P = 0.08$). After a DI postchallenge, this heterogeneity reversed substantially toward the baseline state for healthy subjects but only minimally in asthmatic subjects. This difference was significant in absolute quantity (difference: $P = 0.007$) as well as relative to the initial increase (difference: $P = 0.03$). These findings suggest that constriction heterogeneity is not a characteristic unique to asthmatic airway trees but rather a behavior intrinsic to all airway trees when provoked. Once ventilation heterogeneity is established, it is the lack of reversal following DIs that distinguishes asthmatics from non-asthmatics.

RECENT STUDIES HAVE EMPHASIZED two distinguishing features of asthmatic lungs. First, when provoked, these airways constrict heterogeneously (14). Second, when bronchoconstricted, asthmatics tend to be less responsive to deep inspirations (DI) than healthy subjects (5, 13). In fact, it was noted by Skloot (40) that combining the wash-in approach with HP 3He MRI to quantitatively map ventilation (10), while rigorous, cannot be readily extended to human studies because of the quantity and cost of the 3He gas necessary, as well as higher safety demands.

In this pilot study we propose approaches to quantifying ventilation and its heterogeneity using HP 3He MRI in a manner applicable to human subjects. Interrogating imaging data with impartial algorithms reduces the uncertainties associated with human judgment. The numerical methods developed in this study were applied to HP 3He ventilation MR images acquired from healthy and asthmatic subjects, to quantify ventilation and characterize the associated heterogeneity in these two subject populations at baseline, following bronchoconstriction, and after DIs. The effect of DIs was further examined in both absolute and relative terms.

The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
MATERIALS AND METHODS

Subject enrollment. The Health Insurance Portability and Accountability Act-compliant research protocol in this study was approved by the local Institutional Review Board. Written informed consent was obtained from all recruited subjects. Data were obtained from 10 asthmatic (5 male, 5 female) and six healthy (3 male, 3 female) subjects.

Asthmatics sought for this study were those with mild to moderate asthma, defined as diagnosed asthmatics having a forced expiratory volume in 1 s (FEV1) ≥ 60% predicted without inhaled or oral steroids, asthma symptoms fewer than seven times a week requiring β2-agonist use, and well-controlled on a low-dose regimen of inhaled corticosteroids (32). Asthmatic subjects were diagnosed based on the dose of methacholine (MCh) at which they achieve a 20% drop in FEV1 (PC20) (1). Only data from subjects whose PC20 value on the day of the MRI experiment continue to satisfy the American Thoracic Society definition of asthmatics are included in this analysis.

Healthy subjects were nonsmokers with no history of respiratory disease. All had a PC20 value >25 mg/ml during their asthma screening.

Hardware. MR imaging was carried out on a General Electric Signa LX 1.5T MRI scanner, with a heterodyne system appended to enable imaging at the 3He frequency, and using a flexible quadrature wrap-around lung coil (Clinical MR Solutions, Brookfield, WI) tuned to the 3He frequency. 3He was hyperpolarized to 10–20% via collision screening.

Before each scan, a manual prescan at the 3He frequency was built in-house. Experiment with 1 liter of inhaled 3He-N2 mixture.

Protocol. Scans to acquire static ventilation images of the lung were initiated immediately upon subjects holding their breath after inhaling ~1 liter of ~33% 1He-67% N2 mixture from functional residual capacity. The 1-liter gas mixture volume was ensured with the use of 1-liter Tedlar bags. The scans employed a Fast Gradient Echo pulse sequence acquiring coronal multislice images with a 46-cm field of view (FOV), 0.75 phase FOV, 128 × 256 matrix (zero-padded to 256 × 256), 13-mm slice thickness, 0-mm gap between slices, 31.25-kHz bandwidth, 14–18° flip angle, TE/TR 1.228 ms/50 –75 ms, and interleaved data acquisition. Scans ranged from 5 to 10 s, depending on the anterior-posterior depth of the lungs, which may require 9–14 slices to encompass.

Before each scan, a manual prescan at the 3He frequency was carried out to examine the functionality of the heterodyne system and to ensure that no HP 3He signal survived from the previous scan. In the event residual HP 3He signal was detected, manual prescan was continued until the signal was consumed to a negligible degree.

Before the experiments, subjects were asked to withhold caffeine consumption from the beginning of the day. Asthmatic subjects must not have used any fast-acting β2-agonist inhalers for at least 8 h and any long-acting β2-agonist inhalers for at least 48 h.

After baseline spirometry (Microlab 3000 Series or Microloop 35355; Micro Medical) and HP 3He MR imaging, subjects underwent a MCh challenge with the five-breath dosimter protocol (1) in a seated upright position (DSM2030 Dosimeter and DeVilbiss 646 Nebulizer; S&K Instrument). Briefly, each subject inhaled five deep breaths of a MCh solution at a given concentration and waited for 3 min, at which time the pulmonary status of the subject’s lungs was assessed using MCh challenge with the five-breath dosimter protocol (1). The nominal MCh concentrations administered were 0.0, 0.078, 0.156, 0.3125, 0.625, 1.25, 2.5, 5.0, 10.0, and 25.0 mg/ml. Every other MCh concentration in the challenge could be skipped until 10.0 mg/ml for healthy subjects or until the concentration one order of magnitude below the known PC20 dose for asthmatic subjects. For asthmatic subjects, the MCh challenge ended upon causing a >20% drop in FEV1. Because withholding DIs could elicit amplified airway constriction even from nonasthmatics (3, 40), healthy subjects were asked to refrain from taking DIs (including spirometry) after each dose. For healthy subjects, the end point of the MCh challenge was either when the 25 mg/ml dose was reached or upon verbal expression by the subjects that they were experiencing significant chest tightness. Subjects then went through the second HP 3He MR imaging.

Returning the table of the MRI scanner back to its home position, subjects were instructed to sit up and take 3–5 DIs, with a 3- to 5-s breathhold at the end of the last DI. The seated position is for consistency with spirometry and MCh challenge. Afterward, subjects were reininserted into the MRI, upon which the third HP 3He MR imaging procedure was conducted. The anterior-posterior coordinates for the post-MCh and post-DI MRI scans were the same as those used for the baseline/pre-MCh scan.

Subjects must have returned to at least 90% of their baseline FEV1 before being released from the experiment session. In the event this recovery did not occur spontaneously after the post-DI data acquisition, albuterol was used to aid this process.

For each slice, the lung regions of interest (ROI) were manually traced from the pre-MCh image. The same regions were considered as the lungs in the post-MCh and post-DI data sets. Manual definition of the lung ROI, as opposed to a more automated thresholding approach, is necessary to avoid leaving out from the analysis regions of the lung that are poorly ventilated or unventilated even before bronchial challenge, particularly in asthmatics. The combination of coregistration and application of pre-MCh lung ROIs to post-MCh and post-DI data sets enables the comparison of the same lung regions across the different stages of the experiment. The pixel intensities of the pixels outside the lung ROI were set to zero. The mean noise level of an image was subtracted from all the pixel intensities (16, 20) within the lung ROI at that slice. Negative resulting pixel intensities were set to zero. C, a signal intensity-to-volume conversion factor, was computed by equating the resulting pixel intensity sum for each stage of the experiment with 1 liter of inhaled 3He-N2 mixture.

\[
C = \frac{1}{\sum S_{i,j,k}}
\]

where S is the resulting pixel intensity, i and j are the pixel indexes, and k is the coronal slice index. The volume fraction of each voxel occupied by the 3He mixture then followed as

\[
R_{i,j,k} = \frac{C S_{i,j,k}}{V_{voxel}}
\]

where \(V_{voxel}\) is the volume of each voxel. In addition, histograms of voxel volume fraction occupied by 3He for the entire lung were constructed, and each histogram element was normalized such that their sum came to 1.0. Hereafter, the voxel volume fraction occupied by 3He will be referred to as the voxel fractional ventilation (R_{i,j,k}).

Defining the global length scale for the lungs as the average of the left and right lungs' maximum width, the local length scale L was then defined to be 10% of the global length scale. For each pixel within the lung ROI, a heterogeneity index H_{i,j,k} was calculated by computing the CoV of the voxel fractional ventilation in its neighborhood. The neighborhood of a pixel in the lung ROI is defined as the pixels within a square (inclusive) of sides L centered around the pixel, in the same slice as the pixel of interest. Pixels outside the lung ROI are excluded from the neighborhood. For pixels whose neighborhoods are dominated by ventilation defects, the computed CoV would be more
indicative of noise characteristics than actual ventilation heterogeneity. Thus pixels whose neighborhood had an overall signal-to-noise ratio (SNR) less than two were excluded from the computation of heterogeneity indexes, as well as subsequent computation of heterogeneity scores. A heterogeneity score H for each image set was computed for each subject to examine how much of the elevated heterogeneity resulting from bronchoprovocation subsides with the DIs.

During the coregistration of images, plotting of voxel fractional ventilation histograms, and computation of heterogeneity scores, the trachea and discernible major airways were manually excluded. All algorithms were implemented in MatLab version 6.0.0.88 release 12 (The Mathworks, Natick, MA).

Statistical analysis. The changes in the heterogeneity scores from pre-MCh to post-MCh and from post-MCh to post-DI and the recovery index for both asthmatic and healthy subject populations were evaluated using a two-tailed Student’s t-test. A two-sample Student’s t-test was used to examine the differences in MCh-induced increases in heterogeneity score, DI-facilitated changes in heterogeneity score, and recovery indexes between the two subject populations. Welch’s corrections were applied to the t-tests to not assume equal variances among the subject groups, and $P \leq 0.05$ was considered statistically significant.

Interuser variability. The data processing was repeated by two individuals other than the lead author to examine the interuser variability of the data processing approach. Data from three randomly selected healthy subjects and three randomly selected asthmatic subjects were used for this exercise. Results from the repeated data processing, including the manually defined ROI for each lung slice, the voxel fractional ventilation histograms, and overall heterogeneity scores for each of the three stages of the experiments, were compared against the original results from the lead author. For ROI definition, the sum of the pixel selection false positives and false negatives of the two repeat efforts were divided by the sum of pixels in the original effort. Differences in heterogeneity scores between the repeated and the original computed scores were also divided by the original computed scores. These enabled the differences to be viewed as a percentage of the original results. Repeat voxel fractional ventilation histograms were visually compared against the original histograms to examine whether the originally observed trends were preserved.

RESULTS

Relevant subject information is tabulated in Table 1. The reported PC$_{20}$ values are those recorded from the MCh challenge on the day of the experiment. None of the healthy subjects reported discomforts to end the MCh challenge before the 25 mg/ml dose. The SNR information provided for each subject spans all the images from all three stages of the experiment. SNR values were computed with the signal evaluated from regions that encompass both ventilated and unventilated regions of the lung, to prevent bias due to ventilation pockets or defects.

Figures 1 and 2 show the original images (negatives instead of positives are used to aid the reader in visualizing imaged features), the corresponding voxel fractional ventilation maps, and the resulting heterogeneity maps. Figure 1 shows these depictions for a healthy subject, and Fig. 2 shows the corresponding information for an asthmatic subject. The quantitative ranges indicated by the color bars apply to both the ventilation and heterogeneity maps. At baseline, the HP 3He MR ventilation images indicate that most lung voxels are 10–40% occupied by 3He (Fig. 1b1), and the cool colors in the corresponding heterogeneity map reflect the high homogeneity. However, after the MCh challenge, voxel fractional ventilation clearly became more heterogeneous, accentuated by pockets of very enhanced voxel fractional ventilation (warmer colors) and areas of voxel fractional ventilation deprivation (colder colors) (Fig. 1b2); the number of voxels 10–40% occupied by 3He was reduced, accompanied by minimal increases in the number of voxels occupied by 50–80% 3He and 4He.

Table 1. Pertinent information on subjects who participated in this study

<table>
<thead>
<tr>
<th>Subject</th>
<th>Sex</th>
<th>M/F</th>
<th>Age, yr</th>
<th>Height, cm</th>
<th>PC$_{20}$, mg/ml</th>
<th>Baseline FEV$_1$, %predicted</th>
<th>Asthma Medications</th>
<th>SNR Range of Images</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthy subjects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEAL1</td>
<td>M</td>
<td>22</td>
<td>180</td>
<td>N/A</td>
<td>95.2</td>
<td>N/A</td>
<td>17–46</td>
<td></td>
</tr>
<tr>
<td>HEAL2</td>
<td>F</td>
<td>23</td>
<td>165</td>
<td>N/A</td>
<td>115</td>
<td>N/A</td>
<td>19–50</td>
<td></td>
</tr>
<tr>
<td>HEAL3</td>
<td>M</td>
<td>25</td>
<td>150</td>
<td>N/A</td>
<td>103</td>
<td>N/A</td>
<td>21–42</td>
<td></td>
</tr>
<tr>
<td>HEAL4</td>
<td>M</td>
<td>47</td>
<td>155</td>
<td>N/A</td>
<td>117</td>
<td>N/A</td>
<td>7–14</td>
<td></td>
</tr>
<tr>
<td>HEAL5</td>
<td>F</td>
<td>24</td>
<td>155</td>
<td>N/A</td>
<td>94.9</td>
<td>N/A</td>
<td>23–57</td>
<td></td>
</tr>
<tr>
<td>HEAL6</td>
<td>M</td>
<td>23</td>
<td>183</td>
<td>N/A</td>
<td>99.3</td>
<td>N/A</td>
<td>15–46</td>
<td></td>
</tr>
<tr>
<td>Asthematics subjects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RA1</td>
<td>F</td>
<td>34</td>
<td>160</td>
<td><0.078</td>
<td>90.2</td>
<td>Ventolin PRN as needed</td>
<td>15–44</td>
<td></td>
</tr>
<tr>
<td>RA2</td>
<td>M</td>
<td>45</td>
<td>180</td>
<td>2.041</td>
<td>104</td>
<td>Advair, Albuterol 2-3 times/day</td>
<td>23–50</td>
<td></td>
</tr>
<tr>
<td>RA3</td>
<td>M</td>
<td>23</td>
<td>173</td>
<td>0.096</td>
<td>89.0</td>
<td>Primatene mist as needed</td>
<td>15–39</td>
<td></td>
</tr>
<tr>
<td>RA4</td>
<td>M</td>
<td>22</td>
<td>168</td>
<td>1.915</td>
<td>78.1</td>
<td>Advair 250/50 5 puffs/day</td>
<td>18–55</td>
<td></td>
</tr>
<tr>
<td>RA5</td>
<td>F</td>
<td>29</td>
<td>168</td>
<td>0.798</td>
<td>83.9</td>
<td>Advair 100/50 2 puffs/day, Albuterol as needed</td>
<td>14–40</td>
<td></td>
</tr>
<tr>
<td>RA6</td>
<td>M</td>
<td>27</td>
<td>180</td>
<td>2.183</td>
<td>79.0</td>
<td>Albuterol as needed, Flovent 1-2 times/yr</td>
<td>13–37</td>
<td></td>
</tr>
<tr>
<td>RA7</td>
<td>M</td>
<td>21</td>
<td>178</td>
<td>0.269</td>
<td>84.2</td>
<td>Albuterol as needed</td>
<td>6–31</td>
<td></td>
</tr>
<tr>
<td>RA8</td>
<td>F</td>
<td>45</td>
<td>165</td>
<td>0.780</td>
<td>69.9</td>
<td>Albuterol as needed</td>
<td>9–42</td>
<td></td>
</tr>
<tr>
<td>RA9</td>
<td>M</td>
<td>22</td>
<td>188</td>
<td>0.174</td>
<td>82.6</td>
<td>Albuterol as needed</td>
<td>6–25</td>
<td></td>
</tr>
<tr>
<td>RA10</td>
<td>F</td>
<td>22</td>
<td>163</td>
<td>1.112</td>
<td>96.6</td>
<td>Albuterol as needed</td>
<td>9–49</td>
<td></td>
</tr>
</tbody>
</table>

M/F, male or female; FEV$_1$, forced expiratory volume in 1 s; PC$_{20}$, dose of methacholine resulting in a 20% drop in FEV$_1$; SNR, signal-to-noise ratio; N/A, not applicable.
a larger increase in the number of voxels that contained <10%

\(^{3}\text{He}\) by volume. The heterogeneity images also show wide-

spread local variability in voxel fractional ventilation (Fig. 1c2). After taking DIs, these healthy subjects were able to
rehomogenize much of the voxel fractional ventilation (Fig. 1, a3, b3, and c3). Indeed, post-DI, the images are visually very

similar to those at baseline.

Some asthmatic subjects had preexisting elevation of venti-
latory heterogeneity, as shown in Fig. 2, a1 and b1. Similar to
healthy subjects, voxel fractional ventilation became more
heterogeneous (Fig. 2, a2, b2, and c2) after MCh challenge.
However, unlike healthy subjects, DIs appeared to have little
impact on ventilation heterogeneity in asthmatic lungs (Fig. 2,
a3, b3, and c3).

Figure 5 shows the changes in this index from baseline pro-
duced by MCh challenge (a positive change indicates an
increase in heterogeneity) and then the subsequent changes
from post-MCh to post-DI. For the ventilation heterogeneities
of both healthy and asthmatic subjects, the increases due to
MCh challenge and reductions following DIs were statistically
significant. However, although no difference was found be-
tween their MCh-induced heterogeneity increases (\(P = 0.08\)),
these two subject groups clearly differed in the degree to which
DIs reduced the established heterogeneity (\(P = 0.007\)). The
recovery index Q (Fig. 6) was also significantly different (\(P = 0.03\))
between these two subject populations.

The root mean square adjustments after automated rigid
coregistration for the subjects were 0.66 pixels in the left-right
direction and 3.55 pixels in the cranio-caudal direction. For the
repeated data processing of the six randomly selected subjects,
the mean difference in the definition of individual lung slice
ROIs was 7.9%, with a maximum of 17%. The mean difference
in the image set heterogeneity scores was 4.4%, with a maxi-
mum of 12.2%. Visual comparisons of the histograms showed
that the difference in voxel fractional ventilation changes
between asthmatic and healthy subjects was preserved regard-
less of the user.

DISCUSSION

In this pilot study, HP \(^{3}\text{He}\) MRI was used to present the first
imaging evidence that DIs are effective in reversing broncho-
constriction in healthy subjects but are relatively ineffective in asthmatics. Similar degrees of ventilation heterogeneity elevation in asthmatic and healthy subjects as shown in Fig. 5 suggest that heterogeneity is not a characteristic unique to asthma, but rather a behavior intrinsic to all airway trees when provoked. In this respect, it is the lack of reversal (Fig. 5) or recovery (Fig. 6) in ventilation heterogeneity following DIs that distinguishes asthmatics from nonasthmatics. HP 3He MRI therefore demonstrated a defect unique to asthmatics in their ability to create a DI-induced dilation of airways that serves to improve ventilation on subsequent breaths.

Ventilation mapping with HP 3He MRI. Quantification of HP 3He MR images from asthmatics in the past had mostly been achieved by simply searching/counting human/operator-perceived ventilation defects in one image compared with another (2, 6–8, 39). The implication of such approaches is that regional lung ventilation is binary: a lung region is either fully ventilated or devoid of ventilation. This is unsatisfying for our eventual goal of developing a quantitative relation between lung and airway structure and ventilation function. Our proposed method explicitly estimates the fractional volume in each voxel occupied by fresh gas during inhalation. Hence, voxels could be anything from completely empty to completely full of the inhaled gas. The ventilation computed using this method is not the fractional volume of alveoli within the corresponding voxel replaced by fresh gas. That parameter is determined by combining the multiple-breath wash-in technique with HP 3He MRI and has been demonstrated with rodents (10).

Equating the sum of the MR signal to 1 liter of 3He gas stems from the reasoning that the MRI signal sum should correspond to the 3He mixture volume sum of 1 liter. Because individual pixel intensities are normalized by the pixel intensity sum, the accuracy of the 33–67% 3He-N2 ratio is not critical as long as the images display adequate SNR. Furthermore, it is assumed that oxygen-induced depolarization does not affect the outcome of this analysis significantly. Subjecting HP 3He to 117 and 178 mbar, the lowest and highest levels of local partial pressure of oxygen (PO2) measured in human lungs (9), for a time span of 10 s, the longest scan time in our experiments, would correspond to a maximum error of 3He volume ratio between two points due to oxygen-induced depolarization. With the use of 3He polarization decay rates set forth by Saam et al. (36), this upper bound was computed to be 30.5% (42).

Although more accurate estimation of initial local 3He polarization is certainly possible (9), such rigor either requires tripling our HP 3He production capacity or limiting data acquisition to just one experiment stage. Although newer methods may acquire both ventilation images and PO2 information within a single scan (11, 12), they cannot cover the entire lung thickness within a single breathhold, a significant drawback since the heterogeneity inherent to asthma implies no region of the lung is representative of others. Because the scientific focus of this study was on the pathophysiology of asthma, we chose to waive acquiring the images that would provide us with the PO2 information. We also should point out that for the length of time needed to perform these scans, the
The effect of the MCh challenge may wear off in healthy subjects before the data of interest are acquired. On the other hand, the persistence of the bronchoconstriction in asthmatics may lead to discomfort or danger.

Despite the weaknesses of our simplistic ventilation quantification approach, we believe our results demonstrate the effectiveness of this technique in mapping voxel fractional ventilation. Among the supporting evidence is the voxel fractional ventilation distribution across certain sections of the trachea. 3He in the trachea should be least affected by oxygen-induced depolarization. With human tracheal diameter being around 18 mm (21) and avoiding partial volume effects, the contiguous nature of the tracheal space could occupy entire voxels and manifest 100% voxel fractional ventilation. This is the case borne out at the center of the trachea within the voxel fractional ventilation maps of Fig. 1, b_1–b_3, and Fig. 2, b_1–b_3.

Alveolar elements downstream of constricted airways should be deprived of ventilation. If the inhaled gas volume is constant, conservation of mass dictates that alveolar elements distal to non-constricted or less constricted airways should compensate by accommodating larger volumes of gas. Thus the voxel fractional ventilation histogram of a bronchoconstricted lung should indicate an increase in underventilated voxels and manifest 100% voxel fractional ventilation. This is the case borne out at the center of the trachea within the voxel fractional ventilation maps of Fig. 1, b_1–b_3, and Fig. 2, b_1–b_3.

Figure 3. Voxel fractional ventilation histograms for 4 representative subjects (A, HEAL1; B, HEAL3; C, RA4; D, RA8) at each of the 3 experiment stages. It can be clearly seen that DIs were effective in reversing the ventilation of healthy subjects toward their baseline distributions, whereas those of the asthmatic subjects stayed at their bronchially challenged state.
ating CoV for adjacent clusters of $3 \times 3 \times 6$ isometric voxels.

Heterogeneity scores (\hat{H}) were determined before (pre-MCh) and after (post-MCh) bronchial challenge with methacholine (MCh) and after a series of deep inspirations (post-DI). The changes in \hat{H} (ΔH) after the MCh challenge and after DIs were computed.

Table 2. Heterogeneity scores at various experiment stages and the corresponding maneuver-induced heterogeneity score changes

<table>
<thead>
<tr>
<th>Subject</th>
<th>$\hat{H}_{\text{pre-MCh}}$</th>
<th>$\hat{H}_{\text{post-MCh}}$</th>
<th>$\Delta \hat{H}_{\text{MCh}}$</th>
<th>$\Delta \hat{H}_{\text{DI}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthy subjects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEAL1</td>
<td>0.2760</td>
<td>0.5681</td>
<td>0.2921</td>
<td>-0.1615</td>
</tr>
<tr>
<td>HEAL2</td>
<td>0.2351</td>
<td>0.3530</td>
<td>0.1179</td>
<td>-0.0717</td>
</tr>
<tr>
<td>HEAL3</td>
<td>0.2560</td>
<td>0.4164</td>
<td>0.1604</td>
<td>-0.0874</td>
</tr>
<tr>
<td>HEAL4</td>
<td>0.3144</td>
<td>0.5063</td>
<td>0.1919</td>
<td>-0.1307</td>
</tr>
<tr>
<td>HEAL5</td>
<td>0.2571</td>
<td>0.4704</td>
<td>0.2133</td>
<td>-0.1195</td>
</tr>
<tr>
<td>HEAL6</td>
<td>0.2629</td>
<td>0.4871</td>
<td>0.2242</td>
<td>-0.0924</td>
</tr>
<tr>
<td>Asthmatics subjects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RA1</td>
<td>0.4500</td>
<td>0.5564</td>
<td>0.1064</td>
<td>-0.0191</td>
</tr>
<tr>
<td>RA2</td>
<td>0.3171</td>
<td>0.3652</td>
<td>0.0481</td>
<td>-0.0374</td>
</tr>
<tr>
<td>RA3</td>
<td>0.3320</td>
<td>0.5488</td>
<td>0.2168</td>
<td>-0.1123</td>
</tr>
<tr>
<td>RA4</td>
<td>0.2858</td>
<td>0.3971</td>
<td>0.1113</td>
<td>-0.0163</td>
</tr>
<tr>
<td>RA5</td>
<td>0.3267</td>
<td>0.3685</td>
<td>0.0418</td>
<td>-0.0057</td>
</tr>
<tr>
<td>RA6</td>
<td>0.2443</td>
<td>0.4403</td>
<td>0.1960</td>
<td>-0.0526</td>
</tr>
<tr>
<td>RA7</td>
<td>0.2886</td>
<td>0.3803</td>
<td>0.0917</td>
<td>0.0150</td>
</tr>
<tr>
<td>RA8</td>
<td>0.3297</td>
<td>0.5040</td>
<td>0.2422</td>
<td>0.0261</td>
</tr>
<tr>
<td>RA9</td>
<td>0.3589</td>
<td>0.5093</td>
<td>0.1504</td>
<td>-0.1041</td>
</tr>
<tr>
<td>RA10</td>
<td>0.2673</td>
<td>0.5050</td>
<td>0.2377</td>
<td>-0.1136</td>
</tr>
</tbody>
</table>

Heterogeneity scores (\hat{H}) were determined before (pre-MCh) and after (post-MCh) bronchial challenge with methacholine (MCh) and after a series of deep inspirations (post-DI). The changes in \hat{H} (ΔH) after the MCh challenge and after DIs were computed.

Scale other than that used in this study could lead to heterogeneity changes of different statistical significance. If a local length scale, or a voxel neighborhood over which heterogeneity is evaluated, could be defined with rigorous physiological or anatomical reason, then the resulting heterogeneity map and indexes would have corresponding implications. Thus the behavior of ventilation heterogeneity on different length scales is recommended as a topic for future study and may lead to insight as to the involvement of different sized airways in the bronchoconstriction process.

Fig. 4. Heterogeneity scores (\hat{H}) at baseline, post-MCh, and post-DI. A statistically significant difference in the baseline heterogeneity score exists between healthy (HEAL) and asthmatic (ASTH) subjects.

Fig. 5. Changes in heterogeneity scores (ΔH) due to MCh challenge and DIs in asthmatics and nonasthmatics. There is no significant difference in the bronchial challenge-induced ventilation heterogeneity increase between healthy and asthmatic subjects. There is, however, a significant difference in the ventilation heterogeneity reduction brought about by DIs in the 2 subject groups.

Fig. 6. Statistically significant differences in heterogeneity recovery indexes (Q) also distinguish asthmatics and nonasthmatics.
neity map. This is likely due to the lesser number of pixels in the neighborhood of the pixels of interest toward the rim of the lungs, thereby resulting in higher standard deviations. However, since this phenomenon is present in all three stages of the experiment, its effect should cancel out when images from one stage to another are compared.

Ventilation heterogeneity should not only be a 2-D phenomenon observed in coronal images but a 3-D phenomenon, as well. However, because the anterior-posterior dimension of the voxels was 7.2 times that of the in-plane resolution, this study was limited to evaluating 2-D ventilation heterogeneity. Acquiring 3-D isotropic imaging data would enable the extension of this approach to 3-D. Nonrigid registration algorithms might also improve regional comparison by accounting for lung distortion.

Other issues in image acquisition and processing. To the best of our knowledge, there have been two proactive efforts to address the issue of magnetic susceptibility in HP 3He MRI. One of these two approaches involves the injection of a paramagnetic medium in an attempt to equilibrate the magnetic susceptibility properties of the blood vessels with that of the respiratory system (44). Although successful, this method’s invasive nature makes it unlikely to be approved for human experiments. The other approach involves two additional scans with slice refocusing gradients of different lengths, acquiring images that could be used to compensate for the signal lost due to magnetic susceptibility effects (45). For our study, the HP 3He cost and concerns of this approach were similar to those for obtaining P_{O_2} information, and thus the approach was unfeasible.

Although lung tissue/vasculature is not differentiated from poorly ventilated or unventilated regions and in the manual segmentation process, they are not expected to affect the observations in this study. Lung tissue/vasculature exists in all stages of the experiments and thus should lead to a bias error, which cancels out when changes between stages of the experiments are examined. On the other hand, regions deprived of ventilation may experience changes in perfusion. This, in conjunction with magnetic susceptibility effects, may numerically accentuate or depress the computed ventilated heterogeneity. The exact manner and specific quantities by which these effects occur were not investigated.

It is possible that the results of this analysis could become more accurate with the employment of more sophisticated image coregistration approaches that take into account rotation of the lungs as they go from one stage of the experiment to another. Another important factor is the heterogeneous distribution of deflation and hyperinflation throughout the lung, which will require nonrigid coregistration algorithms. However, the absence of visible physical features in the location of ventilation defects will be a great obstacle for such an effort.

Subjectivity of the person processing the images is likely to cause only a small impact. We found a small degree of interuser variability, which mostly could be attributed to the differences between ROIs selected by the various users. Pixel intensities become much lighter toward the borders of the lungs or wherever partial volume effects are expected. Thus the highest uncertainty in the image processing is associated with the judgment of the different operators regarding where the lung boundary is. This was reflected in the voxel fractional ventilation histograms generated by the different image processing software operators, where the most significant differences were for the element corresponding to the lowest intensity pixels. However, despite differences in ROI selection, the approaches in this study still generated voxel fractional ventilation histograms and heterogeneity scores whose behaviors were consistent regardless of the software operator.

Finally, flexible quadrature wrap-around lung coils may not deliver radio frequency (RF) power uniformly to the lungs, and the distribution may differ from subject to subject. The RF field homogeneity has not been quantified. Thus the possible local over- or underestimations of voxel fractional ventilation will not have been corrected for this effect.

![Figure 7](image.png)

Fig. 7. **A**: randomly generated numbers between 0.7 and 1.0 arranged in a hill-like distribution. **B**: the original randomly generated numbers between 0.7 and 1.0. **C**: randomly generated numbers between 0.7 and 1.0, now with 0.6 uniformly subtracted from each unit. If evaluated on the global level, **A** and **B** would have the same heterogeneity, even though **B** "looks" more heterogeneous. If standard deviations were used to evaluate heterogeneity, **C** and **B** would have the same nonuniformity, even though the signal fluctuation occupies a larger fraction of the signal in **C**.
Summary. We have developed image processing algorithms to quantify both voxel fractional ventilation distribution and ventilation heterogeneity in healthy and asthmatic subjects using HP 3He MRI. The proposed methodology enables quantification of ventilation in human subjects, given the constraints of subject safety and HP 3He production. Also, we suggest that the signal CoV in the neighborhood of the pixel of interest, which physically represents the signal fluctuation as a fraction of the characteristic signal on a local level, should be the index of ventilation heterogeneity. Our pilot study found that asthmatics start out with a level of ventilation heterogeneity that is higher than that of healthy subjects. When withholding DIs, the healthy subjects had a response to MCh challenge similar to that of asthmatics, corroborating what asthma researchers have determined using nonimaging approaches. We also demonstrated with imaging data that whereas the constricted airways of healthy subjects bronchodilated after DIs, the same effect was greatly limited in asthmatics. These quantitative tools were instrumental in gaining insight into the structure-function relationship of airways and lung periphery in asthmatics and might facilitate further such studies.

REFERENCES

