Pulmonary perfusion in the prone and supine postures in the normal human lung

G. Kim Prisk,1,2 Kei Yamada,3 A. Cortney Henderson,1 Tatsuya J. Arai,4 David L. Levin,2
Richard B. Buxton,2 and Susan R. Hopkins1,2

Departments of 1Medicine and 2Radiology, and 3School of Medicine, University of California,
San Diego, La Jolla, California

Submitted 14 March 2007; accepted in final form 8 June 2007

Prisk GK, Yamada K, Henderson AC, Arai TJ, Levin DL, Buxton RB, Hopkins SR. Pulmonary perfusion in the prone and supine postures in the normal human lung. J Appl Physiol 103: 883–894, 2007. First published June 14, 2007; doi:10.1152/japplphysiol.00292.2007.—Prone posture increases cardiac output and improves pulmonary gas exchange. We hypothesized that, in the supine posture, greater compression of dependent lung limits regional blood flow. To test this, MRI-based measures of regional lung density, MRI arterial spin labeling quantification of pulmonary perfusion, and density-normalized perfusion were made in six healthy subjects. Measurements were made in both the prone and supine posture at functional residual capacity. Data were acquired in three nonoverlapping 15-mm sagittal slices covering most of the right lung: central, middle, and lateral, which were further divided into vertical zones: anterior, intermediate, and posterior. The density of the entire lung was not different between prone and supine, but the increase in lung density in the anterior lung with prone posture was less than the decrease in the posterior lung (change: +0.07 g/cm3 anterior, −0.11 posterior; P < 0.0001), indicating greater compression of dependent lung in supine posture, principally in the central lung slice (P < 0.0001). Overall, density-normalized perfusion was significantly greater in prone posture (7.9 ± 3.6 ml·min−1·g−1 prone, 5.1 ± 1.8 supine, a 55% increase; P < 0.05) and showed the largest increase in the posterior lung as it became nondependent (change: +71% posterior, +58% intermediate, +31% anterior; P = 0.08), most marked in the central lung slice (P < 0.05). These data indicate that central posterior portions of the lung are more compressed in the supine posture, likely by the heart and adjacent structures, than are central anterior portions in the prone and that this limits regional perfusion in the supine posture.

prone; supine; magnetic resonance imaging; lung density; gas exchange; gravity

In the healthy lung, it has generally been shown that the normally present gravitational gradients in pulmonary perfusion are smaller in the prone than in the supine posture (26, 29), although the findings are not universal (2, 17, 28). Cardiac output and pulmonary diffusing capacity are increased slightly in the prone posture compared with supine, with the difference being more pronounced under increased gravitational force (37), which also results in alterations in the distribution of pulmonary blood flow (33). This has led to the suggestion that the mechanism of improved oxygenation in the prone posture in some critically ill patients is the elimination of compression of dependent lung regions thought to occur in the supine position (8, 20, 27, 30, 40). As the lung becomes “heavier,” either as a result of the accumulation of edema (such as in ARDS) or because of an increase in gravity (as in centrifuge experiments), this compressive effect is thought to be more pronounced, compromising blood flow to those regions (4, 10, 31).

Studies in animal models using injected microspheres with subsequent excision and drying of the lung have also shown small differences between the prone and supine postures (11) with less pronounced, or absent, vertical gradients in blood flow in the prone position. However, the postmortem inflation of the lung in microsphere measurements serves to minimize any gravitational gradient in perfusion that is present (7) and thus may not entirely reflect the effect in the intact human lung. We recently showed that, by taking into consideration the effects of lung compression in the supine lung using MRI techniques, we could reproduce both the gravitational gradient in perfusion typically seen in the in situ lung (43) and the very much attenuated gradient seen in postmortem studies that include postexcision lung inflation in the tissue processing (11, 16). In essence, if the lung is considered as a deformable structure in which much of the self-weight is due to the flowing blood, then correcting for the resulting density gradient transforms measurements of perfusion into measurements more akin to those obtained by microsphere studies where density is more uniform.

Based on these prior studies, we applied the same MRI techniques to study the changes in normal humans moved from the supine to the prone posture. We hypothesized that, in the supine posture, compression of the most gravitationally dependent lung regions by the mediastinum and heart would result in an exaggerated gradient in pulmonary perfusion compared with the prone posture. To be sure that any potential changes in perfusion were not solely as a consequence of the greater number of capillaries in a given volume of lung [the Slinky effect (16)], we normalized perfusion for regional lung density. To explore this, we performed MRI-based studies of both pulmonary perfusion and lung density in normal subjects in both the supine and prone postures with measurements made at functional residual capacity (FRC). The results show that the density gradients present in the prone posture are comparable to those in the supine posture, but there is evidence for dependent lung compression in the central part of the supine lung. Removal of this compression results in a significantly greater density-normalized perfusion of the lung when in the prone posture.

The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

http://www.jap.org

8750-7587/07 $8.00 Copyright © 2007 the American Physiological Society

IN THE HEALTHY LUNG, it has generally been shown that the normally present gravitational gradients in pulmonary perfusion are smaller in the prone than in the supine posture (26, 29), although the findings are not universal (2, 17, 28). Cardiac output and pulmonary diffusing capacity are increased slightly in the prone posture compared with supine, with the difference being more pronounced under increased gravitational force (37), which also results in alterations in the distribution of pulmonary blood flow (33). This has led to the suggestion that the mechanism of improved oxygenation in the prone posture in some critically ill patients is the elimination of compression of dependent lung regions thought to occur in the supine position (8, 20, 27, 30, 40). As the lung becomes “heavier,” either as a result of the accumulation of edema (such as in ARDS) or because of an increase in gravity (as in centrifuge experiments), this compressive effect is thought to be more pronounced, compromising blood flow to those regions (4, 10, 31).

Studies in animal models using injected microspheres with subsequent excision and drying of the lung have also shown small differences between the prone and supine postures (11) with less pronounced, or absent, vertical gradients in blood flow in the prone position. However, the postmortem inflation of the lung in microsphere measurements serves to minimize any gravitational gradient in perfusion that is present (7) and thus may not entirely reflect the effect in the intact human lung. We recently showed that, by taking into consideration the effects of lung compression in the supine lung using MRI techniques, we could reproduce both the gravitational gradient in perfusion typically seen in the in situ lung (43) and the very much attenuated gradient seen in postmortem studies that include postexcision lung inflation in the tissue processing (11, 16). In essence, if the lung is considered as a deformable structure in which much of the self-weight is due to the flowing blood, then correcting for the resulting density gradient transforms measurements of perfusion into measurements more akin to those obtained by microsphere studies where density is more uniform.

Based on these prior studies, we applied the same MRI techniques to study the changes in normal humans moved from the supine to the prone posture. We hypothesized that, in the supine posture, compression of the most gravitationally dependent lung regions by the mediastinum and heart would result in an exaggerated gradient in pulmonary perfusion compared with the prone posture. To be sure that any potential changes in perfusion were not solely as a consequence of the greater number of capillaries in a given volume of lung [the Slinky effect (16)], we normalized perfusion for regional lung density. To explore this, we performed MRI-based studies of both pulmonary perfusion and lung density in normal subjects in both the supine and prone postures with measurements made at functional residual capacity (FRC). The results show that the density gradients present in the prone posture are comparable to those in the supine posture, but there is evidence for dependent lung compression in the central part of the supine lung. Removal of this compression results in a significantly greater density-normalized perfusion of the lung when in the prone posture.

The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
METHODS

Subjects

This study was approved by the Human Subjects Research Protection Program of the University of California, San Diego. Six healthy subjects (4 men, 2 women), age 25 ± 1 yr, weight 74 ± 8 kg, participated in this study after giving informed consent, undergoing screening using a pulmonary and MRI safety questionnaire, and undergoing a medical history and physical exam. These are the same six subjects studied in a previous publication (16). Some of the supine data reported here were also used in that publication to examine the effect of lung density gradients on the interpretation of regional perfusion data.

Imaging

Each subject underwent MRI scanning using a Magnetom Vision 1.5-T whole body MR scanner (Siemens Medical Systems, Erlangen, Germany). All sequence parameters were kept within US Food and Drug Administration guidelines for clinical magnetic resonance examinations. Subjects were positioned supine in the scanner, with a custom-designed rigid PVC tubing cage positioned over the torso. The phased-array torso coil was positioned on this frame, ensuring a constant distance between the anterior and posterior elements of the torso coil. A water phantom doped with gadolinium (Berlex Imaging, Magnevist, 469 mg/ml gadopentetate dimeglumine, 1:5,500 dilution) to T1 and T2 values approximating that of blood, was placed next to Magnevist, 469 mg/ml gadopentetate dimeglumine, 1:5,500 dilution) at a constant distance between the anterior and posterior elements of the torso coil. A water phantom doped with gadolinium (Berlex Imaging, Magnevist, 469 mg/ml gadopentetate dimeglumine, 1:5,500 dilution) to T1 and T2 values approximating that of blood, was placed next to Magnevist, 469 mg/ml gadopentetate dimeglumine, 1:5,500 dilution) at a constant distance between the anterior and posterior elements of the torso coil. A water phantom doped with gadolinium (Berlex Imaging, Magnevist, 469 mg/ml gadopentetate dimeglumine, 1:5,500 dilution) to T1 and T2 values approximating that of blood, was placed next to Magnevist, 469 mg/ml gadopentetate dimeglumine, 1:5,500 dilution) at a constant distance between the anterior and posterior elements of the torso coil.

Correction for coil inhomogeneity. To maximize the signal-to-noise ratio in the pulmonary perfusion and proton density data (described below), a torso coil was used, which has substantially higher sensitivity than the body coil built into the scanner. Using paired density images from the homogenous body coil and the inhomogeneous torso coil, we corrected all blood flow and density images for coil inhomogeneity with a maximum spatial frequency across the field of view of ~2 cycles on a subject by subject basis (16).

Lung perfusion imaging. Regional pulmonary blood flow was assessed using a two-dimensional ASL-FAIRER sequence with a half-Fourier acquisition single-shot turbo spin-echo (HASTE) imaging scheme (see Refs. 3, 16 for full details). Arterial spin labeling (ASL) exploits the capability of MRI to invert the magnetization of protons (primarily in water molecules) in a spatially selective way using a combination of radio-frequency pulses and spatial magnetic field gradient pulses. By inverting the magnetization of arterial blood, these “tagged” protons in blood act as an endogenous tracer. During each measurement, two images are acquired during a single breath-hold of each lung slice with the signal of blood prepared in a different way. In one image, the magnetization of the blood both inside and outside the imaged section is inverted, resulting in very low signal from both blood and tissue when the image is acquired ~80% of one R-R interval later. In the second image, the inversion is applied only to the imaged slice, resulting in any inflow of blood from outside that slice having a strong magnetic resonance signal. When the two images are subtracted, canceling the stationary signal, the result is a quantitative map of blood delivered to the imaging plane from one systolic ejection period (3, 16).

Data were obtained during a breath-hold at FRC in multiple 15-mm-thick sagittal slices. Each slice was 40 × 40 cm and imaged at a resolution of 256 × 128 pixels; therefore voxels of ~1.5 × 3 × 15 mm (~0.07 ml) were obtained. These ASL image files were later resized during postprocessing to match the voxel size of the lung density images (3 × 3 × 15 mm) using bilinear interpolation in MATLAB (The MathWorks, Natick, MA), giving an effective resolution of ~0.14 cm3. The subtracted ASL image was corrected for coil inhomogeneity, and pulmonary blood flow was quantified in milliliters per minute per cm3 lung based on the doped water phantom contained within the field of view for each image.

Lung density imaging. In addition to the ASL images, a proton density image was acquired in the same sagittal slices using a two-dimensional spoiled gradient recalled echo sequence (sometimes referred to as FLASH, fast low angle shot) during a separate breath-hold. Sequence parameters were repetition time = 6 ms, echo time = 0.9 ms, flip angle = 4°, slice thickness = 15 mm, field of view 40 × 40 cm, and image size 128 × 128 pixels. The resulting proton density was then calculated by correcting the signal for the rapid T2* decay of signal from the lungs based on published values of T2* (1.43 ± 0.41 ms; Ref. 13). In each image so obtained, the resulting signal in each voxel, after correcting for coil inhomogeneity, was related to the signal derived from the water phantom (which is by definition 100% water) to obtain regional lung proton (water) density in units of milliliter H2O per cubic centimeter lung, subsequently referred to as lung density.

Density-normalized perfusion. Density-normalized perfusion expressed in units of milliliter per minute per gram water can be approximated by dividing the image acquired by ASL, which has the units of milliliter per minute per cubic centimeter lung, by the image of lung density (in g H2O/cm3 lung). A mutual information-based technique that included translation and rotation was utilized to register the two images (34), and the ASL image was divided by the density image on a voxel-by-voxel basis to give perfusion in milliliters per minute per gram using a custom-designed program in MATLAB. To the extent that regional lung density (tissue + blood) is reflected by the water content, density-normalized perfusion then reflects perfusion in milliliters per minute per gram lung.

Data Analysis

Data representation. For each image acquired as described above (density, perfusion, and density-normalized perfusion), the data were analyzed in the following manner. For each image, mean, standard deviation, and relative dispersion (RD; standard deviation divided by mean) were calculated. The vertical distributions (distance above the most dependent portion of the lung for each subject) were plotted for each slice and posture for perfusion, lung density, and density-normalized perfusion. Zero height was defined as the most dependent voxel of the lung in the three slices, and this reference was used for all slices in that image set. The relationship between vertical height and perfusion, density, and density-normalized perfusion was characterized using least squares linear regression, and the slope and strength of the association (r2) were obtained. Since distributions of perfusion and density across gravitational distances may not necessarily be best expressed as a linear relationship, each sagittal slice was divided into three gravitationally based regions of interest: dependent, intermediate, and nondependent regions to allow for comparison between regions (see Fig. 1). The slice with the greatest anterior to posterior...
height was selected from the three contiguous sagittal images and divided horizontally into three zones of equal height based on the maximum anterior-posterior dimension of the lung. The remaining two contiguous lung slices were divided into three zones using the same horizontal coordinates. Mean perfusion, density and density-normalized perfusion were obtained for each slice and zone in both the prone and supine postures.

Heterogeneity. As in previous studies, we used the RD (the standard deviation divided by the mean, also known as the coefficient of variation) of each lung slice as a measure of the degree of heterogeneity. Relative dispersion is a good descriptor of the overall degree of heterogeneity present in an image. It has been shown to change under numerous circumstances (14, 15, 21) in a reproducible manner when applied to the distribution of pulmonary perfusion.

Statistical analysis. ANOVA (Statview, 5.0 SAS Institute, Cary, NC) for repeated measures was used to statistically evaluate changes in the major dependent variables over three repeated measures: 1) posture (2 levels: prone and supine), 2) lung slice (3 levels: central lung, middle lung, lateral lung), and 3) gravitational region (3 levels: nondependent, intermediate, dependent region). Dependent variables for this analysis were perfusion in units of milliliter per minute per cubic centimeter of lung, lung density in units of grams per cubic centimeter lung, and density-normalized perfusion in units of milliliter per minute per gram. Where overall significance occurred, post hoc testing was conducted using Student’s t-testing. All data are presented as means ± SD; the null-hypothesis (no-effect) was rejected for \(P < 0.05 \) (2 tailed).

RESULTS

All subjects completed the study, and no data were discarded. Heart rate averaged 68 ± 12 beats/min over the course of the study and was not significantly affected by posture (66 ± 12 beats/min supine, 70 ± 13 beats/min prone; \(P = 0.2 \)). Mean arterial oxygen saturation measured by pulse oximetry did not change between prone and supine postures (97.4 ± 1.0% for both postures; \(P = 0.86 \)).

Table 1 presents the overall results of the study with the right lung considered in three sagittal slices (central, middle, and lateral), each of which is in turn divided into three distinct vertical regions (posterior, intermediate, and anterior). The slice selection and division of each slice into vertical subdivisions is detailed in METHODS. For each of these subdivisions, the mean values of lung density (in g/cm³), perfusion (in ml·min⁻¹·cm⁻³), and density-normalized perfusion (in ml·min⁻¹·g⁻¹) are presented.

Density

Figure 2 shows an overall view of the effects of gravity and posture on lung density. Figure 2, A and B, shows the vertical distribution of lung density in the supine and prone postures, respectively, for each of the three sagittal lung slices. In these panels, the solid lines represent the mean values for lung density in adjacent 1-cm-high isogravitational planes (the \(x \)-axis) plotted as a function of height above the zero reference point (the \(y \)-axis). Thus, for Fig. 2A, the data are shown with the most posterior lung plane at the bottom of the figure, whereas for the data in Fig. 2B (prone posture), the data at the bottom of the figure are from the most anterior plane. Mean data from all three sagittal lung slices are shown in each panel. The shaded area is the region encompassing the mean ± SD values for the middle lung slice (labeled M) and provides a visual guide to the degree of variability in all lung slices, which is generally comparable between slices in terms of their SD values.

Gravitational zones. Averaged over postures and lung slices, there was a highly significant difference (\(P < 0.0005 \)) in density between lung gravitational regions such that density was significantly less in the nondependent gravitational regions and greater in the gravitationally dependent region. This can most easily be seen in Fig. 2, C–E. In these panels, data are presented on a gravitational basis for each of the three sagittal slices separately. In each panel, the supine data are presented as mean with the area encompassing ± 1 SD being shaded, and the prone data as the mean only. The bottom of the figure shows the most gravitationally dependent lung plane (supine, posterior; prone, anterior). In the nondependent gravitational region (see also Table.1), lung
density averaged $0.28 \pm 0.10 \, \text{g/cm}^3$, and this progressively increased in the intermediate ($0.33 \pm 0.09 \, \text{g/cm}^3; P < 0.005$ compared with nondependent) and dependent ($0.37 \pm 0.10 \, \text{g/cm}^3; P < 0.05$ compared with intermediate) gravitational regions. Over the Entire lung, these gravitational differences in lung density were not different between the different lung slices ($P = 0.32$). The vertical gradient in density was unchanged [$-0.038 \pm 0.034 \, \text{g/cm}^{-3} \cdot \text{cm height}^{-1}$ supine; $-0.031 \pm 0.043 \, \text{g/cm}^{-3} \cdot \text{cm height}^{-1}$ prone; both different from zero ($P < 0.05$); $P = 0.2$ supine vs. prone].

Posture. There were no significant differences in overall lung density between the prone posture ($0.320 \pm 0.106 \, \text{g/cm}^3$) compared with supine ($0.332 \pm 0.102 \, \text{g/cm}^3$) ($P = 0.69$; see Table 1). However, not unexpectedly, there were highly statistically significant changes with posture between the different gravitational regions ($P < 0.0001$). For example, the posterior lung regions, which have the highest density in the supine posture, become the regions of lowest density in the prone posture. The intermediate regions of the lung did not change density significantly with a postural change ($P = 0.89$) (Table 1, Fig. 3A). There was a significant difference in these regional changes in density between lung slices ($P < 0.0001$). The posterior-central and anterior-central lung showed the greatest change in density as they were shifted from supine to prone posture (a -46% and -25% change, respectively; $P < 0.0001$), with the change in middle lung slice being slightly less marked ($P < 0.005$) and there being very little change in the lateral lung slice.
In the intermediate gravitational zone, lung perfusion was significantly different between lung slices (P < 0.0005) and was greatest in the central portion of the lung (Fig. 4, C–E).

Perfusion

Figure 4 shows the effects of gravity and posture on perfusion measured in milliliter per minute per cubic centimeter. The format is that of Fig. 2, and the shaded areas provide a visual guide to the degree of variability in isogravitational lung zones.

Gravitational zones. Averaged over postures and lung slices, there was a highly significant difference (P < 0.0001) in perfusion between lung gravitational regions such that perfusion was significantly less in the nondependent and dependent gravitational regions compared with the intermediate gravitational region (Table 1), which is also clearly visible in Fig. 4. This was manifest as a vertical gradient in perfusion in both postures (−0.034 ± 0.07 ml·min⁻¹·cm⁻³·cm of height supine, −0.025 ± 0.038 prone; both different from zero, P < 0.05). In the intermediate gravitational zone, lung perfusion averaged 2.4 ± 1.0 ml·min⁻¹·cm⁻³, and this was significantly greater than in either the nondependent (1.6 ± 0.7 ml·min⁻¹·cm⁻³; P < 0.0001) or dependent (1.9 ± 0.7 ml·min⁻¹·cm⁻³; P < 0.0005) gravitational regions, which were also significantly different from one another (P < 0.05). These gravitational differences were different between the different lung slices (P < 0.0001) and were greatest in the central portion of the lung (Fig. 4, C–E).

Heterogeneity of density. Overall density heterogeneity, as measured by the relative dispersion, averaged 0.33 ± 0.07 over all lung slices and postures. Heterogeneity of lung density was significantly different between lung slices (P < 0.0005), least uniform in the central lung slice, and progressively more uniform laterally. However, there was no significant effect of posture on the density heterogeneity (P = 0.22).

Heterogeneity of perfusion. Overall perfusion heterogeneity was significantly affected by posture, with higher perfusion in the prone than supine posture (supine 1.62 ± 0.69 ml·min⁻¹·cm⁻³ vs. prone 2.26 ± 0.92 ml·min⁻¹·cm⁻³; P < 0.05). In both postures, there was significantly less perfusion moving from the central to the lateral lung slice. In the central slice of the lung, perfusion was highest in the anterior and lateral slices and being highest in the intermediate lung zone in both postures.

Posture. Overall pulmonary perfusion was significantly affected by posture, with higher perfusion in the prone than in the supine posture, which was progressively reduced in the middle (1.9 ± 0.8 ml·min⁻¹·cm⁻³) and lateral (1.5 ± 0.6 ml·min⁻¹·cm⁻³) gravitational regions compared with the intermediate gravitational regions (P < 0.01): the posterior zone of the lung showed a small increase in perfusion as it was shifted from dependent to nondependent with the change in posture from supine to prone; however, there were marked increases in perfusion in both the intermediate and anterior gravitational regions of the lung, and perfusion to the most gravitationally nondependent zone of the lung (anterior in the supine posture, posterior in the prone posture) was much higher in the prone than in the supine posture (Table 1 and Figs. 3 and 4). Although there were differences in absolute values between postures for these zones, the overall picture between supine and prone was largely similar, with perfusion decreasing between central and lateral slices and being highest in the intermediate lung zone in both postures.

Table 1. Density, perfusion, and density-normalized perfusion as a function of posture

<table>
<thead>
<tr>
<th>Posture</th>
<th>Sagittal Slice</th>
<th>Vertical Region</th>
<th>Lung Density g/cm³</th>
<th>Blood Flow, ml·min⁻¹·cm⁻³</th>
<th>Blood Flow/Density, ml·min⁻¹·g⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supine</td>
<td>Central Slice</td>
<td>Anterior</td>
<td>0.305 ± 0.147</td>
<td>1.35 ± 0.60</td>
<td>4.89 ± 1.82</td>
</tr>
<tr>
<td></td>
<td>Intermediate</td>
<td></td>
<td>0.393 ± 0.143</td>
<td>2.47 ± 0.92</td>
<td>6.51 ± 2.50</td>
</tr>
<tr>
<td></td>
<td>Posterior</td>
<td></td>
<td>0.450 ± 0.142</td>
<td>2.09 ± 0.80</td>
<td>4.71 ± 1.20</td>
</tr>
<tr>
<td></td>
<td>Entire slice</td>
<td></td>
<td>0.383 ± 0.148</td>
<td>1.97 ± 0.88</td>
<td>5.37 ± 2.00</td>
</tr>
<tr>
<td></td>
<td>Middle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anterior</td>
<td></td>
<td>0.246 ± 0.041</td>
<td>1.18 ± 0.52</td>
<td>5.17 ± 2.02</td>
</tr>
<tr>
<td></td>
<td>Intermediate</td>
<td></td>
<td>0.296 ± 0.039</td>
<td>1.76 ± 0.60</td>
<td>6.30 ± 1.90</td>
</tr>
<tr>
<td></td>
<td>Posterior</td>
<td></td>
<td>0.368 ± 0.031</td>
<td>1.59 ± 0.40</td>
<td>4.49 ± 1.05</td>
</tr>
<tr>
<td></td>
<td>Entire slice</td>
<td></td>
<td>0.304 ± 0.062</td>
<td>1.51 ± 0.54</td>
<td>5.32 ± 1.78</td>
</tr>
<tr>
<td></td>
<td>Lateral</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anterior</td>
<td></td>
<td>0.285 ± 0.062</td>
<td>1.15 ± 0.48</td>
<td>4.45 ± 1.71</td>
</tr>
<tr>
<td></td>
<td>Intermediate</td>
<td></td>
<td>0.297 ± 0.034</td>
<td>1.49 ± 0.44</td>
<td>5.13 ± 1.50</td>
</tr>
<tr>
<td></td>
<td>Posterior</td>
<td></td>
<td>0.349 ± 0.031</td>
<td>1.51 ± 0.48</td>
<td>4.47 ± 1.34</td>
</tr>
<tr>
<td></td>
<td>Entire slice</td>
<td></td>
<td>0.310 ± 0.051</td>
<td>1.38 ± 0.47</td>
<td>4.68 ± 1.45</td>
</tr>
<tr>
<td></td>
<td>Entire lung</td>
<td></td>
<td>0.332 ± 0.102</td>
<td>1.62 ± 0.69</td>
<td>5.12 ± 1.75</td>
</tr>
<tr>
<td>Prone</td>
<td>Central Slice</td>
<td>Anterior</td>
<td>0.408 ± 0.162</td>
<td>2.41 ± 0.75</td>
<td>6.74 ± 2.78</td>
</tr>
<tr>
<td></td>
<td>Intermediate</td>
<td></td>
<td>0.375 ± 0.099</td>
<td>3.57 ± 0.87</td>
<td>10.37 ± 3.63</td>
</tr>
<tr>
<td></td>
<td>Posterior</td>
<td></td>
<td>0.245 ± 0.037</td>
<td>2.27 ± 0.44</td>
<td>9.68 ± 2.74</td>
</tr>
<tr>
<td></td>
<td>Entire slice</td>
<td></td>
<td>0.343 ± 0.127 (NS)</td>
<td>2.75 ± 0.89</td>
<td>8.93 ± 3.31</td>
</tr>
<tr>
<td></td>
<td>Middle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anterior</td>
<td></td>
<td>0.303 ± 0.047</td>
<td>2.13 ± 0.58</td>
<td>7.43 ± 2.51</td>
</tr>
<tr>
<td></td>
<td>Intermediate</td>
<td></td>
<td>0.301 ± 0.034</td>
<td>2.82 ± 1.04</td>
<td>9.76 ± 3.83</td>
</tr>
<tr>
<td></td>
<td>Posterior</td>
<td></td>
<td>0.247 ± 0.026</td>
<td>2.08 ± 0.90</td>
<td>8.99 ± 4.40</td>
</tr>
<tr>
<td></td>
<td>Entire slice</td>
<td></td>
<td>0.284 ± 0.044 (NS)</td>
<td>2.34 ± 0.88</td>
<td>8.72 ± 3.59</td>
</tr>
<tr>
<td></td>
<td>Lateral</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anterior</td>
<td></td>
<td>0.340 ± 0.113</td>
<td>1.47 ± 0.59</td>
<td>5.14 ± 2.66</td>
</tr>
<tr>
<td></td>
<td>Intermediate</td>
<td></td>
<td>0.320 ± 0.100</td>
<td>1.99 ± 0.68</td>
<td>6.97 ± 3.11</td>
</tr>
<tr>
<td></td>
<td>Posterior</td>
<td></td>
<td>0.344 ± 0.166</td>
<td>1.56 ± 0.67</td>
<td>5.85 ± 3.78</td>
</tr>
<tr>
<td></td>
<td>Entire slice</td>
<td></td>
<td>0.336 ± 0.122 (NS)</td>
<td>1.67 ± 0.65</td>
<td>5.99 ± 3.12</td>
</tr>
<tr>
<td></td>
<td>Entire lung</td>
<td></td>
<td>0.320 ± 0.106 (NS)</td>
<td>2.26 ± 0.92</td>
<td>7.88 ± 3.55</td>
</tr>
</tbody>
</table>

Values are means ± SD for each defined region of interest (see text for details). NS, not significant. *Significant main effect for slice and posture (P < 0.05). See text for zone effects.
0.22 over all lung slices and postures. Relative dispersion was significantly greater in the central lung slice (0.88 ± 0.19) and was progressively less (P < 0.0001) in the middle (0.75 ± 0.20) and lateral slices (0.61 ± 0.18). There was no significant difference in perfusion heterogeneity between postures (prone 0.72 ± 0.20, supine 0.78 ± 0.22; P = 0.41).

Density-Normalized Perfusion

Figure 5 shows the effects of gravity and posture on density-normalized perfusion measured in milliliters per minute per gram. The format is that of Fig. 2, and the shaded areas provide a visual guide to the degree of variability in isogravitational lung zones.

Gravitational zones. Density-normalized perfusion averaged over postures and lung slices (Table 1) shows a significant difference in perfusion between lung gravitational regions (P < 0.005) such that the intermediate zone was significantly greater than the dependent zone, which in turn was greater than the nondependent zone (all P < 0.05). The next effect of this was that, in contrast to perfusion, density-normalized perfusion showed no vertical gradient in either posture (slope +0.032 ± 0.110 ml·min⁻¹·g⁻¹·cm of height⁻¹ supine; +0.010 ± 0.058 prone; neither significantly different compared with zero).

Posture. In keeping with the overall increase in perfusion and unchanged density, density-normalized perfusion was significantly greater in the prone posture (7.88 ± 3.55 ml·min⁻¹·g⁻¹) compared with supine (5.12 ± 1.75 ml·min⁻¹·g⁻¹) (P < 0.05). In the supine posture, density-normalized perfusion was not different between slices moving from central to lateral (see Fig. 5A and Table 1). In sharp contrast, however, in the prone posture, there were marked increases in perfusion in both the central (8.93 ± 3.31 ml·min⁻¹·g⁻¹) prone, 5.37 ± 1.97 supine; P < 0.04) and middle (8.72 ± 3.59 ml·min⁻¹·g⁻¹) prone, 5.32 ± 1.78 supine; P < 0.03) lung slices compared with supine, which was not significant in the most lateral lung slice (5.98 ± 3.11 ml·min⁻¹·g⁻¹) prone, 4.68 ± 1.45 supine; P < 0.13) (see Fig. 3C and Fig. 5, C–E).
Figure 5, C–E, shows that in the prone posture the nondependent lung zones (i.e., posterior lung) exhibited greater density-normalized perfusion than in the supine posture. This difference was only statistically significant (\(P < 0.01\)) in the most central lung slice (Table 1; compare supine central anterior with prone central posterior). In contrast, dependent lung zones showed no difference between postures. Importantly, in the central and middle lung, density-normalized perfusion increased in the prone posture in all lung zones, with the largest increase being seen in the posterior lung (Fig. 3C).

Heterogeneity of density-normalized perfusion. Perfusion heterogeneity, as measured by the relative dispersion, averaged \(0.69 \pm 0.18\) over all lung slices and postures, and was comparable to the perfusion measurements expressed as a function of volume. As with the volume-based measurements, relative dispersion was significantly different between lung slices (\(P = 0.005\)), with the central lung showing the greatest perfusion heterogeneity, and there was a significant posture-by-lung slice interaction (\(P < 0.05\)), reflecting that this was observed only in the supine posture. In keeping with this, averaged over all the lung slices, there were no significant changes in heterogeneity of density-normalized perfusion with different postures (\(0.71 \pm 0.18\) supine; \(0.70 \pm 0.12\) prone; \(P = 0.77\)).

DISCUSSION

The overall aim of this study was to make measurements of the distribution of pulmonary perfusion and lung density in the normal lung. We hypothesized that the effects were largely mechanical in origin (i.e., a function of the effects of gravity itself on the lung and associated structures) as opposed to some active control mechanism(s). To study these effects, we utilized recently developed techniques to quantitatively measure the spatial distributions of both pulmonary perfusion and lung density using MRI. The results show that the prone posture results in an overall increase in pulmonary perfusion and that this increase is manifested in the form of increased perfusion.
per alveolus in the gravitationally nondependent regions of the lung compared with the supine posture.

Our results show that the prone posture was associated with a significant overall increase in perfusion of the right lung from 1.62 ml·min⁻¹·cm⁻³ in the supine posture to 2.26 ml·min⁻¹·cm⁻³ in the prone posture, an ~40% increase. This result is in keeping with a previous study (37) that also showed that pulmonary perfusion is increased in the prone vs. supine posture, although the magnitude of the change we observed is larger. Our studies do not permit us to directly examine the mechanisms of such a change; however, it has been previously suggested that there is a negative hydrostatic gradient for venous return in the supine posture as more lung is dependent relative to the left atrium than in the prone posture (9) and that this might impair cardiac output (38, 39). Furthermore, our study examined only the right lung, and if greater compressive effects are present on the left side, as in the case of the compromised lung (1, 23), then increases in flow to one lung may not be indicative of overall changes in cardiac output. Studies in ALI/ARDS have shown a similar overall cardiac output in both the prone and supine postures in humans (32) and animals (19, 36) despite improved arterial oxygenation in the prone posture. Thus the improvement in overall pulmonary perfusion in the prone posture is unlikely to contribute greatly to the improved gas exchange in that posture compared with supine.

Rohdin et al. (37) saw an ~8% increase in FRC in the prone posture compared with supine and suggested that this may have resulted in improved diastolic filling. We did not directly measure FRC in these studies, but the average number of voxels in our imaging volume attributed to lung was 3,482 ± 848 supine and 3,733 ± 451 prone. The ~7% change in this study was, however, not significant (P = 0.57) and was not uniformly seen across all subjects.

Changes in Perfusion Distribution with Posture

It has long been appreciated that gravity results in the deformation of the lung due to its own weight. In the 1960s, studies showed gravitational gradients in pulmonary ventilation and alveolar size (6, 25), and numerous authors have referred to this mechanism and its effect on lung ventilation. What has been less well appreciated is that this gravitational compression has direct and important effects on pulmonary perfusion. In a recent study using the same quantitative MRI techniques as those employed here (16), we showed that much
of the apparent gravitational gradient in pulmonary perfusion measured on a per unit volume basis was a direct consequence of gravitationally induced gradients in lung density. In essence, if one considers a lung that has perfectly uniform perfusion per alveolus, any effect that results in a gradient in alveolar size must necessarily result in a similar, although reversed, gradient in apparent perfusion of the lung when measured on a per unit volume basis, because the perfusion occurs within the walls of the alveoli. In this study, by measuring both density and perfusion, and calculating density-normalized perfusion, we were able to consider changes in blood flow changes without the confounding effects of any apparent alterations due to density changes alone. Considering pulmonary perfusion on a per unit lung weight basis shows a much more uniform vertical distribution of blood flow than does perfusion on a per unit volume basis and serves to shed light on the mechanism of improved gas exchange with prone positioning.

Figure 3 shows the changes in density, perfusion, and density-normalized perfusion in each zone of the lung in all slices studied. The distribution of perfusion (in units of ml·min⁻¹·cm⁻³) shows the increase in total perfusion discussed above in the prone position compared with supine, but the overall gravitational pattern of perfusion appears largely similar between postures (Fig. 4). Perfusion is low in the most gravitationally dependent region of the lung (i.e., the posterior lung when supine or the anterior lung when prone), rises to a maximum at about one-third of total vertical lung height, and then falls to low levels in the uppermost portions of the lung (Fig. 4, A and B). The effects of a change in posture from supine to prone are best appreciated by considering Fig. 4, C–E, which shows the effects of such a change in the central, middle, and lateral slices, respectively. Moving from the supine to prone posture results in an increase in perfusion in the intermediate lung zone in all slices of the lung (Fig. 3B), consistent with the overall increase in perfusion in the prone posture described above. In the central lung, the anterior zone increased perfusion in the prone posture, consistent with a move to a gravitationally dependent position. In contrast, however, there was no change in perfusion in the central posterior lung, suggesting that, in the supine posture, this zone of the lung had limited perfusion, likely as a consequence of compression by adjacent structures (e.g., the heart, mediastinum, and abdominal contents). This speculation is supported by the large change in density in this part of the lung (Fig. 3A). The central posterior lung showed the largest reduction in density moving from supine to prone of any region, and the magnitude of this change was greater than the corresponding increase in density in the central anterior lung. The effect can also be appreciated by the higher values of perfusion in the upper regions of Fig. 4, D and E.

In contrast, density-normalized perfusion (ml·min⁻¹·g⁻¹) (Fig. 5) shows a different pattern to perfusion (ml·min⁻¹·cm⁻³). In the supine posture, overall density-normalized perfusion was not different between lung slices (Fig. 5A) and was largely uniform down the lung except in the most dependent and nondependent zones of the lung. The lack of a vertical gradient in density-normalized perfusion was previously observed (16), and this pattern is maintained moving laterally across the lung. In contrast, in the prone posture, density-normalized perfusion is higher in the central and middle slices than in the lateral lung (Fig. 5B). A postural change from supine to prone resulted in a significant increase in density-normalized perfusion in both the central and middle lung slices (Fig. 5, C and D) but not in the lateral slice (Fig. 5E). This increase occurred as a result of increased density-normalized perfusion in the most nondependent zones of the lung, an effect that can also be appreciated in Table 1 and Fig. 3C. When moving from supine to prone, the posterior zones show a much greater increase in density-normalized perfusion than do the anterior zones. The overall picture is that posterior zones in both the central and middle slices greatly increase density-normalized perfusion when moved from supine to prone, an effect likely due to the removal of compression of this part of the lung in the supine posture.

It is important to note that considering perfusion (Fig. 3B) does not lead to the same conclusion since the effect is masked by lung deformation due to gravity. In essence, the compression of dependent lung results in a higher capillary density per unit volume of lung. Thus perfusion expressed on the basis of a unit of lung volume will appear greater in this region, even though blood flow per gram of lung tissue may be uniform (16). To some extent, density-normalized perfusion can be considered as a surrogate measure of perfusion per alveolus. The normal lung consists of lung tissue and blood [in approximately equal amounts (5)] and gas space. Since the lung tissue and blood form the alveolar walls, and since they are the only components of the lung density signal, a higher lung density signal will result from compressed lung (such as occurs in dependent lung zones). Similarly, compressed lung zones also have a larger number of alveoli per unit volume (6). Our measurements of perfusion show a pattern of blood flow distribution similar to that of Hakim et al. (12) who showed a central-to-peripheral gradient in perfusion in all directions. This is similar to that seen in Fig. 4, where perfusion is greatest centrally both in the lateral direction and in the anterior-posterior direction (Fig. 4, A and B). However, such a pattern is not apparent when considering density-normalized perfusion (compare Figs. 4A and 5A), suggesting that the central-to-peripheral gradient is a consequence of lung density effects.

Lung Density and Compression of Dependent Lung

Lung density follows a largely similar pattern between the prone and supine postures. As expected, the lung becomes denser in the gravitationally dependent zones and denser in the more central slices of the lung (Fig. 2). This is likely a direct result of the gravitationally induced compression of the lung, which would be expected to produce a largely uniform increase in density as one moves lower, and the effect of the pulmonary vessels becomes smaller as one moves from a central to lateral position in the lung. For the most part, the gradient in lung density was independent of posture, implying a simple gravitational dependence of density. There may also be some effect of lateral compression of the lung by the heart, which would be expected to be greater in the supine posture than in the prone posture (22).

There was, however, a small postural effect on the vertical gradient in lung density, with higher density in the most gravitationally dependent zones of the lung in the supine posture compared with the prone posture, mostly in the central lung slice (Fig. 2C). This is most clearly seen in Fig. 3A, where the central posterior lung region shows the greatest change in...
density moving from supine to prone. We speculate that this is likely a result of the shape of the lung, which in the humans has a large caudal projection in the posterior zone. In the supine posture, this zone of the lung will be subject to compression by the heart and mediastinal structures in the central in middle slices. This effect may exacerbate the increase in density in this zone, an effect referred to by others in the past (18, 29). Although this effect is small (and likely of little physiological consequence) in these normal lungs, this does not rule out a significant compressive effect in dependent lung zones in the supine posture in lungs of higher density (such as might occur in acute respiratory distress syndrome).

The similar vertical gradient in density supine and prone is consistent with the previous study of Musch et al. (28) but not with other studies that have shown greater density gradients in the supine posture compared with the prone posture (17, 24). We suggest that the latter results may have been influence by the presence of high compression regions (principally central posterior lung; Fig. 3A), which highlights the important local effects of adjacent structures.

Heterogeneity of Pulmonary Perfusion

Overall, the RD (standard deviation divided by the mean) of perfusion did not alter between the prone and supine postures, whether considering perfusion or density-normalized perfusion. There was a small effect on RD of perfusion, which decreased as one moved from a central to lateral position in the lung. When considering density-normalized perfusion, this effect was absent, suggesting it was related to the effects of the lung density. The fact that RD did not significantly alter in this study, despite clear differences in the distribution of perfusion, is not surprising to us. RD as calculated here includes both large-scale gravitational and nongravitational effects and small-scale effects. As can be seen in Figs. 4 and 5, there is a large variability in perfusion within an iso-gravitational plane in these data, as evidenced by the standard deviation of the perfusion in any such plane (the width of the shaded zones in Figs. 4 and 5), and this serves to strongly influence the calculation of RD.

Potential Mechanisms of Gas Exchange Improvement in the Prone Posture

In these normal subjects, we saw no change in arterial oxygen saturation as a function of posture, despite seeing marked changes in the distribution of density-normalized perfusion. This is not surprising. In the normal lung, in the supine position, there is only modest inhomogeneity of ventilation-perfusion ratio (V/Q) (41, 42), and so arterial oxygen saturation is well maintained. Thus, even if improvements in the distribution of perfusion occur, the likely effect in arterial saturation will be minimal or absent. It is likely for that reason that previous studies (e.g., Ref. 37) have failed to show alterations in gas exchange in normal subjects as a result of a postural change. However, such arguments do not apply in the compromised lung in which lung density is greater, and so in that circumstance one might expect to see changes in gas exchange with posture.

The improvement in the distribution of perfusion in the prone posture compared with supine is more apparent when perfusion is considered as density-normalized perfusion (compare Fig. 3, B and C), and indeed we would argue that this is likely the more appropriate way to consider it. If a perfectly uniform lung were subject to a simple gravitational distortion, one would expect largely parallel changes in both ventilation and perfusion in a given region of the lung; ventilation would be higher in a compressed region of the lung because of a higher regional compliance due to the nonlinear pressure-volume curve of the lung. Perfusion per unit volume would be increased because alveoli would be smaller, and so more would be in any given volume, and the net effect on gas exchange would be minimal. Indeed, gravity has been shown to have such an effect on the normal human lung. In microgravity, the distribution of ventilation-perfusion ratio is largely unchanged compared with that measured upright in 1 G, despite considerable improvements in the underlying distributions of ventilation and perfusion (35). Density-normalized perfusion shows the greatest increase in the prone posture in what was the most dependent lung regions in the supine posture (the posterior lung regions; Fig. 3C), those same regions that show the greatest change in density (Fig. 3A). Thus consideration of density-normalized perfusion provides more insight into the effects of a postural change on gas exchange than does perfusion per unit volume alone.

This study shows that, even in the normal lung in which gas exchange is very efficient, as evidenced by a high arterial oxygen saturation, a postural change from supine to prone increases pulmonary perfusion and makes the distribution of pulmonary perfusion more uniform. Both of these effects have the potential to improve gas exchange in the compromised lung. Although extrapolating these results to a compromised lung should be done with caution, they do point to a likely mechanism of the improved oxygenation seen in the prone posture compared with the supine posture. Posterior lung zones (primarily in the central lung) that were subject to compression in the supine posture have large increases in density-normalized perfusion when the subject moves to the prone posture. This results in a much more uniform distribution of density-normalized perfusion in that posture. There is no corresponding effect in the anterior zone of the lung in the supine posture.

Limitations of This Study

Our study focused solely on the perfusion side of pulmonary gas exchange. Clearly, gas exchange depends on both ventilation and perfusion. However, we would argue that, at least in the normal lung, the compressive effect we describe on perfusion (16) is also applicable to the effect on ventilation (6). Whether such an assertion is valid in a compromised lung is arguable and requires testing.

Like all measurements, our techniques have limitations. We have attempted to correct for technical matters, such as coil inhomogeneity and absolute calibration, by fixing coil position relative to the subject, correcting for coil inhomogeneity and incorporating reference phantoms in our imaging protocols. Our measurements are, however, limited by our ability to acquire data during a breath-hold and also by the need to acquire the perfusion and density images during separate breath-holds, which may introduce some error into these measurements, although visual inspection of diaphragmatic posi-
tion indicated reproducible breath-hold volumes. Furthermore, our density measurements image only free protons (essentially water), and so our distribution of density may be incorrect to the extent that lung tissue that does not contribute to the MRI signal is distributed differently to water in the lung. Finally, our study examined only the right lung to avoid imaging artifacts from the heart on the left side of the chest. We do not, however, see any reason to suspect less of an effect for the left lung, and indeed there is evidence for a greater compressive effect on the left lung by the heart when in the supine position (1, 23).

Conclusion

In normal humans, a change in posture from supine to prone is associated with an increase in total pulmonary perfusion and an improvement in the distribution of density-normalized perfusion. Specifically, posterior lung zones in the central part of the lung show an increase in density-normalized perfusion in the transition from supine to prone, whereas anterior lung zones do not show a corresponding increase in the prone to supine transition. These changes likely result from the alleviation of excess compression of the posterior lung in the supine transition. These changes likely result from the alleviation of excess compression of the posterior lung in the supine to prone, whereas anterior lung zones do not show a corresponding increase in the prone to supine posture when a postural change occurs. We speculate that, in the gas exchange compromised lung, these alterations in the distribution of perfusion are an important mechanism of improved oxygenation seen in prone-positioning studies.

ACKNOWLEDGMENTS

We thank our subjects for their enthusiastic participation and acknowledge useful discussions with P. J. Friedman and D. J. Dubowitz.

Present address of D. L. Levin: Dept. of Radiology, Mayo Clinic, Rochester, MN 55905.

GRANTS

This work was supported by the National Heart, Lung, and Blood Institute Grants HL-081171, HL-080203, and 1F32-HL-078128, and the American Heart Association grant AHA 054002N.

REFERENCES

