Substrate source utilization during moderate intensity exercise with glucose ingestion in Type 1 diabetic patients

M. Robitaille,1 M.-C. Dubé,2 S. J. Weisnagel,2 D. Prud’homme,2 D. Massicotte,4 F. Péronnet,3 and C. Lavoie1

1Département de chimie-biologie et des sciences de l’activité physique, Université du Québec à Trois-Rivières, Trois-Rivières; 2Division de kinésiologie et Unité de recherche en diabète, Université Laval, Québec City; 3Département de kinésiologie, Université de Montréal, Montréal; and 4Département de kinanthropologie, Université du Québec à Montréal, Montréal, Québec, Canada

Submitted 31 December 2006; accepted in final form 10 April 2007

The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Address for reprint requests and other correspondence: Carole Lavoie, Département des sciences de l’activité physique, Université du Québec à Trois-Rivières, Case postale 500, Trois-Rivières, Québec, Canada G9A 5H7 (e-mail: Carole.Lavoie@uqtr.ca).
Ethic Committees on the use of human subjects in research of the Université Laval and the Université du Québec à Trois-Rivières. Both control subjects and diabetic patients were lean, nonsmokers and were moderately active (2–5 h/wk). The women in both groups were taking oral contraceptives and were studied in the follicular phase of the menstrual cycle (5–7 days after the beginning of menstruation). Insulinotherapy for the diabetic patients included the insulin analog Humalog (Lispro, Eli Lilly Canada, Scarborough, Ontario, Canada) before every meal and Humulin N (Eli Lilly Canada) before breakfast and at bedtime. The concentration of glycated hemoglobin (Table 1) indicated that, at the time of experiment, the patients were in good metabolic control and all of them were free of diabetic complications as assessed by their physicians. No episode of hypoglycemia was reported by the diabetic patients for at least 24 h before the experiment. During the 2 days preceding the experiment, all subjects refrained from exercising and from ingesting alcohol and caffeine. They also avoided ingesting foods containing CHO with a high 13C content (e.g., corn, sugar cane), which may modify the background enrichment of plasma glucose and expired CO2 (12). On the day before the experiment, the evening meal was standardized and taken before 7:00 PM. At the end of the recovery period and before leaving the laboratory (11:30 AM to 12:30 PM), the subjects ingested a lunch containing 75 g of CHO. Volume and respiratory exchange were recorded during an additional 60-min recovery period to verify that hypoglycemia did not develop (One Touch Ultra glucose meter; LifeScan, Milpitas, CA). Substrate oxidation was computed from V\(\dot{O}_2\) and V\(\dot{CO}_2\) (in l/min) (18):

Table 1. Characteristics of the control subjects and diabetic patients

<table>
<thead>
<tr>
<th></th>
<th>Control Subjects (n = 8)</th>
<th>Diabetic Patients (n = 8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, yr</td>
<td>24.0 (1.8)</td>
<td>26.5 (6.8)</td>
</tr>
<tr>
<td>Body mass, kg</td>
<td>79.0 (19.0)</td>
<td>78.1 (12.3)</td>
</tr>
<tr>
<td>Height, cm</td>
<td>175.4 (13.0)</td>
<td>175.5 (8.7)</td>
</tr>
<tr>
<td>Body-mass index, kg/m²</td>
<td>25.5 (4.8)</td>
<td>25.2 (2.2)</td>
</tr>
<tr>
<td>Duration of diabetes, yr</td>
<td>N/A</td>
<td>12.8 (6.8)</td>
</tr>
<tr>
<td>Daily insulin dose, U/day</td>
<td>N/A</td>
<td>69.0 (19.5)</td>
</tr>
<tr>
<td>Glycated hemoglobin (hemoglobin A(_1c)%),</td>
<td>5.0 (0.4)</td>
<td>7.4 (0.4)*</td>
</tr>
<tr>
<td>Max power output, W</td>
<td>259.4 (77.9)</td>
<td>256.3 (77.6)</td>
</tr>
<tr>
<td>VO(_2)max, ml·kg(^{-1})·min(^{-1})</td>
<td>42.3 (6.6)</td>
<td>42.9 (10.3)</td>
</tr>
</tbody>
</table>

Values are means (SD). VO\(_2\)max, maximal oxygen uptake. *Significantly different from control subjects, P < 0.05.

Fat and CHO oxidation were computed from indirect respiratory calorimetry corrected for protein oxidation. For this purpose, oxygen consumption (V\(\dot{O}_2\)) and carbon dioxide production (V\(\dot{CO}_2\)) were measured by open-circuit spirometry (5-min collection period), and urea excretion in urine was measured over 5 h (from 7:30 AM to 12:30 PM). For the measurement of the isotopic composition (\(^{13}C/^{12}C\)) of expired CO\(_2\), 10-ml samples of expired gas were collected in vacutainers. Finally, at rest before ingestion of [\(^{13}C\)]glucose and at regular intervals during the exercise period, 10-ml blood samples were withdrawn through a catheter (Cathlon Clear, Johnson & Johnson), which was placed in an antecubital vein at the beginning of the experiment, for the measurement of plasma glucose and insulin concentrations and of \(^{13}C/^{12}C\) in plasma glucose. Between the samplings that were made, the catheter was kept patent by a slow infusion of sterile isotonic saline.

Plasma samples were stored at −80°C until analyses. In addition, in diabetic patients, plasma glucose concentration was measured at 5-min intervals throughout the period of exercise and the 60-min recovery period to verify that hypoglycemia did not develop (One Touch Ultra glucose meter; LifeScan, Milpitas, CA).

Substrate oxidation was computed from V\(\dot{O}_2\) and V\(\dot{CO}_2\) (in l/min) (18):

\[
\text{CHO (g of glucose/min)} = 4.59 \text{ VCO}_2 - 3.23 \text{ VO}_2 \tag{1}
\]

\[
\text{Fat (g/min)} = 1.70(\text{VCO}_2 - \text{VO}_2) \tag{2}
\]

In these computations, V\(\dot{O}_2\) and V\(\dot{CO}_2\) were corrected for the average rate of protein oxidized over the 5-h period of observation [38 mg/min (SD 12) and 35 mg/min (SD 10) in control subjects and diabetic patients; not significantly different].

Plasma glucose \(^{13}C/^{12}C\) was measured as previously described (3). Briefly, plasma glucose was separated by double-bed ion-exchange chromatography (AG 50W-X 8-H\(^+\) and AG 1-X 8 chloride, 200–400 mesh; Bio-Rad, Mississauga, ON, Canada) after deproteinization with barium hydroxide and zinc sulfate (0.3 N). The eluate was evaporated to dryness (Virtis Research Equipment, New York, NY) and combusted (60 min at 400°C with copper oxide), and the CO\(_2\) was recovered for the isotopic analyses.

Measurement of \(^{13}C/^{12}C\) in expired CO\(_2\) and in CO\(_2\) from combustion of plasma glucose was performed by mass spectrometry (Palm, Manchester, UK). The isotopic composition of ingested glucose, expired CO\(_2\), and plasma glucose was expressed in \(^{13}C/^{12}C\) ratios in the sample and standard (1.1237%), respectively (3).

The oxidation rate of exogenous glucose (g/min) was computed as follows (19):

Exogenous glucose (g/min) = VCO\(_2\) [(Rexo − Rref)/k] \tag{3}

In this equation, V\(\dot{C}O_2\) (not corrected for protein oxidation) is in liters per minute, Rexp is the observed isotopic composition of expired CO\(_2\), Rref is the isotopic composition of expired CO\(_2\) at rest before ingestion of \(^{13}C\) glucose, k (0.747 l/g) is the volume of CO\(_2\) mesh; Bio-Rad, Mississauga, ON, Canada) after deproteinization with barium hydroxide and zinc sulfate (0.3 N). The eluate was evaporated to dryness (Virtis Research Equipment, New York, NY) and combusted (60 min at 400°C with copper oxide), and the CO\(_2\) was recovered for the isotopic analyses.

Measurement of \(^{13}C/^{12}C\) in expired CO\(_2\) and in CO\(_2\) from combustion of plasma glucose was performed by mass spectrometry (Prism, Manchester, UK). The isotopic composition of ingested glucose, expired CO\(_2\), and plasma glucose was expressed in \(^{13}C/^{12}C\) ratios in the sample and standard (1.1237%), respectively (3).

The oxidation rate of exogenous glucose (g/min) was computed as follows (19):

Exogenous glucose (g/min) = VCO\(_2\) [(Rexo − Rref)/k] \tag{3}

In this equation, V\(\dot{C}O_2\) (not corrected for protein oxidation) is in liters per minute, Rexp is the observed isotopic composition of expired CO\(_2\), Rref is the isotopic composition of expired CO\(_2\) at rest before ingestion of \(^{13}C\) glucose, k (0.747 l/g) is the volume of CO\(_2\) provided by the complete oxidation of glucose. In addition, based on the isotopic composition of plasma glucose (Rglu), the oxidation rate of plasma glucose (g/min) was computed as follows (5, 20):

Plasma glucose (g/min) = VCO\(_2\) [(Rglu − Rref)/k] \tag{4}

The oxidation rate of muscle glycogen (g/min), either directly or through the lactate shuttle (2), was computed by the difference between the rate of total glucose oxidation (Eq. 1) and the oxidation rate of plasma glucose (Eq. 4). Finally, the oxidation rate of glucose released by the liver was estimated by the difference between the oxidation rate of plasma and exogenous glucose. These computations
are based on the observation that, during exercise, 13C provided from [13C]glucose is not irreversibly lost in pools of tricarboxylic acid cycle intermediates and/or bicarbonate and that 13CO$_2$ recovery in expired gases is thus complete or almost complete (17). To take into account the delay between 13CO$_2$ production in tissues and at the mouth, exogenous and plasma glucose oxidation and oxidation of glucose released from the liver and muscle glycogen were only computed during the last 30 min of exercise, thus allowing for a 30-min equilibration period.

Plasma glucose concentration was measured by a spectrophotometric assay (Sigma Diagnostics, Mississauga, ON, Canada), whereas plasma insulin concentration was measured with a radioimmunoassay (KTSP-11001, Immunocorp Sciences, Montreal, QC, Canada).

Results are presented as means (SD). Comparisons were made by one-way or two-way ANOVA (diabetic patients vs. control subjects \times time) with repeated measures on one factor (time). When appropriate, Newman-Keuls post hoc tests were performed. The comparisons were made at the 0.05 level of significance.

RESULTS

No significant difference was observed for gas exchanges between control subjects and diabetic patients at rest and during the exercise period (Table 2). In both groups, the contribution of CHO oxidation to the energy yield significantly decreased, whereas that of fat oxidation significantly increased from minutes 0–30 to minutes 30–60 during the exercise period (Table 3). However, the oxidation of CHO and fat and their respective contributions to the energy yield were not significantly different in control subjects and in diabetic patients.

The isotopic composition of expired CO$_2$ at rest before ingestion of [13C]glucose was not significantly different in diabetic patients and control subjects (-23.9% [8–13C]PDB-1 (SD $0.89)$ vs. -23.8% [8–13C]PDB-1 (SD 1.2), respectively) (Fig. 1). In response to [13C]glucose ingestion, the progressive increase in 13C/12C in expired CO$_2$ was slower in diabetic patients than in control subjects (main effect with interaction). The amount of exogenous glucose oxidized, computed between minutes 30 and 60 during the exercise period, was -20% higher in the control subjects than in the diabetic patients. However, this difference did not reach statistical significance (Table 4 and 2) could be partly because exogenous glucose oxidation was underestimated in the diabetic patients because 13C/12C in expired CO$_2$ only started to level off at minute 45 vs. minute 30 in the control subjects (Fig. 1). The percentage of exogenous glucose, which was actually oxidized between minute 30 and 60 [21\% (SD 4) and 17\% (SD 5) in the control subjects and the diabetic patients], and the contribution of exogenous glucose oxidation to the energy

Table 3. Total CHO and fat oxidation and percent contribution to the energy yield during rest and exercise

<table>
<thead>
<tr>
<th></th>
<th>Control Subjects ($n = 8$)</th>
<th>Diabetic Patients ($n = 8$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rest</td>
<td>Exercise</td>
</tr>
<tr>
<td>CHO, g/min</td>
<td>0.26 (0.12)</td>
<td>0.17 (0.14)</td>
</tr>
<tr>
<td>%Energy</td>
<td>49.2 (11.8)</td>
<td>30.7 (23.8)</td>
</tr>
<tr>
<td>Fat, g/min</td>
<td>0.08 (0.03)</td>
<td>0.11 (0.03)</td>
</tr>
<tr>
<td>%Energy</td>
<td>41.6 (12.0)</td>
<td>60.0 (22.0)</td>
</tr>
</tbody>
</table>

Values are means (SD). The contribution of protein oxidation to the energy yield averaged 2–3\%. CHO, carbohydrate; %energy, percent contribution to the energy yield. *Significantly different from minutes 0–30, $P < 0.05$.

![Fig. 1. Isotopic composition (13C/12C) of expired CO2 (Rexp; bottom) and plasma glucose (R glu; top) and percentage of plasma glucose arising from exogenous glucose (top) after [13C]glucose ingestion in control subjects and diabetic patients. Values are means and SD; $n = 8$ subjects. *Significantly different in the control subjects and diabetic patients (main effect with interaction for R glu and Rexp) and significantly different from the control subjects by two-way ANOVA (group \times time) with repeated measures on one factor (time); $P < 0.05$.](http://jap.physiology.org/)

J Appl Physiol • VOL 103 • JULY 2007 • www.jap.org
yield (Fig. 2) were not significantly different in the control subjects and diabetic patients.

Figure 1 also shows the 13C/12C in plasma glucose and the percentage of plasma glucose deriving from the $[^{13}]$C glucose ingested. In response to exercise and $[^{13}]$C glucose ingestion, the percentage of plasma glucose deriving from exogenous glucose significantly increased (main effect). This increase was significantly higher in the diabetic patients than in control subjects (main effect with interaction). The values were similar over the first 30 min of exercise. However, over the second 30-min period of exercise, the percentage of plasma glucose deriving from exogenous glucose was higher in diabetic patients than in control subjects.

Table 4 and Fig. 2 show that, over the last 30 min of exercise, compared with the observations in control subjects, the oxidation of plasma glucose and of glucose released from the liver and their respective contribution to the energy yield were ~50–55% lower in diabetic patients. In contrast, the oxidation of muscle glycogen and its contribution to the energy yield were significantly 250% higher.

In control subjects, plasma glucose concentrations significantly increased in response to glucose ingestion [from 4.8 mmol/l (SD 0.7) to 6.1 mmol/l (SD 1.3) at minute 15 during the exercise period] and then returned to preingestion levels (Fig. 3). In diabetic patients, plasma glucose concentration, which was significantly higher than in control subjects over the entire period of observation (main effect), also significantly increased in response to glucose ingestion [from 9.6 mmol/l (SD 2.9) to 11.7 mmol/l (SD 3.1) at minute 15 during the exercise period] but then significantly decreased below the value observed at rest before exercise [7.5 mmol/l (SD 3.4) at the end of exercise period]. In control subjects, glucose ingestion transiently increased plasma insulin concentration over basal values at minute 0. In diabetic patients, plasma insulin concentration was significantly higher than that shown in control subjects at rest and exercise (main effect) and slowly decreased over the observation period (Fig. 3).

DISCUSSION

Data from Wahren et al. (30), Lyngsoe et al. (13), and Ramires et al. (22) show that, in diabetic patients deprived of insulin for 12–24 h during prolonged moderate exercise without glucose ingestion, the respiratory exchange ratio is lower, and thus fat oxidation is higher, than that shown in control subjects. In contrast, when insulin is administered to diabetic patients before or during moderate exercise without ingestion of glucose, fuel selection is not significantly different than that shown in control subjects (14, 21, 24). Ingestion of glucose immediately before exercise is advocated in diabetic patients receiving a normal or reduced dose of insulin (1) to avoid exercise-induced hypoglycemia (8, 15). However, there is a paucity of data on substrate utilization in this situation (7, 11, 24). In the study by Francescato et al. (7), which were conducted at various time intervals after insulin injection and with different amounts of glucose ingested, fat oxidation and CHO oxidation were not significantly different, respectively, from those observed in control subjects. However, the control sub-
jackets did not receive any exogenous glucose. In the studies by Riddell et al. (24) and Krzentowski et al. (11), both the control subjects and the insulin-treated diabetic patients ingested glucose before and/or during exercise. In these two studies, the oxidations of fat and CHO were not significantly different in the two groups. Results from the present experiment are well in line with these observations: in diabetic patients receiving their usual insulin dose along with the breakfast 3 h before exercise and a 30-g glucose load 15 min before exercise, total CHO and total fat oxidations were not significantly different from those observed in control subjects during a 60-min period at 50% $\dot{V}_{\text{O}_{2\text{max}}}$. In the studies by Krzentowski et al. (11) and by Riddell et al. (24), the glucose ingested was labeled with 13C to measure exogenous glucose oxidation. In both studies, the progressive increase in production of 13CO$_2$ at the mouth was slower and reached its maximum later in diabetic patients (11, 24); in the study by Riddell et al. (24), the percent contribution of exogenous glucose oxidation to the energy yield was significantly lower in diabetic patients than in control subjects. However, the amount of exogenous glucose oxidized over the exercise period was only slightly and not significantly lower in diabetic patients than in control subjects (11, 24). Because total CHO oxidation was not significantly different in diabetic patients and control subjects, endogenous glucose oxidation was not significantly different in the two groups described in Krzentowski et al. (11) and Riddell et al. (24). Results from the present experiment confirm these findings. The appearance of 13C in expired CO$_2$ was delayed over the first 30 min of exercise; however, over the second part of exercise (minutes 30–60), the amount of exogenous glucose oxidized, and its contribution to the energy yield was not significantly different in the diabetic patients and control subjects. Endogenous glucose oxidation was also similar over the last 30-min period of exercise in diabetic patients and in control subjects [37 g/30 min (SD 18) vs. 33 g/30 min (SD 14), contributing 54% (SD 13) vs. 49% (SD 11) to the energy yield, respectively]. These results from Krzentowski et al. (11) and Riddell et al. (24) and from the present experiment together show that, in diabetic patients receiving insulin, overall fuel selection, including the oxidation of exogenous glucose, is not different from that observed in control counterparts.

We are not aware of any study of plasma glucose oxidation during prolonged moderate exercise in Type 1 diabetic patients, and there are only a limited number of studies of the rate of plasma glucose disappearance (4, 21, 26, 27, 32). In addition, all of these studies have been conducted without administration of glucose, except for the recent study by Chokkal ingam et al. (4), which was conducted under a slightly hyperglycemic (8 mmol/l)-hyperinsulinemic clamp. No significant differences were observed for rates of plasma glucose disappearance between control subjects and diabetic patients in work by Shilo et al. (26), Zinnman et al. (32), and Simonson et al. (27). In contrast, in the study by Raguso et al. (21), the increase in rate of plasma glucose disappearance was similar in diabetic patients and in control subjects at 75% $\dot{V}_{\text{O}_{2\text{max}}}$ but was \sim50% lower in diabetic patients than in control subjects at 45% $\dot{V}_{\text{O}_{2\text{max}}}$. In addition, data from Chokkal ingam et al. (4) suggest that, in diabetic patients, plasma glucose oxidation could be much lower than its rate of disappearance. Unfortunately, no control subjects were included in that study. In line with these observations, in the present experiment, despite higher plasma glucose and insulin concentrations in diabetic patients than in control subjects, the oxidation of plasma glucose and that of glucose derived from the liver (Table 4), as well as their respective contributions to the energy yield (Fig. 2), were much lower in the diabetic patients than in control subjects. As discussed by Raguso et al. (21) and Chokkal ingam et al. (4), this is probably due to a defect in insulin-mediated glucose transport in the muscle fiber in patients with Type 1 diabetes. This hypothesis is supported by data from Klip et al. (10) in rats with streptozotocin-induced diabetes. Compared with control rats, the number of GLUT4 transporters in the intracellular pool was lower and their redistribution on plasma membrane after insulin stimulation was also lower. As a consequence, insulin-stimulated glucose uptake was also \sim50% lower. Nuutila et al. (16) and Yki-Jarvinen et al. (31) also showed that insulin-stimulated muscle plasma glucose uptake was \sim25–45% lower in Type 1 diabetic patients than in control subjects.

In the present experiment, total CHO oxidation was not significantly different in the two groups, indicating a larger oxidation of glucose derived from muscle glycogen, which compensated for the lower oxidation rate of plasma glucose in the diabetic patients (Table 4 and Fig. 2). This observation differs from that of Raguso et al. (21), in which the reduction in plasma glucose oxidation (assumed to be equal to rate of plasma glucose disappearance) was compensated for by an increased intramuscular triglyceride oxidation, whereas muscle glycogen oxidation was not significantly different in diabetic patients and control subjects. Standl et al. (28) also reported that the reduction in muscle glycogen content over a 60-min exercise period at 50–60% $\dot{V}_{\text{O}_{2\text{max}}}$ without glucose ingestion was not significantly different in well-controlled diabetic patients and in control subjects. However, the diabetic patients but not the control subjects ingested 36 g of CHO during the exercise period, and this could have resulted in muscle glycogen sparing. As for the difference between results from the present experiment and from that by Raguso et al. (21), it could stem from the fact that, in Raguso et al., the two groups were studied after a 12-h fast, whereas in the present experiment the diabetic patients and the control subjects both ingested a breakfast 3 h before and 30 g of glucose 15 min before the beginning of exercise.

In conclusion, results from the two studies available in the literature (11, 24) and results from the present experiment suggest that, compared with control subjects, when exogenous glucose is ingested immediately before or during exercise in diabetic patients, although its availability could be slightly delayed, its oxidation rate is not significantly reduced. Moreover, these results suggest that, when glucose is ingested before exercise, diabetic patients rely more on muscle glycogen and less on plasma glucose oxidation than control subjects.

ACKNOWLEDGMENTS

The authors are grateful to Claire Chénard and Alexandre Melançon (Laboratoire de biochimie de l’exercice, Université du Québec à Trois-Rivières) and Jennifer McKay (GEOTOP, Université du Québec à Montréal) for technical assistance.

GRANTS

This study was supported by the Canadian Diabetes Association and the Natural Sciences and Engineering Research Council of Canada.
REFERENCES

