HIGHLIGHTED TOPIC | Regulation of the Cerebral Circulation

Hypoxic regulation of the fetal cerebral circulation

William Pearce

Departments of Physiology, Pharmacology, and Biochemistry, Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California

Pearce, William. Hypoxic regulation of the fetal cerebral circulation. J Appl Physiol 100: 731–738, 2006; doi:10.1152/japplphysiol.00990.2005.—Fetal cerebrovascular responses to acute hypoxia are fundamentally different from those observed in the adult cerebral circulation. The magnitude of hypoxic vasodilatation in the fetal brain increases with postnatal age although fetal cerebrovascular responses to acute hypoxia can be complicated by age-dependent depressions of blood pressure and ventilation. Acute hypoxia promotes adenosine release, which depresses fetal cerebral oxygen consumption through action of adenosine on neuronal A1 receptors and vasodilatation through activation of A2 receptors on cerebral arteries. The vascular effect of adenosine can account for approximately half the vasodilatation observed in response to hypoxia. Hypoxia-induced release of nitric oxide and opioids can account for much of the adenosine-independent cerebral vasodilatation observed in response to hypoxia in the fetus. Direct effects of hypoxia on cerebral arteries account for the remaining fraction, although the vascular endothelium contributes relatively little to hypoxic vasodilatation in the immature cerebral circulation. In contrast to acute hypoxia, fetal cerebral blood flow tends to normalize during acclimatization to chronic hypoxia even though cardiac output is depressed. However, uncompensated chronic hypoxia in the fetus can produce significant changes in brain structure and function, alteration of respiratory drive and fluid balance, and increased incidence of intracranial hemorrhage and periventricular leukomalacia. At the level of the fetal cerebral arteries, chronic hypoxia increases protein content and depresses norepinephrine release, contractility, and receptor densities associated with contraction but also attenuates endothelial vasodilator capacity and decreases the ability of ATP-sensitive and calcium-sensitive potassium channels to promote vasorelaxation. Overall, fetal cerebrovascular adaptations to chronic hypoxia appear prioritized to conserve energy while preserving basic contractility. Many gaps remain in our understanding of how the effects of acute and chronic hypoxia are mediated in fetal cerebral arteries, but studies of adult cerebral arteries have produced many powerful pharmacological and molecular tools that are simply awaiting application in studies of fetal cerebral artery responses to hypoxia.

cerebral arteries; neonate; high altitude; perivascular innervation; vascular endothelium

ONE OF THE MOST FUNDAMENTAL principles of cardiovascular regulation is that it should efficiently match each tissue’s blood flow with its metabolic demands. This principle applies not only to fully mature adult tissues but also to the immature tissues of the fetus in which oxygen consumption is typically high despite a low arterial PO2 (85). An important feature of this regulation in the fetus is that at the lower limits of oxygen availability, blood flow is centralized to favor the brain and heart at the expense of other organs and tissues (104). In extreme situations in which this regulation succumbs to overwhelming peripheral vasodilatation, hypotension ensues with resultant hypoxic-ischemic cerebral damage (52). Such damage is rarely fully reversible and often yields lifelong neurological morbidity that is graded with the severity and duration of the insult (48, 76, 102). Fortunately, long before these extremes are reached, the fetus can elicit a broad variety of vascular responses that help maintain cerebral homeostasis during low-oxygen conditions. Among these are the specialized mechanisms that mediate the short-term vasodilatory responses to acute hypoxia and the more long-term changes in artery structure and reactivity that enable the fetus to adapt to chronic hypoxia. The purpose of this review is to summarize the main features of these fetal cerebrovascular adjustments, with separate emphasis on responses to acute and chronic hypoxia.

KEY CHARACTERISTICS OF FETAL CEREBROVASCULAR RESPONSES TO ACUTE HYPOXIA

Owing in large part to its rapid pace of growth and synthesis, the fetal brain exhibits greater rates of cerebral oxygen con-
sensitivity to CO2 increases with postnatal age (15). In multiple
appears to be age dependent and becomes more pronounced as
thereby transiently depress ventilation (33, 45). This effect also
mediates a significant fraction of the cerebral vasodilatation
metabolic demand relative to oxygen delivery is adenosine. As
one of most important molecules signaling an increase in
the arteries and arterioles supplying the tissue. In this context,
of vasodilator metabolites and the level of contractile tone in
heavily on a negative feedback loop between tissue production
of vasodilator enzymes and the level of contractile tone in

Another important feature of hypoxic vasodilatation in the
fetal brain is that it is highly heterogeneous both among
different brain regions and among adjacent tissue compart-
ments (17, 60). As shown in studies of adult brain, hypoxic
vasodilatation in the fetal brain is most robust in the brain stem
(26). The fetal brain stem is also more resistant to hypoxic
damage than other brain areas and initiates a robust neovascu-
larization in response to hypoxia (118). One consequence of
the strong brain stem vasodilator response to acute hypoxia is
that the increased flow can depress CO2 in the cisterna and
thereby transiently depress ventilation (33, 45). This effect also
appears to be age dependent and becomes more pronounced as
sensitivity to CO2 increases with postnatal age (15). In multiple
species, acute hypoxia can also precipitate hypotension, and,
again, the magnitude of this response is age dependent with the

Another important feature of hypoxic vasodilatation in the
fetal brain is that it is highly heterogeneous both among
different brain regions and among adjacent tissue compart-
ments (17, 60). As shown in studies of adult brain, hypoxic
vasodilatation in the fetal brain is most robust in the brain stem
(26). The fetal brain stem is also more resistant to hypoxic
damage than other brain areas and initiates a robust neovascu-
larization in response to hypoxia (118). One consequence of
the strong brain stem vasodilator response to acute hypoxia is
that the increased flow can depress CO2 in the cisterna and
thereby transiently depress ventilation (33, 45). This effect also
appears to be age dependent and becomes more pronounced as
sensitivity to CO2 increases with postnatal age (15). In multiple
species, acute hypoxia can also precipitate hypotension, and,
again, the magnitude of this response is age dependent with the
greatest effect in the early postnatal period (15, 103, 133). This
effect appears to be mediated in part by chemoreceptor-mediated
bradycardia, but aside from this influence there appears to
be little participation of the carotid chemoreflexes in fetal
responses to acute hypoxia (51, 60), although these reflexes are
fully developed in the adult (56).

TISSUE MEDIATORS OF ACUTE HYPOXIC CEREBRAL
VASODILATATION IN THE FETUS

Coupling between blood flow and metabolism depends
heavily on a negative feedback loop between tissue production
of vasodilator metabolites and the level of contractile tone in
the arteries and arterioles supplying the tissue. In this context,
one of most important molecules signaling an increase in
metabolic demand relative to oxygen delivery is adenosine. As
shown in a broad variety of studies, tissue adenosine release
mediates a significant fraction of the cerebral vasodilatation
produced by hypoxia (94) through action on adenosine A2
receptors (18), and this response is fully developed by 0.6
gestation in most species (65). In addition, release of cerebral

The brain parenchyma includes many different cell types,
and each of these can release a different combination of
vasoactive factors in response to hypoxia. In addition to the
vasodilator molecules mentioned above, hypoxia can also stim-
ulate some fetal cells to release contractile neurotransmitters
such as serotonin and other monoamines (16, 54). The net
result is that hypoxia initiates a dramatic and regionally heter-
ogenous change in the interstitial milieu that may not only
promote vasodilatation but may also attenuate vasodilatation to
some receptor agonists, such as N-methyl-D-aspartate (8). The
reasons for this complexity arise not only from the mixtures of
cerebral cell types that vary from region to region but also from
the arteries and arterioles whose reactivity is labile and varies
with age, artery size, and region.

One of the most important causes of hypoxia-induced
changes in vasoreactivity is the direct effect of hypoxia on
endothelial function. Endothelial vasodilator capacity is
typically depressed in fetal cerebral arteries (99), and the
endothelium contributes relatively little to hypoxic vasodi-
latation in the fetus (132). This may be due in part to the fact
that oxygen is a key reactant in the synthesis of nitric oxide
but is of limited availability in the fetus, where oxygen
tensions well below 40 Torr are normal (55, 124). However,
postnatal maturation imparts an increasing capacity for both
pharmacologically induced and shear-induced endothelium-

Direct Vascular Effects of Acute Hypoxia in Fetal
Cerebral Arteries

The brain parenchyma includes many different cell types,
and each of these can release a different combination of
vasoactive factors in response to hypoxia. In addition to the
vasodilator molecules mentioned above, hypoxia can also stim-
ulate some fetal cells to release contractile neurotransmitters
such as serotonin and other monoamines (16, 54). The net
result is that hypoxia initiates a dramatic and regionally heter-
ogenous change in the interstitial milieu that may not only
promote vasodilatation but may also attenuate vasodilatation to
some receptor agonists, such as N-methyl-D-aspartate (8). The
reasons for this complexity arise not only from the mixtures of
cerebral cell types that vary from region to region but also from
the arteries and arterioles whose reactivity is labile and varies
with age, artery size, and region.

One of the most important causes of hypoxia-induced
changes in vasoreactivity is the direct effect of hypoxia on
endothelial function. Endothelial vasodilator capacity is
typically depressed in fetal cerebral arteries (99), and the
endothelium contributes relatively little to hypoxic vasodi-
latation in the fetus (132). This may be due in part to the fact
that oxygen is a key reactant in the synthesis of nitric oxide
but is of limited availability in the fetus, where oxygen
tensions well below 40 Torr are normal (55, 124). However,
postnatal maturation imparts an increasing capacity for both
pharmacologically induced and shear-induced endothelium-
dependent vasodilatation (123), and, correspondingly, the endothelial contribution to hypoxic vasodilatation increases throughout early postnatal life and becomes quite prominent in adult cerebral arteries (97, 132). Although there is some evidence that endothelial release of prostanoids may mediate some of the endothelium’s contribution to hypoxic vasodilation (83), other more extensive evidence attributes the main endothelial contribution of hypoxic vasodilation to endothelial release of nitric oxide (31, 50). This interpretation is not universal (46), but it suggests that hypoxia-induced release of nitric oxide from the endothelium and subsequent cGMP formation is an important, if variable and age-dependent, component of the fetal cerebral response to acute hypoxia (31, 50) (see Fig. 1).

Apart from the endothelium, hypoxia also exerts multiple direct effects on vascular smooth muscle (95). Immature cerebral arteries produce less active stress than adult arteries and are less resistant to the direct effects of acute hypoxia (96). An important consequence of these vascular characteristics is that the smaller and more peripheral cerebral arteries relax quickly and completely in response to hypoxia, whereas the larger and more proximal arteries, including the common carotid, maintain tone much better and play a more important role in the gradual adjustments of cerebrovascular resistance to hypoxia (40, 96). At the level of the smooth muscle, acute hypoxia can alter membrane potential and calcium influx in fetal smooth muscle (30) (see Fig. 1), although these responses have not been directly determined in fetal cerebral arteries. Hypoxia can also depress the density and binding affinity of G protein-coupled receptors for contractile agonists (3) but does not appear to directly influence the coupling of these receptors to inositol trisphosphate formation in fetal carotid arteries (2). Acute hypoxia also has been reported to activate calcium-sensitive potassium channels in neonatal pial arteries through a nitric oxide-independent mechanism (6). Within the adventitia of the artery wall, acute hypoxia may also promote the release of vasodilator sensory neuropeptides (49) but may also inhibit release of nitric oxide (91) from perivascular nerves in adult cerebral arteries. Without doubt, acute hypoxia exerts multiple direct effects on arteries, in vitro, but many of these effects await examination in arteries isolated from the fetal cerebral circulation.

Fig. 1. Summary of combined effects of acute hypoxia, chronic hypoxia, and maturation on cerebrovascular tone. This diagram summarizes the main effects of acute and chronic hypoxia discussed in the accompanying text. For reference, corresponding effects of postnatal maturation are also shown. The effects of each influence are indicated by the enclosed abbreviations defined at the top of the figure (A-, A+, C-, C+, M-, and M+). Circled + signs indicate stimulation of a pathway, and conversely, circled − signs indicate inhibition. This diagram is not intended to be comprehensive but rather is given as an overview of known sites of action of hypoxia on the pathways governing cerebrovascular tone. sGC, soluble guanylate cyclase; cGMP, cyclic guanosine monophosphate; PKG, cyclic guanosine monophosphate-activated protein kinase; PGE(EP), prostaglandin/E-prostanoid; BK, large conductance calcium-sensitive potassium channel; KATP, ATP-sensitive potassium channel; eNOS, endothelial nitric oxide synthetase; COX, cyclooxygenase; NE, norepinephrine; NO, nitric oxide.
EFFECTS OF CHRONIC HYPOXIA ON THE FETAL BRAIN

Chronic hypoxia produces a pattern of responses very different from those elicited by acute hypoxia. With sustained hypoxia, plasma hemoglobin concentrations rise and blood flows to most fetal organs tend to normalize but with sustained reductions in oxygen delivery to most organs other than the brain and heart (14). Fetal cardiac output is typically depressed by moderate chronic hypoxia, but cerebral blood flow is maintained, as is the vasodilatory response to acute hypoxia (55). Much of this compensation for chronic hypoxia appears to be facilitated by the maternal circulation (20). In contrast, maternal pathologies such as placental insufficiency (90) and hypertension (35) can cause chronic fetal hypoxia, in which cases the fetal compensations for chronic hypoxia can be quite heterogeneous. Chronic fetal hypoxia has been associated with low birth weights (92, 121) and a variety of changes in brain structure, neuronal density, and function (88, 90, 105) as well as a broad range of cerebral pathologies, including increased incidence of intracranial hemorrhage (130) and periventricular leukomalacia (113). Acclimatization to chronic hypoxia during fetal life has also been suggested to have an adverse influence on adult cardiovascular health (9).

Given the range and diversity of clinically relevant fetal responses to chronic hypoxia, a broad variety of studies have focused on how fetal cerebral tissues alter their characteristics in response to chronic hypoxia. Thus chronic hypoxia has been shown to upregulate pontine adenosine receptors (63), suggesting modulation of hypoxia’s ability to inhibit cerebral metabolism. Chronic hypoxia has also been shown to stimulate hypothalamic production of vasopressin and oxytocin (57) and release of atrial and brain natriuretic peptides (59), indicating important potential changes in fetal fluid balance during chronic hypoxia. Other studies have revealed that expression of the enzyme ornithine decarboxylase increases upon exposure to hypoxia with a time to peak response of -4 h (72, 93). Owing to the key role of ornithine decarboxylase in polyamine synthesis related to growth and differentiation, these studies indicate a fundamental response at the cellular level that may help individual cerebral cells adapt to the demands of chronic hypoxia. Other studies have revealed that chronic hypoxia stimulates the synthesis of the vasodilator adrenomedullin in the fetal cerebral cortex (53), suggesting a mechanism whereby the fetal brain may help maintain adequate oxygen delivery under low-oxygen conditions. The vasodilator peptide calcitonin gene-related peptide also appears to play an important role in fetal adjustments to chronic hypoxia (115), although the exact role of this peptide in the cerebral circulation remains largely unexamined. Without doubt, chronic hypoxia brings about a diverse sequence of adjustments in neuronal and glial protein expression and regulation within the fetal brain (see Fig. 1). How these changes are coordinated and how they influence overall cerebrovascular regulation remain largely unknown.

EFFECTS OF CHRONIC HYPOXIA ON FETAL CEREBRAL ARTERIES

Aside from hypoxic changes in the cerebral parenchyma, it is also clear that chronic hypoxia dramatically alters the composition and reactivity of fetal cerebral arteries. The vasculature of the immature brain is highly plastic and can respond with robust increases in capillary density in response to hypoxia (112). Both vascular endothelial growth factor and erythropoietin are important components of the endocrine response to chronic hypoxia, and in turn these bring about multiple changes of significance for cardiovascular and cerebrovascular regulation (81). Chronic hypoxia increases protein content in fetal cerebral arteries, depresses the magnitude of depolarization-induced contractions, and also depresses the densities of several receptor types that drive contraction in these arteries (71, 120). In turn, inositol trisphosphate mobilization and receptor density are also depressed by chronic hypoxia (131). At the same time, in distal branches of fetal middle cerebral arteries, hypoxia enhances the affinity of 5-HT receptors for serotonin in the neonate (114). Also in fetal middle cerebral arteries, chronic hypoxia appears to attenuate the ability of ATP-sensitive and calcium-sensitive potassium channels to promote relaxation (70). In ovine cerebral arteries, chronic hypoxia downregulates the ability of calcium to promote myosin phosphorylation, but this effect is more than offset by an upregulated ability of phosphorylated myosin to produce force (see Fig. 1). The net effect of these changes is to yield increased myofilament calcium sensitivity in fetal cerebral arteries (89). This upregulated calcium sensitivity may help to preserve the ability of the arteries to contract but with smaller, and possibly more energetically efficient, changes in cytosolic calcium. However, the combination of depressed overall contractility together with decreased potassium channel reactivity indicates that the hypoxic fetus is more delicately balanced between contraction and relaxation than in the normoxic state. Taken together, these adaptations to chronic hypoxia appear prioritized to conserve energy while preserving basic contractility. This untested hypothesis seems a reasonable focus for future investigations of the molecular mechanisms whereby hypoxia is sensed and initiates changes in gene transcription and protein expression leading to hypoxic cerebrovascular adaptation. Equally important, it is clear that cerebral arteries respond very differently to chronic hypoxia in adult and fetal brain, and the mechanistic basis for these marked differences remains largely unexplored.

In many cerebral arteries, the interface between the adventitial and medial layers is supplied by a broad variety of perivascular nerves that exert motor, sensory, and trophic influences on the smooth muscle and endothelium constituents of the artery wall. Not surprisingly, chronic hypoxia changes the function of at least some of these nerves. Chronic hypoxia depresses the function of nitric oxide releasing nerves in the middle cerebral artery, and because these nerves can facilitate norepinephrine release from adrenergic nerves, overall norepinephrine release decreases in chronically hypoxic fetal cerebral arteries (22, 23) (see Fig. 1). This response, which is due to a decrease in the expression of neuronal nitric oxide synthase (nNOS) in the perivascular nitridergic innervation (82), is a unique feature of the fetal response to chronic hypoxia and is absent in adult cerebral arteries. Typically, the adrenergic neurovascular apparatus is less efficient at initiating contraction in fetal compared with adult middle cerebral arteries (98), but chronic hypoxia appears to upregulate the ability of adrenergic stimulation to initiate contraction in fetal cerebral arteries (41, 73, 74). This effect, combined with the reduced norepinephrine release produced by hypoxic acclimatization in fetal arteries, suggests important changes in synaptic structure.
and/or function (such as reduced synaptic cleft width or reduced reuptake efficiency) that enable a smaller mass of norepinephrine to yield a stronger contraction, despite postsynaptic downregulation. Again this is a largely untested hypothesis worthy of further examination. In parallel, the effects of chronic hypoxia on other neurovascular motor systems seem ripe for exploration, as do the effects of chronic hypoxia on the important trophic influences these nerves exert on artery phenotype and vasoreactivity. In many respects, our understanding of the effects of chronic hypoxia on the function of the adrenergic, cholinergic, and peptidergic innervation of fetal cerebral arteries is still in its infancy and remains an attractive area for future work.

At the endothelial surface of cerebral arteries, chronic hypoxia also induces several important effects. It has long been recognized that intrapartum hypoxia disturbs the permeability of the blood-brain-barrier in human neonates (109). Chronic hypoxia has also been shown to depress endothelium-dependent vasodilation in fetal, but not adult, cerebral arteries (71). This effect is highly conserved across species and has even been demonstrated in chicken embryos (108). The loss of endothelial vasodilatory capacity can be attributed to hypoxic depression of endothelial nitric oxide synthase mRNA and protein levels in the fetal brain (1) (see Fig. 1) and is thus similar to the effect of chronic hypoxia on nNOS levels in the perivascular nerves of fetal cerebral arteries (82). In contrast, the effects of chronic hypoxia on the expression of nNOS within the cerebral parenchyma appear to be more variable and species dependent (38), with some studies reporting an upregulation (1) and others reporting a downregulation (24, 25). Certainly, nitric oxide is not the only vasoactive substance released from the cerebral endothelium, but the effects of chronic hypoxia on these pathways remain largely unexamined.

FUTURE DIRECTIONS

As is common in fetal physiology, understanding and appreciation of the mechanisms that mediate the neurovascular effects of hypoxia lag far behind what is known in adult tissues, particularly in relation to the role of hypoxia-inducible factor (32, 58, 111). Thus many areas need work, and, to attract the scientific interest necessary to initiate and complete this work, it may be advantageous first to focus attention on the clinical causes, consequences, diagnosis, and treatment of chronic hypoxia in the fetus. As shown in many studies, humans can adapt successfully to chronic high-altitude hypoxia, but the mechanisms and long-term health consequences involved are unknown (9, 86). Perhaps more clinically relevant are the pathological causes of chronic fetal hypoxia, which include placental insufficiency (28, 79, 101), restricted uterine blood flow (20), and umbilical cord compression (80). At the behavioral level, greater attention also needs to be focused on the connections between maternal drug and alcohol abuse and fetal hypoxia (43, 129). Although the incidence of intrapartum fetal asphyxia is only about 2% (77), it would be of great value to obstetricians and neonatologists if the association between chronic fetal hypoxia and vulnerability to asphyxic insults were better defined (106). For neonates with persistent chronic hypoxia due to pulmonary insufficiency or cyanotic heart disease (13), there needs to be greater recognition of the fact that cardiopulmonary bypass and extracorporeal membrane oxygenation can precipitate multiple long-lasting disturbances of the cerebral circulation with potentially hypoxic consequences (36, 44).

Regarding the fetal consequences of chronic hypoxia, it has long been recognized that fetal hypoxemia is strongly associated with human intrauterine growth retardation (92). This growth retardation, in turn, may impart a compromised ability of the cerebral circulation to respond successfully to acute hypoxia and hypotension (11), although some studies suggest that in some cases growth retardation may involve a conditioning effect that enables the fetus to resist hypoxic cerebral damage in some species (119). These mechanisms are clearly worthy of further investigation, as they may provide clues to improved clinical strategies for management of cerebrovascular risk in the small-for-gestational-age infant. In parallel, there is a great abundance of promising opportunities to better understand how the fetal cerebral circulation responds to both acute and chronic hypoxia. In this context the three main categories of mechanisms include the effects of hypoxia on brain metabolism and production of vasoactive mediators, the direct effects of hypoxia on the smooth muscle and endothelium of cerebral arteries, and how hypoxia influences the motor, trophic, and sensory functions of the cerebrovascular perivascular innervation. Within each of these domains, there is tremendous opportunity for the application of molecular tools and genetic strains developed for studies of hypoxic adult arteries to studies of fetal cerebral arteries.

With greater understanding of the mechanisms whereby hypoxia influences cerebrovascular regulation, new opportunities should arise through which the subtle effects of fetal hypoxia could be more readily detected to identify the fetus at risk. To this end, Doppler methods are becoming increasingly useful for the detection of chronic hypoxia in utero (4, 10, 110) provided that the results are interpreted cautiously (64, 117). At the bedside, another promising tool for diagnosis is near-infrared spectroscopy, although again the results of such measurements must be interpreted carefully in relation to cerebral hypoxia (12, 37, 128). A more powerful tool is functional magnetic resonance imaging, which is impractical for routine use but offers great ability to assess fetal cerebral oxygenation and may help identify the at-risk neonate as well as the extent to which interventions are successful (122). Even more powerful but less practical is magnetic resonance spectroscopy (MRS), which offers unprecedented opportunities to measure concentrations of multiple compounds within the cerebral tissue and how these change in response to hypoxia (29, 75, 128). For example, proton and phosphorus MRS have demonstrated that hypoxia can dramatically increase the lactate-to-creatinine ratio in cerebral tissue over a time course that correlates tightly with the time course of energy failure (100). Such measurements have prompted some to conclude that the use of MRS may revolutionize the detection of fetal cerebral injury (21). Hopefully, such advances will lead to development of more efficient therapies that avoid the undesirable cardiovascular and metabolic side effects of many conventional therapies used clinically to manage the posthypoxic fetus (68, 87).

GRANTS

The work reported in this manuscript was supported by National Institutes of Health Grants HL-54120, HD-31266, and HL-64867 and by the Loma Linda University School of Medicine.
REFERENCES

HYPPOXIA AND THE FETAL CEREBRAL CIRCULATION

