Journal of Applied Physiology

Effects of caffeine on blood pressure, heart rate, and forearm blood flow during dynamic leg exercise

Jason W. Daniels, Paul A. Molé, James D. Shaffrath, Charles L. Stebbins


This study examined the acute effects of caffeine on the cardiovascular system during dynamic leg exercise. Ten trained, caffeine-naive cyclists (7 women and 3 men) were studied at rest and during bicycle ergometry before and after the ingestion of 6 mg/kg caffeine or 6 mg/kg fructose (placebo) with 250 ml of water. After consumption of caffeine or placebo, subjects either rested for 100 min (rest protocol) or rested for 45 min followed by 55 min of cycle ergometry at 65% of maximal oxygen consumption (exercise protocol). Measurement of mean arterial pressure (MAP), forearm blood flow (FBF), heart rate, skin temperature, and rectal temperature and calculation of forearm vascular conductance (FVC) were made at baseline and at 20-min intervals. Plasma ANG II was measured at baseline and at 60 min postingestion in the two exercise protocols. Before exercise, caffeine increased both systolic blood pressure (17%) and MAP (11%) without affecting FBF or FVC. During dynamic exercise, caffeine attenuated the increase in FBF (53%) and FVC (50%) and accentuated exercise-induced increases in ANG II (44%). Systolic blood pressure and MAP were also higher during exercise plus caffeine; however, these increases were secondary to the effects of caffeine on resting blood pressure. No significant differences were observed in heart rate, skin temperature, or rectal temperature. These findings indicate that caffeine can alter the cardiovascular response to dynamic exercise in a manner that may modify regional blood flow and conductance.

  • angiotensin II
  • forearm vascular conductance
  • adenosine receptors


  • Address for reprint requests: J. Daniels, Div. of Cardiovascular Medicine, TB172, Univ. of California, Davis, CA 95616-8634.

View Full Text