Journal of Applied Physiology

In vivo thermal conductivity of the human forearm tissues

M. B. Ducharme, P. Tikuisis


The effective thermal conductivities of the skin + subcutaneous (keff skin + fat) and muscle (keff muscle) tissues of the human forearm at thermal steady state during immersion in water at temperatures (Tw) ranging from 15 to 36 degrees C were determined. Tissue temperature (Tt) was continuously monitored by a calibrated multicouple probe during a 3-h immersion of the resting forearm. Tt was measured every 5 mm from the longitudinal axis of the forearm (determined from computed-tomography scanning) to the skin surface. Skin temperature (Tsk), heat loss (Hsk), and blood flow (Q) of the forearm, as well as rectal temperature (Tre) and arterial blood temperature at the brachial artery (Tbla), were measured during the experiments. When the keff values were calculated from the finite-element (FE) solution of the bioheat equation, keff skin + fat ranged from 0.28 +/- 0.03 to 0.73 +/- 0.14 W.degrees C-1.m-1 and keff muscle varied between 0.56 +/- 0.05 and 1.91 +/- 0.19 W.degrees C-1.m-1 from 15 to 36 degrees C. The values of keff skin + fat and keff muscle, calculated from the FE solution for Tw less than or equal to 30 degrees C, were not different from the average in vitro values obtained from the literature. The keff values of the forearm tissues were linearly related (r = 0.80, P less than 0.001) to Q for Tw greater than or equal to 30 degrees C. It was found that the muscle tissue could account for 92 +/- 1% of the total forearm insulation during immersion in water between 15 and 36 degrees C.