A standardized method of cardiopulmonary resuscitation in rodents has been developed for anesthetized, mechanically ventilated rats. Ventricular fibrillation was induced and maintained by an alternating current delivered to the right ventricular endocardium. After 4 min of ventricular fibrillation, the chest was compressed with a pneumatic piston device. Eight of 14 animals were successfully resuscitated with DC countershock after 6 min of cardiac arrest. In confirmation of earlier studies from our laboratories in dogs, pigs, and human patients, this rodent model of cardiopulmonary resuscitation demonstrated large venoarterial [H+] and PCO2 gradients associated with reduced pulmonary excretion of CO2 during the low-flow state. Mean aortic pressure, coronary perfusion pressure, and end-tidal CO2 during chest compression were predictive of successful resuscitation.