Because reactive O2 metabolites have been demonstrated to be potent mediators of vascular dysfunction and are synthesized by lung tissue, their involvement as mediators of oleic acid (OA)-induced pulmonary edema in the isolated Krebs-perfused rabbit lung was assessed. Injection of OA (0.1 ml) into the pulmonary artery after vehicle pretreatment induced marked increases in lung weight [50.4 +/- 13.9 vs. 4.2 +/- 2.0 (SE) g 45 min after OA or vehicle, respectively, P less than 0.05], an index of pulmonary edema, and airway pressure. OA also caused a significant though minimal increase in pulmonary arterial pressure. Pretreatment with catalase (1,000 U/ml), a scavenger of H2O2, significantly (P less than 0.05, Friedman's) attenuated the increases in lung weight (50.4 +/- 13.9 vs. 15.1 +/- 4.9 g), airway pressure, and pulmonary arterial pressure. In contrast to catalase, pretreatment with Cu-tryptophan (40 microM), a lipid-soluble scavenger of superoxide, provided no protective effect by itself, nor was there any potentiation of protection when combined with catalase. Further evidence implicating O2 metabolites in OA-induced edema was obtained by electron paramagnetic resonance (EPR) spectroscopy of perfusate samples to which the spin trap, sodium 3,5-dibromo-4-nitrosobenzenesulfonate (10 mM), was added. Analysis of these samples revealed the presence of free radicals after OA. Pretreatment with catalase (1,000 U/ml) and superoxide dismutase (250 U/ml) attenuated the EPR signal, indicating that proximal formation of O2 free radicals was in part responsible for the signal. These results suggest that reactive O2 metabolites are mediators of OA-induced pulmonary edema in the isolated perfused rabbit lung.