Journal of Applied Physiology


In collapsible biologic conduits, occlusion and cessation of flow occur when upstream pressure falls below a critical pressure (Pcrit). To examine the relationship between Pcrit and the development of upper airway occlusion, we examined the relationship between maximal inspiratory airflow and nasal pressure in seven normal subjects during sleep. At varying levels of subatmospheric pressure applied to a nasal mask during non-rapid-eye-movement (NREM) sleep, maximal inspiratory airflow decreased in proportion to the level of nasal pressure. When nasal pressure fell below a Pcrit, subjects demonstrated upper airway occlusions terminated by arousals. In these normal subjects, the upper airway Pcrit was found to be -13.3 +/- 3.2 (SD) cmH2O. In four subjects who sustained sleep while nasal pressure remained below the Pcrit, recurrent occlusive apneas were demonstrated. The relationship between maximal inspiratory airflow and nasal pressure in each subject was fit by linear regression and demonstrated upper airway Pcrit at the zero-flow intercept that were not significantly different from those observed experimentally. These data demonstrate that the normal human upper airway during sleep is characterized by a negative Pcrit and that occlusion may be induced when nasal pressure is decreased below this Pcrit.