Journal of Applied Physiology

Effects of caffeine and/or nasal CPAP treatment on laryngeal chemoreflexes in preterm lambs

Nadia Boudaa, Nathalie Samson, Vincent Carrière, Pamela Samanta Germim, Jean-Charles Pasquier, Aida Bairam, Jean-Paul Praud


Current knowledge suggests that laryngeal chemoreflexes (LCR) are involved in the occurrence of certain neonatal apneas/bradycardias, especially in the preterm newborn. While caffeine and/or nasal continuous positive airway pressure (nCPAP) are the most frequent options used for treating apneas in preterm newborns, their effects on LCR-related apneas/bradycardias are virtually unknown. The aim of the present study was to test the hypothesis that caffeine and/or nCPAP decreases LCR-related cardiorespiratory inhibition in a preterm ovine model. Seven preterm lambs were born vaginally on gestational day 133 (normal gestation: 147 days) after intramuscular injections of betamethasone and mifepristone. Five days after birth, a chronic surgical instrumentation was performed to record states of alertness, electrocardiogram, systemic arterial pressure, and electromyographic activity of a laryngeal constrictor muscle, as well as to insert a transcutaneous supraglottal catheter. LCR were induced in quiet sleep under four conditions: 1) control (without caffeine or nCPAP); 2) nCPAP (5 cmH2O, without caffeine); 3) caffeine (10 mg/kg infused intravenously for 30 min, without nCPAP); and 4) nCPAP + caffeine. Our results showed that nCPAP consistently blunted LCR-related cardiorespiratory inhibition vs. control condition, contrary to caffeine whose overall effect was nonsignificant. In addition, nCPAP condition was characterized by a more consistent and rapid arousal after HCl injection. No significant differences were observed between all tested conditions with regard to swallowing and cough. It is concluded that nCPAP should be further assessed for its usefulness in treating neonatal apneas linked to LCR.

  • quiet sleep
  • apneas of prematurity
  • mifepristone
  • swallowing
  • arousal response
View Full Text