Journal of Applied Physiology

Effects of glossopharyngeal insufflation on cardiac function: an echocardiographic study in elite breath-hold divers

Ralph Potkin, Victor Cheng, Robert Siegel


Glossopharyngeal insufflation (GI), a technique used by breath-hold divers to increase lung volume and augment diving depth and duration, is associated with untoward hemodynamic consequences. To study the cardiac effects of GI, we performed transthoracic echocardiography, using the subcostal window, in five elite breath-hold divers at rest and during GI. During GI, heart rate increased in all divers (mean of 53 beats/min to a mean of 100 beats/min), and blood pressure fell dramatically (mean systolic, 112 to 52 mmHg; mean diastolic, 75 mmHg to nondetectable). GI induced a 46% decrease in mean left ventricular end-diastolic area, 70% decrease in left ventricular end-diastolic volume, 49% increase in mean right ventricular end-diastolic area, and 160% increase in mean right ventricular end-diastolic volume. GI also induced biventricular systolic dysfunction; left ventricular ejection fraction decreased from 0.60 to a mean of 0.30 (P = 0.012); right ventricular ejection fraction, from 0.75 to a mean of 0.39 (P < 0.001). Wall motion of both ventricles became significantly abnormal during GI; the most prominent left ventricular abnormalities involved hypokinesis or dyskinesis of the interventricular septum, while right ventricular wall motion abnormalities involved all visible segments. In two divers, the inferior vena cava dilated with the appearance of spontaneous contrast during GI, signaling increased right atrial pressure and central venous stasis. Hypotension during GI is associated with acute biventricular systolic dysfunction. The echocardiographic pattern of right ventricular systolic dysfunction is consistent with acute pressure overload, whereas concurrent left ventricular systolic dysfunction is likely due to ventricular interdependence.

  • apnea
  • diving
  • lung packing
  • ventricular interdependence
  • heart failure
View Full Text